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Abstract—We propose partial and full link reversal algorithms
to bypass voids during geographic routing over duty-cycled
wireless sensor networks. We propose a distributed approach that
is oblivious to one-hop neighbor information. Upon termination
of the algorithm, the resulting network is guaranteed to be
destination-oriented. Further, to reduce the delays incurred under
reactive link reversal, we propose the use of ‘pseudo-events’,
a preemptive link reversal strategy, that renders the network
destination-oriented before the onset of a real event. A simulation
study of the effectiveness of pseudo-events is also provided.

Index Terms—partial link reversal, full link reversal, pseudo-
events, sensor network, geographic routing, distributed algorithm

I. INTRODUCTION

We consider a wireless sensor network (WSN) with a
designated sink node. The purpose of the WSN is to generate
an alarm when certain events are detected. An alarm packet
originating at a node has to be routed to the sink node. For
such problems, geographic routing [1] is a popular protocol
for packet delivery. It is scalable, stateless and reactive without
the need for prior route discovery. The protocol employs
geographic greedy routing, where a node forwards a packet
to another node within the communication range and closer
to the destination. Such a protocol requires a node with a
packet to be aware of its geographical location, and those
of its neighbors. This next hop node in the direction of the
destination is defined as a greedy node. Clearly, the resulting
routing graph is a directed acyclic graph (DAG). A DAG is
said to be destination-oriented when there is a directed path
in the DAG from any node to the sink. A DAG is destination-
disoriented if there exists a node other than the sink that has no
outgoing links. Such a node is said to be stuck. A destination-
oriented network under geographic greedy routing may be ren-
dered destination-disoriented in the presence of node failures.
The failure of geographic greedy routing in the presence of
stuck nodes is commonly referred to as the local minimum
condition [2]. Solutions such as face routing [1], convex hull
routing [3] and link reversal routing [4] were proposed in
the literature to pull the network out of a local minimum
condition. All these algorithms require knowledge of one-hop
neighbors. Maintenance of one-hop neighbor information, in
general, requires periodic transmissions of Keep Alive packets.
Nodes however are duty-cycled to enhance the lifetime of the
network. The intricacies introduced by duty-cycled sensors
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in the maintenance of one-hop neighbor information involves
several message exchanges between nodes and its one-hop
neighbors, associated access issues and collision resolution
mechanisms. This can be both time and energy consuming.
This work is motivated by the question: is there a dis-
tributed, neighbor oblivious protocol (i.e., a protocol with zero
overhead for neighbor discovery) that can pull a network out of
its local minimum condition and render it destination-oriented?
Gafni and Bertsekas in [4] propose two general classes
of link reversal algorithms for converting a destination-
disoriented DAG into a destination-oriented DAG (see section
II). Henceforth we refer to their algorithms as GB algorithms.
Both classes of algorithms require one-hop neighbor informa-
tion. In this paper we propose neighbor oblivious link reversal
algorithms. We then embed them into the GB framework
to show that our proposed algorithms render the network
destination-oriented, but in a neighbor oblivious fashion.
Executing link reversal reactively (i.e., when an actual alarm
meets a stuck node), to deliver an alarm packet to the sink,
can lead to significant end-to-end delay [5]. We propose the
use of pseudo-events to maintain the network in a destination-
oriented state before the onset of real events. Pseudo-events
create virtual events distributed across space and time. This
initiates link reversal at stuck nodes while relaying these
pseudo-alarm packets to the sink. Our proposed maintenance
technique is likely to be more energy efficient and works well
even in a duty-cycled network since the forwarding protocol
itself repairs the network (see section VI).
Our main contributions are the following :

o We provide neighbor oblivious partial and full link rever-
sal schemes (see section III) that fit within the framework
of the GB algorithms (see section V).

o We propose the use of pseudo-events, generated across
time and space, that maintains the network in a
destination-oriented state.

The analyses of the proposed algorithms is presented in
Section IV. Section VII contains some concluding remarks.

