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Abstract—We propose partial and full link reversal algorithms
to bypass voids during geographic routing over duty-cycled
wireless sensor networks. We propose a distributed approach that
is oblivious to one-hop neighbor information. Upon termination
of the algorithm, the resulting network is guaranteed to be
destination-oriented. Further, to reduce the delays incurred under
reactive link reversal, we propose the use of ‘pseudo-events’,
a preemptive link reversal strategy, that renders the network
destination-oriented before the onset of a real event. A simulation
study of the effectiveness of pseudo-events is also provided.

Index Terms—partial link reversal, full link reversal, pseudo-
events, sensor network, geographic routing, distributed algorithm

I. INTRODUCTION

We consider a wireless sensor network (WSN) with a

designated sink node. The purpose of the WSN is to generate

an alarm when certain events are detected. An alarm packet

originating at a node has to be routed to the sink node. For

such problems, geographic routing [1] is a popular protocol

for packet delivery. It is scalable, stateless and reactive without

the need for prior route discovery. The protocol employs

geographic greedy routing, where a node forwards a packet

to another node within the communication range and closer

to the destination. Such a protocol requires a node with a

packet to be aware of its geographical location, and those

of its neighbors. This next hop node in the direction of the

destination is defined as a greedy node. Clearly, the resulting

routing graph is a directed acyclic graph (DAG). A DAG is

said to be destination-oriented when there is a directed path

in the DAG from any node to the sink. A DAG is destination-

disoriented if there exists a node other than the sink that has no

outgoing links. Such a node is said to be stuck. A destination-

oriented network under geographic greedy routing may be ren-

dered destination-disoriented in the presence of node failures.

The failure of geographic greedy routing in the presence of

stuck nodes is commonly referred to as the local minimum

condition [2]. Solutions such as face routing [1], convex hull

routing [3] and link reversal routing [4] were proposed in

the literature to pull the network out of a local minimum

condition. All these algorithms require knowledge of one-hop

neighbors. Maintenance of one-hop neighbor information, in

general, requires periodic transmissions of Keep Alive packets.

Nodes however are duty-cycled to enhance the lifetime of the

network. The intricacies introduced by duty-cycled sensors
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in the maintenance of one-hop neighbor information involves

several message exchanges between nodes and its one-hop

neighbors, associated access issues and collision resolution

mechanisms. This can be both time and energy consuming.

This work is motivated by the question: is there a dis-

tributed, neighbor oblivious protocol (i.e., a protocol with zero

overhead for neighbor discovery) that can pull a network out of

its local minimum condition and render it destination-oriented?

Gafni and Bertsekas in [4] propose two general classes

of link reversal algorithms for converting a destination-

disoriented DAG into a destination-oriented DAG (see section

II). Henceforth we refer to their algorithms as GB algorithms.

Both classes of algorithms require one-hop neighbor informa-

tion. In this paper we propose neighbor oblivious link reversal

algorithms. We then embed them into the GB framework

to show that our proposed algorithms render the network

destination-oriented, but in a neighbor oblivious fashion.

Executing link reversal reactively (i.e., when an actual alarm

meets a stuck node), to deliver an alarm packet to the sink,

can lead to significant end-to-end delay [5]. We propose the

use of pseudo-events to maintain the network in a destination-

oriented state before the onset of real events. Pseudo-events

create virtual events distributed across space and time. This

initiates link reversal at stuck nodes while relaying these

pseudo-alarm packets to the sink. Our proposed maintenance

technique is likely to be more energy efficient and works well

even in a duty-cycled network since the forwarding protocol

itself repairs the network (see section VI).

Our main contributions are the following :

• We provide neighbor oblivious partial and full link rever-

sal schemes (see section III) that fit within the framework

of the GB algorithms (see section V).

• We propose the use of pseudo-events, generated across

time and space, that maintains the network in a

destination-oriented state.

The analyses of the proposed algorithms is presented in

Section IV. Section VII contains some concluding remarks.

