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Abstract

We consider a multicommodity flow problem on a complete graph with the
edges having random i.i.d capacities. We show that as the number of nodes
tends to infinity, the maximum utility, given by the average of a concave
function of each commodity flow, has an almost sure limit. Further, the
asymptotically optimal flow uses only direct and two-hop paths, and can be
obtained in a distributed manner.
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1. Introduction

Flow maximisation on a graph is a central problem in graph theory and optimisation.
The single source and single sink flow problem has been studied extensively and several
algorithms have been developed for obtaining the maximum flow. An important case
of flow problems that can be used to model realistic networks is the multicommodity
flow, in which there is simultaneous flow between each source-destination pair. In this
paper, we consider an edge-capacitated undirected graph. We associate a utility to
the flow between each source-destination vertex pair, and seek to optimise the average
utility of the flows. We first describe the problem and its solution. Towards the end
of this section we indicate how our problem arises in practice.

For a given source v and destination w, the associated flow between them is con-
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served at all vertices except v and w. Writing ¢, (e) as the absolute value of this flow

on an edge e, the volume of this vw flow is given by

fvw - Z @vw(e) = Z @Uw(e)-

e:e incident on v e:e incident on w

Assume that each pair of vertices of the graph forms a source-destination pair with the
source-destination labelling chosen arbitrarily. Then given capacities C(e) for edges e,

we say that the flow profile {fvw}v,w obtained via {@y(€)}e vw is feasible if

> puwle) <Cle) Ve
{v,w}

We consider the complete n-vertex graph G, with random edge-capacities, and
quantify the behaviour of the average utility as n — oo. Such a model was studied by
Aldous et al. in [1] under the setting of uniform multicommodity flow, where all flows
are required to be of the same volume. We interchangeably use the notation C(e) or
Cyy for the capacity of an edge e incident on vertices v and w. We assume that the
capacities C,,, are independent and identically distributed (i.i.d.) copies of a reference
random variable C' that takes values in a set ¥ C R™' and satisfies 0 < E[C] < oo.

For a given feasible flow profile { f,., }
be

we define the wutility of the flow profile to

v,w?

Un = 3 ()

" {vw}
where ¢ : RT — R|J{—o0} is a strictly concave, increasing utility function with a
continuous first derivative, ((z) > —oco if z > 0, and a,, = (g) is the number of edges.

The maximum utility is denoted by

Pn = {Un

{fowtyw feasible} )

Examples of such utility functions are the so-called a-fair utility functions [10]

z a € [0,00),a # 1,

As a — oo, we have
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and the problem reduces to that of uniform multicommodity flow of Aldous et al. [1].
The solution to this problem may be thought of as a max-min fair solution. Aldous

et al. [1] show that

e p, for the uniform flow case converges in probability to a constant that depends

on the distribution of C.

e Each flow may be routed through only direct and two-hop paths.

Their proof technique does not appear to be amenable to a distributed implementation.

Instead of choosing arbitrary source-destination labellings for a given pair of vertices
as in our model, Aldous et al. [1] consider every ordered pair as a source-destination
pair. We can frame our problem in that context by interpreting f,,, as the volume of
flow from v to w and f,, as the volume of flow from w to v and using ordered pairs
(v,w) in the definition of U,. However, concavity of ¢ implies that flows in either
direction should be equal for optimality. We therefore do not distinguish between f,,
and f,, and let f,,, denote the net flow between v and w with one of them arbitrarily
taken as source and the other as destination.

Our main results are the following.

e p, converges with probability 1 to a constant

E[¢(h(C))]

where h is the piecewise linear function truncated at a and saturated at b:

a z<a,
h(z) =19z a<x<hb,
b x>0b.