Related Literature

The distributed planar graph traversal technique, commonly
known as face routing and presented in [1] and [6], guarantees
delivery if a path exists. The technique requires apriori knowl-
edge of the full neighborhood. Kalosha et al. [7] addressed a
beaconless recovery problem where the local planar subgraph



is constructed on the fly. They did not consider the duty-
cycling of sensors. The RGP protocol [8] results in a shortest
path routing protocol to bypass voids. The protocol requires
communication among neighbors. Yu et al. [9] discussed a
void bypassing scheme when both source and destination
nodes are mobile. Leong et al. [3] presented a new geographic
routing protocol called GDSTR. GDSTR uses convex hulls
which requires maintaining topology information, an onerous
task in a duty-cycled environment. The ALBA-R protocol
[10] is a nonplanar routing across voids. Routing is based
on hierarchy of colors and is designed to work with ALBA
[11], another greedy forwarding protocol for WSN. Chen et al.
[12] proposed partial link reversal under the assumption that
neighbor information is available. As opposed to the existing
literature, we propose a neighbor oblivious technique to bypass
voids.
II. OVERVIEW OF GB ALGORITHMS

Gafni and Bertsekas [4] propose two classes of distributed
renumbering algorithms, full link reversal and partial link
reversal that transform a destination-disoriented DAG into
destination-oriented DAG.

The renumbering scheme can be used in geographic greedy
forwarding by assigning numbers to nodes (n1, ns,...) which
are totally ordered by the relation < such that for any two
nodes with node Id’s 1 and 2 there holds n; < ng or ny <
n1 but not both. These numbers, corresponding to either hop
counts or distances to sink, are used in assigning directions to
routing links.

In GB algorithms, each node is associated with a set of
integers, («;,4) for full reversal and («;,(3;,4) for partial
reversal where a; and ; are integers and ¢ is the node index.
The tuples are ordered lexicographically. The direction of the
links between nodes are always oriented from a node with
a higher tuple to a node with a lower tuple i.e., a link is
oriented from i to j if (a¥,i) > (a?,j) for full reversal
and (of, Bf,i) > (a¥,pF, j) for partial reversal, where k
is the iteration index. Hence a node ¢ is stuck if for every
neighbor j of i we have (af, i) < (a?,j) (similarly for partial
reversal). The GB algorithms gives new values for the integers
«; and f3; to stuck nodes iteratively and distributively so that
a destination-oriented DAG is obtained.

Full link reversal: In this algorithm, a stuck node reverses the
direction of all the incoming links. Let C; denote the neighbors
of i. A stuck node i at iteration k increases o to

alft! = max{a¥ | j € C;} +1

while all other nodes preserve their values. The algorithm
terminates when a destination-oriented DAG is obtained.

Partial link reversal: In this algorithm, every node ¢ keeps
a list of its neighboring nodes j that have reversed theirs links
to 4. If node ¢ is stuck then it reverses the directions of all
neighbor links to nodes j not in the list. If such a j does
not exist, i.e., the list contains all the neighbors of ¢, then
i reverses all its links and empties the list. The algorithms
terminates when a destination-oriented DAG is obtained. Here

a stuck node 7 at iteration k sets o and ¥ to
k+1 : ,
alt :mm{a;? |jeCit+1

min{ﬁf | j € C; with o = a?} -1

L ok

Bt = if there exists a j with o o

B, otherwise

All other nodes j maintain the same integers for o; and 3;
ie., af“ = af, ﬂf“ = ﬂ]’?. Gafni and Bertsekas [4] show
the following

1) The algorithm terminates in a finite number of iterations

regardless of the timing and order of reversals and
results in the same destination-oriented DAG.

2) Only those nodes that do not have a greedy path to the

sink undergo link reversal in obtaining a destination-
oriented DAG.

III. NEIGHBOR OBLIVIOUS LINK REVERSAL
A. Overview of the algorithm

The updates at a stuck node, in both the full and partial
link reversal GB algorithms, depend on knowledge neighbor
states (the numbers at each of the neighbors). If the stuck node
does not know these, it has to establish a link with each of
its neighbors and gather these values in a reliable fashion. We
now see how to avoid this exchange (neighbor obliviousness).