Related Literature

The distributed planar graph traversal technique, commonly

known as face routing and presented in [1] and [6], guarantees

delivery if a path exists. The technique requires apriori knowl-

edge of the full neighborhood. Kalosha et al. [7] addressed a

beaconless recovery problem where the local planar subgraph



is constructed on the fly. They did not consider the duty-

cycling of sensors. The RGP protocol [8] results in a shortest

path routing protocol to bypass voids. The protocol requires

communication among neighbors. Yu et al. [9] discussed a

void bypassing scheme when both source and destination

nodes are mobile. Leong et al. [3] presented a new geographic

routing protocol called GDSTR. GDSTR uses convex hulls

which requires maintaining topology information, an onerous

task in a duty-cycled environment. The ALBA-R protocol

[10] is a nonplanar routing across voids. Routing is based

on hierarchy of colors and is designed to work with ALBA

[11], another greedy forwarding protocol for WSN. Chen et al.

[12] proposed partial link reversal under the assumption that

neighbor information is available. As opposed to the existing

literature, we propose a neighbor oblivious technique to bypass

voids.

II. OVERVIEW OF GB ALGORITHMS

Gafni and Bertsekas [4] propose two classes of distributed

renumbering algorithms, full link reversal and partial link

reversal that transform a destination-disoriented DAG into

destination-oriented DAG.

The renumbering scheme can be used in geographic greedy

forwarding by assigning numbers to nodes (n1, n2, . . .) which
are totally ordered by the relation < such that for any two

nodes with node Id’s 1 and 2 there holds n1 < n2 or n2 <
n1 but not both. These numbers, corresponding to either hop

counts or distances to sink, are used in assigning directions to

routing links.

In GB algorithms, each node is associated with a set of

integers, (αi, i) for full reversal and (αi, βi, i) for partial

reversal where αi and βi are integers and i is the node index.

The tuples are ordered lexicographically. The direction of the

links between nodes are always oriented from a node with

a higher tuple to a node with a lower tuple i.e., a link is

oriented from i to j if (αk
i , i) > (αk

j , j) for full reversal

and (αk
i , βk

i , i) > (αk
j , βk

j , j) for partial reversal, where k
is the iteration index. Hence a node i is stuck if for every

neighbor j of i we have (αk
i , i) < (αk

j , j) (similarly for partial

reversal). The GB algorithms gives new values for the integers

αi and βi to stuck nodes iteratively and distributively so that

a destination-oriented DAG is obtained.

Full link reversal: In this algorithm, a stuck node reverses the

direction of all the incoming links. Let Ci denote the neighbors

of i. A stuck node i at iteration k increases αk
i to

αk+1

i = max{αk
j | j ∈ Ci} + 1

while all other nodes preserve their values. The algorithm

terminates when a destination-oriented DAG is obtained.

Partial link reversal: In this algorithm, every node i keeps

a list of its neighboring nodes j that have reversed theirs links

to i. If node i is stuck then it reverses the directions of all

neighbor links to nodes j not in the list. If such a j does

not exist, i.e., the list contains all the neighbors of i, then
i reverses all its links and empties the list. The algorithms

terminates when a destination-oriented DAG is obtained. Here

a stuck node i at iteration k sets αk
i and βk

i to

αk+1

i = min{αk
j | j ∈ Ci} + 1

βk+1

i =











min{βk
j | j ∈ Ci with αk+1

i = αk
j } − 1

if there exists a j with αk+1

i = αk
i

βi, otherwise

All other nodes j maintain the same integers for αj and βi

i.e., αk+1

j = αk
j , βk+1

j = βk
j . Gafni and Bertsekas [4] show

the following

1) The algorithm terminates in a finite number of iterations

regardless of the timing and order of reversals and

results in the same destination-oriented DAG.

2) Only those nodes that do not have a greedy path to the

sink undergo link reversal in obtaining a destination-

oriented DAG.

III. NEIGHBOR OBLIVIOUS LINK REVERSAL

A. Overview of the algorithm

The updates at a stuck node, in both the full and partial

link reversal GB algorithms, depend on knowledge neighbor

states (the numbers at each of the neighbors). If the stuck node

does not know these, it has to establish a link with each of

its neighbors and gather these values in a reliable fashion. We

now see how to avoid this exchange (neighbor obliviousness).