In the sequel, the parameter h for height (or potential) will
play the role of the o in GB algorithms. Suppose that the
update algorithm is such that a node, at any stage and given
its own current state (height), knows the entire range of all
neighbors’ heights. Then it may execute a full reversal by
raising its height to a value one more than the maximum in
the range. It may also execute a partial reversal by doing this
raising in two steps. The first step enables a reversal of links
not already reversed. The second step enables a reversal of all
links, if needed. All these must be possible without requiring
the exact knowledge of neighbors’ heights.

In both algorithms the number of full reversals at any stage
is indicated by the integer ¢; for node ¢. The state of partial
reversal is indicated by «; for node q.

The heights are initialized to either hop counts or to dis-
tances from destination (evaluated either from actual or virtual
locations [13]), with the destination at zero height.

Notations

e [N]={1,2,...,N}, set of node indices

e i € [N], node index

o t = {ti,ts,...,ty} € Z, count of number of full
reversals at a node

e z={z2(1),2(2),...}, bounds on heights of all nodes after
the indicated number of full reversals.

e ()}, list of one-hop neighbors of 4
Full reversal

o h=(hi(t1), ha(t2),..., hn(tn)) set of heights; h € RY

o Nmax = max{h;(0) : i € [N]}

« GFi(h) = {j € [N] hj(tj) < hi(ti)}, greedy
forwarding set for node 7, given h



Partial reversal

e h = (hl(tl, 1), hg(tg, 042)7 RN hN(tN, aN)) set of
heights; h € RY

o hmax = max{h;(0,0):¢ € [N]}

e a={a,q9,...,an} € {0,1}", indication of whether
a partial reversal was done after the last full reversal.

e A = {A(1),A(2),...}, bounds on the heights of nodes
after the indicated number of full reversals.

o GFi(h) ={j € [N] : hy(tj,05) < hi(ti, i)}, greedy
forwarding set for node i, given h

B. Full reversal algorithm

The state of each node, i, has two components: ¢; and h; (t;)
which are initialized respectively to 0 and to the height of the
node during node deployment. The sequence z(t;) satisfies the
following recursion

z(0)
Z(t,' + 1) =

hmax + 17 (1)
2z(t;) + 1. )

Algorithm 1. Full Link Reversal
For any node i,
if (GFi(h) = 0){

o hi(t; +1) = z(t;) + hi(t;)

o t;=1t;+1

From the algorithm, it is clear that only stuck nodes upgrade
their heights. The choice of z(-) and the initial heights are
such that every time t; and h; are updated, node i would
fully reverse all its links, without knowing neighbors heights.
This eliminates the need for communicating with neighbors to
compute new height such that it is greater than all its neighbors
heights.

C. Fartial reversal algorithm

The state at each node has three components: the number
of full reversals t;, indication of whether the node is currently
in partial reversal or not «; and current height h;(¢;, ;). The
«; and t; are initialized to 0, while h;(t;, ;) is initialized
to the initial height of the node as determined during node
deployment. The A and z sequences satisfy the following
recursion

Z(O) hmax; )\(O) = 22(0) +1 (3)
z(ti+1) = Ati) + 2(t) 4)
)\(ti + 1) QZ(ti + 1) + 1. (5)

Algorithm 2. Partial Link Reversal
For any node ¢,
while (GF;(h) = 0){

o U= (1 + Oél))\(tl) — hi(ti, Oéi)

o Ui =1t;+ay

o (x; = 1— (67

[ hz (ti, Oéi) =Uu

}

Again, only stuck nodes upgrade their states. The partial
link reversal state is highlighted in the figure 1. When entering
o; = 1 from state 0, the heights are chosen such that
links already reversed since the last full reversal are left as
they were. When entering state O from state 1, all links are
reversed. So the ¢, which counts the number of full reversals,
in incremented.

GE(h)=6;  hilti+ a1 =) = (1+ a)A(t) = hilti, i)

ti=ti+o

o=1-q

GFE(h)# 0 GF(h)#0;

hilts) = it

GE(h)=¢;

hilti + 03,1 =) = (14 ai)AE) = hilti, ;)
ti=tito
o=1-q

Fig. 1. Projection of partial link reversal on state c; at any node ¢

IV. ANALYSES OF NEIGHBOR OBLIVIOUS LINK REVERSAL

An execution is defined as a sequence of link reversals.
A full execution is defined as the number of link rever-
sals required to transform a destination-disoriented DAG to
destination-oriented DAG. Given the same initial destination-
disoriented DAG, any deterministic link reversal algorithms
exhibit equivalence of execution. A formal proof on this fact
is given by Costas et al. in [5]. Both the full and partial link
reversal algorithm exhibits equivalence of execution.

A. Properties for Algorithm 1

The following property is an immediate consequence of the
update because the z sequence is strictly positive.

Lemma IV.1. Each height upgrade by a stuck node i strictly
increases h;.

The proof of Costas et al. [5] on equivalence of execution
implies the following result

Proposition IV.1. Given the same initial destination-
disoriented DAG, if a full execution of the GB algorithm
requires k iterations, then Algorithm 1 also takes exactly k
iterations for a full execution.

B. Delay analysis for Algorithm 1

By proposition IV.1 the number of iterations incurred by
Algorithm 1 and full reversal GB algorithms are same. A
node determines it is stuck if it has not received any probe
ACK in one duty-cycle (D) time. The link reversal algorithm
is initiated only when a node knows it is stuck, for which
an additional delay of D is incurred to gather all neighbors
heights. Hence the total end to end delay (d.) for k iterations
of GB algorithms is given by

de = 2k D + forwarding delay (6)



Algorithm 1 due to its oblivious nature can avoid the extra
step to gather neighbor information in each iteration. The end-
to-end delay (d.) for k iterations of our algorithm is given by

de = kD + forwarding delay 7

Furthermore, the reduced communications result in a re-
duced energy expenditure.

C. Properties for Algorithm 2

Similar properties hold for Algorithm 2 as well. Proofs are
omitted.

Lemma IV.2. Each height upgrade by a stuck node i strictly
increases h;.

Proposition 1IV.2. Given the same initial destination-
disoriented DAG, if the full execution of the GB algorithm
requires k iterations, Algorithm 2 takes at most 2k iterations.

D. Delay Analysis for Algorithm 2

By proposition IV.2 and analysis similar to full reversal the
end to end delay of the GB algorithms for k iterations is

de = 2kD + forwarding delay 8)

The number of iterations incurred by Algorithm 2 is at most
2k. Hence the worst case end to end delay is

de = 2kD + forwarding delay )

But the average case end to end delay is kD +
forwarding delay < d. < 2kD + forwarding delay. Despite
the increase in the number of iterations, the average case end
to end delay is still lower than the GB algorithms.

E. Implementation Issues

In practice, height values will be stored using finite bit-width
representations. The heights during link reversal however have
exponential growth in the number of link reversals. One
approach to address the imminent issue of overflow is to keep
track of number of overflows and hence have a dynamic bit
width for heights. Another approach is for the node with an
overflowed height value to reinitiate network self-organization
so as to renormalize height values.

V. EMBEDDING INTO THE GENERAL CLASS OF GB
ALGORITHMS

From the GB paper, let V is the set of N-tuples, v =
(a1,a2,...,an), where (a1,as,...,ayn) correspond to the
height of the nodes. A sequence {vj} corresponds to a
sequence of acyclic graphs subject to the definition of link
orientation [4]. The set S(v) gives the set of stuck nodes.
Height increase function g assigns height to any node ¢ such
that the set of pairs {(h;,7)} for i = {1,2,...,N} are
ordered lexicographically. The function g should satisfy the
assumptions (A1-A3) given by GB algorithms. For any node
1 we define neighbor oblivious functions g; for both full and
partial link reversal that coheres with the general class of the
GB algorithms.