In the sequel, the parameter h for height (or potential) will

play the role of the α in GB algorithms. Suppose that the

update algorithm is such that a node, at any stage and given

its own current state (height), knows the entire range of all

neighbors’ heights. Then it may execute a full reversal by

raising its height to a value one more than the maximum in

the range. It may also execute a partial reversal by doing this

raising in two steps. The first step enables a reversal of links

not already reversed. The second step enables a reversal of all

links, if needed. All these must be possible without requiring

the exact knowledge of neighbors’ heights.

In both algorithms the number of full reversals at any stage

is indicated by the integer ti for node i. The state of partial

reversal is indicated by αi for node i.
The heights are initialized to either hop counts or to dis-

tances from destination (evaluated either from actual or virtual

locations [13]), with the destination at zero height.

Notations

• [N ] = {1, 2, . . . , N}, set of node indices

• i ∈ [N ], node index

• t = {t1, t2, . . . , tN} ∈ Z
N
+ , count of number of full

reversals at a node

• z = {z(1), z(2), . . .}, bounds on heights of all nodes after
the indicated number of full reversals.

• Ci, list of one-hop neighbors of i
Full reversal

• h = (h1(t1), h2(t2), . . . , hN(tN )) set of heights; h ∈ R
N
+

• hmax = max{hi(0) : i ∈ [N ]}
• GFi(h) = {j ∈ [N ] : hj(tj) < hi(ti)}, greedy

forwarding set for node i, given h



Partial reversal

• h = (h1(t1, α1), h2(t2, α2), . . . , hN (tN , αN )) set of

heights; h ∈ R
N
+

• hmax = max{hi(0, 0) : i ∈ [N ]}
• α = {α1, α2, . . . , αN} ∈ {0, 1}N , indication of whether

a partial reversal was done after the last full reversal.

• λ = {λ(1), λ(2), . . .}, bounds on the heights of nodes

after the indicated number of full reversals.

• GFi(h) = {j ∈ [N ] : hj(tj , αj) < hi(ti, αi)}, greedy
forwarding set for node i, given h

B. Full reversal algorithm

The state of each node, i, has two components: ti and hi(ti)
which are initialized respectively to 0 and to the height of the

node during node deployment. The sequence z(ti) satisfies the
following recursion

z(0) = hmax + 1, (1)

z(ti + 1) = 2z(ti) + 1. (2)

Algorithm 1. Full Link Reversal

For any node i,
if (GFi(h) = ∅){

• hi(ti + 1) = z(ti) + hi(ti)
• ti = ti + 1

}

From the algorithm, it is clear that only stuck nodes upgrade

their heights. The choice of z(·) and the initial heights are

such that every time ti and hi are updated, node i would

fully reverse all its links, without knowing neighbors heights.

This eliminates the need for communicating with neighbors to

compute new height such that it is greater than all its neighbors

heights.

C. Partial reversal algorithm

The state at each node has three components: the number

of full reversals ti, indication of whether the node is currently

in partial reversal or not αi and current height hi(ti, αi). The
αi and ti are initialized to 0, while hi(ti, αi) is initialized

to the initial height of the node as determined during node

deployment. The λ and z sequences satisfy the following

recursion

z(0) = hmax; λ(0) = 2z(0) + 1 (3)

z(ti + 1) = λ(ti) + z(ti) (4)

λ(ti + 1) = 2z(ti + 1) + 1. (5)

Algorithm 2. Partial Link Reversal

For any node i,
while (GFi(h) = ∅){

• u = (1 + αi)λ(ti) − hi(ti, αi)
• ti = ti + αi

• αi = 1 − αi

• hi(ti, αi) = u

}

Again, only stuck nodes upgrade their states. The partial

link reversal state is highlighted in the figure 1. When entering

αi = 1 from state 0, the heights are chosen such that

links already reversed since the last full reversal are left as

they were. When entering state 0 from state 1, all links are

reversed. So the t, which counts the number of full reversals,

in incremented.

GFi(h) = φ ;

αi = 1αi = 0

hi(ti + αi, 1 − αi) = (1 + αi)λ(ti) − hi(ti, αi)

αi = 1 − αi

hi(ti) = hi(ti)

GFi(h) 6= φ ;

αi = 1 − αi

ti = ti + αi

ti = ti + αi

GFi(h) = φ ;

hi(ti) = hi(ti)

GFi(h) 6= φ ;

hi(ti + αi, 1 − αi) = (1 + αi)λ(ti) − hi(ti, αi)

Fig. 1. Projection of partial link reversal on state αi at any node i

IV. ANALYSES OF NEIGHBOR OBLIVIOUS LINK REVERSAL

An execution is defined as a sequence of link reversals.

A full execution is defined as the number of link rever-

sals required to transform a destination-disoriented DAG to

destination-oriented DAG. Given the same initial destination-

disoriented DAG, any deterministic link reversal algorithms

exhibit equivalence of execution. A formal proof on this fact

is given by Costas et al. in [5]. Both the full and partial link

reversal algorithm exhibits equivalence of execution.

A. Properties for Algorithm 1

The following property is an immediate consequence of the

update because the z sequence is strictly positive.

Lemma IV.1. Each height upgrade by a stuck node i strictly
increases hi.

The proof of Costas et al. [5] on equivalence of execution

implies the following result

Proposition IV.1. Given the same initial destination-

disoriented DAG, if a full execution of the GB algorithm

requires k iterations, then Algorithm 1 also takes exactly k
iterations for a full execution.

B. Delay analysis for Algorithm 1

By proposition IV.1 the number of iterations incurred by

Algorithm 1 and full reversal GB algorithms are same. A

node determines it is stuck if it has not received any probe

ACK in one duty-cycle (D) time. The link reversal algorithm

is initiated only when a node knows it is stuck, for which

an additional delay of D is incurred to gather all neighbors

heights. Hence the total end to end delay (de) for k iterations

of GB algorithms is given by

de = 2kD + forwarding delay (6)



Algorithm 1 due to its oblivious nature can avoid the extra

step to gather neighbor information in each iteration. The end-

to-end delay (de) for k iterations of our algorithm is given by

de = kD + forwarding delay (7)

Furthermore, the reduced communications result in a re-

duced energy expenditure.

C. Properties for Algorithm 2

Similar properties hold for Algorithm 2 as well. Proofs are

omitted.

Lemma IV.2. Each height upgrade by a stuck node i strictly
increases hi.

Proposition IV.2. Given the same initial destination-

disoriented DAG, if the full execution of the GB algorithm

requires k iterations, Algorithm 2 takes at most 2k iterations.

D. Delay Analysis for Algorithm 2

By proposition IV.2 and analysis similar to full reversal the

end to end delay of the GB algorithms for k iterations is

de = 2kD + forwarding delay (8)

The number of iterations incurred by Algorithm 2 is at most

2k. Hence the worst case end to end delay is

de = 2kD + forwarding delay (9)

But the average case end to end delay is kD +
forwarding delay < de < 2kD + forwarding delay. Despite
the increase in the number of iterations, the average case end

to end delay is still lower than the GB algorithms.

E. Implementation Issues

In practice, height values will be stored using finite bit-width

representations. The heights during link reversal however have

exponential growth in the number of link reversals. One

approach to address the imminent issue of overflow is to keep

track of number of overflows and hence have a dynamic bit

width for heights. Another approach is for the node with an

overflowed height value to reinitiate network self-organization

so as to renormalize height values.

V. EMBEDDING INTO THE GENERAL CLASS OF GB

ALGORITHMS

From the GB paper, let V is the set of N -tuples, v =
(a1, a2, . . . , aN ), where (a1, a2, . . . , aN ) correspond to the

height of the nodes. A sequence {vk} corresponds to a

sequence of acyclic graphs subject to the definition of link

orientation [4]. The set S(v) gives the set of stuck nodes.

Height increase function g assigns height to any node i such

that the set of pairs {(hi, i)} for i = {1, 2, . . . , N} are

ordered lexicographically. The function g should satisfy the

assumptions (A1-A3) given by GB algorithms. For any node

i we define neighbor oblivious functions gi for both full and

partial link reversal that coheres with the general class of the

GB algorithms.

In the full reversal method, the function gi is defined for all

v = ((h1, 1), . . . , (hN , N)) by

gi(v) =

{

z(ti) + hi(ti) if i ∈ S(v)

(hi, i) if /∈ S(v)
(10)

z(ti) satisfies the recursion given by equations (1)-(2).