In the full reversal method, the function g; is defined for all
v = ((hlvl)a”-a(hNaN)) by

(o) = 3 ) Fhilts) if i € S(v)
7w {(hi,z‘) it ¢ S(v)

z(t;) satisfies the recursion given by equations (1)-(2).
In the partial reversal method, the function g; is defined for
all v = ((h1,1),...., (hn, N)) by

ai(0) {(h,-,z’) if i € S(v)

(10)

(hivi) if ¢ S(0) b
where h; = (14 ;) A(t;) — hi(t;, a;), such that A(t;) satisfies
the recursion given by equations (3)-(5)

For each v = (ai,...,an) € V and i = 1,..., N both the
functions for g; satisfy
gi(v) > a; if i € S(v), by Lemmas IV.1 and IV.2.
gi(v) =a; if i ¢ Sv)

Also foreach ¢ € {1,..., N}, and each sequence {v;} C V
for which ¢ € S(v) for an infinite number of indices’s k, the
sequence

k
{af + lgivr) —afl}

is unbounded in A;, where a] denote the coordinates of v,
and A; is a countably infinite set which is totally ordered by
a relation < in the sense that for any two distinct elements
a1 and ag of A; there holds a1 < as or as < ap, but not
both. Therefore the function g; satisfies the assumptions of
the GB algorithms. Thus we have embedded our algorithms
in the GB framework and have checked that the conditions
Al, A2 and A3 for propositions P1 and P2 of GB hold. These
in turn imply the claims we made just before Section III.

VI. PSEUDO-EVENTS: PREEMPTIVE LINK REVERSAL

Pseudo-events are generated via an independent Poisson
process of rate (A\/N) at each node, where X is the net rate
at which pseudo-events are generated in the network and N
is the number of the nodes in the network. Our results show
that the end to end delay is significantly reduced by avoiding
the voids. Further only a few pseudo-events are required to
circumvent a local minimum condition.

A. Simulation setup

We use Qualnet 4.5 simulator to perform the simulations.
The simulation setup is described as follows. Area of 100m
x 100m is divided into N grids of equal size where NN is
the number of sensors in the network. Within each grid one
sensor is placed uniformly. The sink is located at the origin
(0,0) and the transmission range is considered to be 10m. The
pseudo-events are generated at the rate of one event every 10
minutes. Area of the void is around 2600 sq.m. Simulations are
run by changing the number of nodes. Figures 4(a) and 4(b)
represents one instant of the node layout with 1000 nodes. The
dark nodes are dead and will not participate in any network
activity. We consider a transmitter initiated duty-cycled sensor



network where the probes are sent periodically to find greedy
nodes. The other simulation parameters are

« Radio duty-cycle = 3.22 %

o Probe interval = 20 ms

« Pseudo-events generation rate = One every 10 minutes

B. Simulation results

N =2} o) o

local minimum condition

Number of pseudo events required
to pull the network out of
N

%0 60 700 80 900 1000
Number of nodes in the network

Fig. 2.
condition

Number of pseudo-events required to circumvent a local minimum

Simulations are run for various seeds and the y-axis of figure
2 represents the average number of pseudo-events required to
pull the network out of a local minimum condition. A single
pseudo-event does not guarantee link reversal at all the stuck
nodes because of the reactive approach to link reversal. Only
if a stuck node receives a packet will it initiate link reversal.
It was generally observed that very few pseudo-events are
sufficient to circumvent a local minimum condition.

25

0
-=-Delay without pseudo-events (encountering voids)
—-Delay with pseudo—events (bypassing voids)

End-to—end delay (sec)

S

0 e 70 a0 w0 100
Number of nodes in the network

Fig. 3. End to end delay with and without pseudo-events

Figure 3 gives the end to end delay incurred by the packet
to reach the sink with and without pseudo-events. This plot
is for a particular hole given by figure 4(a). Figures 4(a) and
4(b) show paths with and without pseudo-events respectively.

VII. CONCLUSION

We proposed a neighbor oblivious link reversal scheme to
get a network out of the local minimum condition in geo-
graphic routing without neighbor information. Our proposed
algorithms fall within the class of GB algorithms [4]. We then
saw the usefulness of pseudo-events in keeping the network in
a prepared state in case of faults. Rough indications of number

(a) Path taken before pseudo-events (b) Path taken after pseudo-events

Fig. 4. The light dots in the figure 4(b) corresponds to the stuck nodes that
have reversed their links during pseudo-events.

of the pseudo-events needed and the attendant gains in end-
to-end delay were obtained via simulations.
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