In the partial reversal method, the function gi is defined for

all v = ((h1, 1), ...., (hN , N)) by

gi(v) =

{

(hi, i) if i ∈ S(v)

(hi, i) if /∈ S(v)
(11)

where hi = (1+αi)λ(ti)−hi(ti, αi), such that λ(ti) satisfies
the recursion given by equations (3)-(5)

For each v = (a1, . . . , aN ) ∈ V and i = 1, . . . , N both the

functions for gi satisfy

gi(v) > ai if i ∈ S(v), by Lemmas IV.1 and IV.2.

gi(v) = ai if i /∈ S(v)
Also for each i ∈ {1, . . . , N}, and each sequence {vk} ⊂ V

for which i ∈ S(vk) for an infinite number of indices’s k, the
sequence

{a0
i +

k
∑

r=0

[gi(vr) − ar
i ]}

is unbounded in Ai, where ar
i denote the coordinates of vr

and Ai is a countably infinite set which is totally ordered by

a relation < in the sense that for any two distinct elements

a1 and a2 of Ai there holds a1 < a2 or a2 < a1, but not

both. Therefore the function gi satisfies the assumptions of

the GB algorithms. Thus we have embedded our algorithms

in the GB framework and have checked that the conditions

A1, A2 and A3 for propositions P1 and P2 of GB hold. These

in turn imply the claims we made just before Section III.

VI. PSEUDO-EVENTS: PREEMPTIVE LINK REVERSAL

Pseudo-events are generated via an independent Poisson

process of rate (λ/N) at each node, where λ is the net rate

at which pseudo-events are generated in the network and N
is the number of the nodes in the network. Our results show

that the end to end delay is significantly reduced by avoiding

the voids. Further only a few pseudo-events are required to

circumvent a local minimum condition.

A. Simulation setup

We use Qualnet 4.5 simulator to perform the simulations.

The simulation setup is described as follows. Area of 100m
x 100m is divided into N grids of equal size where N is

the number of sensors in the network. Within each grid one

sensor is placed uniformly. The sink is located at the origin

(0,0) and the transmission range is considered to be 10m. The

pseudo-events are generated at the rate of one event every 10

minutes. Area of the void is around 2600 sq.m. Simulations are

run by changing the number of nodes. Figures 4(a) and 4(b)

represents one instant of the node layout with 1000 nodes. The

dark nodes are dead and will not participate in any network

activity. We consider a transmitter initiated duty-cycled sensor



network where the probes are sent periodically to find greedy

nodes. The other simulation parameters are

• Radio duty-cycle = 3.22 %
• Probe interval = 20 ms
• Pseudo-events generation rate = One every 10 minutes

B. Simulation results
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Fig. 2. Number of pseudo-events required to circumvent a local minimum
condition

Simulations are run for various seeds and the y-axis of figure

2 represents the average number of pseudo-events required to

pull the network out of a local minimum condition. A single

pseudo-event does not guarantee link reversal at all the stuck

nodes because of the reactive approach to link reversal. Only

if a stuck node receives a packet will it initiate link reversal.

It was generally observed that very few pseudo-events are

sufficient to circumvent a local minimum condition.
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Fig. 3. End to end delay with and without pseudo-events

Figure 3 gives the end to end delay incurred by the packet

to reach the sink with and without pseudo-events. This plot

is for a particular hole given by figure 4(a). Figures 4(a) and

4(b) show paths with and without pseudo-events respectively.

VII. CONCLUSION

We proposed a neighbor oblivious link reversal scheme to

get a network out of the local minimum condition in geo-

graphic routing without neighbor information. Our proposed

algorithms fall within the class of GB algorithms [4]. We then

saw the usefulness of pseudo-events in keeping the network in

a prepared state in case of faults. Rough indications of number
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(a) Path taken before pseudo-events
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(b) Path taken after pseudo-events

Fig. 4. The light dots in the figure 4(b) corresponds to the stuck nodes that
have reversed their links during pseudo-events.

of the pseudo-events needed and the attendant gains in end-

to-end delay were obtained via simulations.
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