The constants a and b depend on the distribution of C.

e Each flow f,, in the asymptotically optimal flow profile is given by h(Cyy), a

function of the capacity of the direct edge alone.
e Each flow requires only direct paths and two-hop paths.

e Our solution to find the flow profile is amenable to a distributed implementation.
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Multicommodity flow problems were introduced as different from the single source,
single sink problem in [9], and an algorithm for obtaining max-min fair optimal flow
was described. Such problems arise in computer communication and wireless net-
works. Algorithms for solving multicommodity flow problems with fixed demands and
capacities were described in [6, 8]. Flows over networks with random-edge capacities,
where the capacities form a stochastic process with time as a parameter, were studied
in the monograph [3] and references therein. One objective that was considered was
to maximise the sum of concave utilities [10] arising from flow values. See [7] for
a nonrandom version where there is only one route per flow. Georgiadis et al. [3]
consider several generalisations with multiple routes, dynamic routing, random arrivals,
and queues. The problem considered by Aldous et al. [1] and ours in this paper may
be regarded as an asymptotic version of the simplest of these problems, with no queues
and no time-variations, but with network size growing to infinity and one commodity
per pair of vertices. This tractable asymptotic version may provide useful bounds for
other intractable problems. Related problems along these asymptotic lines are those
of flows between the top and bottom surfaces of a lattice with random edge-capacities
2, 4, 11].

The rest of the paper is organised as follows. In section 2, we solve the problem when
¢ is linear. Section 3 provides conditions that ensure achievability of a utility when
(¢ is strictly concave, and describes a distributed method to obtain the corresponding
feasible flow. We optimise the lower bound subject to these conditions in section 4,
and prove that this is, in fact, optimal in section 5. Some final remarks in section 6

conclude the paper.

2. Linear utility

In this section, we consider the linear utility function {(x) = x. Note that this is not
strictly concave. However, it turns out that the optimal flow profile for this problem

is also optimal for some strictly concave (’s as will be highlighted later.
Theorem 1. If ((x) = z, then p, — E[C] as n — oo with probability 1.

Proof. Let fyy = Cypw Y {v,w}. This flow profile is clearly feasible because each
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flow uses only the direct link to its capacity. For this allocation,
U,=— Y ¢ (1)

Next, let {@yw(€)}e,v,w form a feasible flow The capacity constraints are

Z wuw(e) < C(e) Ve.
{v,w}

Summing over all edges e and interchanging the summations, we get

YD ewle) <Y Cle). (2)

{v,w} e
We also have

Jow = Z Pow(e) < Z‘va(e) V{v, w}.

e:e incident on v

Summing over all pairs {v,w} and using (2), we get after dividing by a,

Us= o 3 fow < 2o 32C(0) (3)

" {v,w}

for any feasible flow. From (1), the upper bound in (3) is achievable, and hence

Pn = i 20(6)7

e

which converges to E[C] as n — oo with probability 1.

3. Achievability of flow

When ( is linear, we saw in section 2 that the optimal flow is achieved by using
only the direct link for each flow at its capacity. While this yields an efficient solution,
the flow profile can be unfair. On the other hand, as proved in [1], the maximally fair
asymptotically optimal flow profile is obtained using only direct and two-hop links. As
such, it seems natural that the optimal flow in the case of a concave utility function,
which enables operation between the two extremes, need not use more than two hops.

Now suppose that the flow volume f,,, depends only on the capacity of the direct
link Ciy,, for all pairs {v,w}, i.e., fow = h(Cyy) for some h : € — R*t. In this
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section, we obtain a sufficient condition (13) for such a flow to be feasible. Asymptotic
optimality of such a flow is established in section 5.

For the uniform flow case, we set h(Cyy) = ¢ V {v, w}, and remark that the condition
(13) reduces to the necessary and sufficient condition for the feasible uniform flow as
proved in [1]. Thus, the uniform multicommodity flow arises as a special case and the
proof here serves as an alternative to the proof of achievability given by Aldous et al.

in [1]. Our proof is elementary and is amenable to a distributed implementation.

3.1. Feasibility of certain integer flows

Here we show the achievability of certain integer flows with integer capacity con-
straints. This serves as the main tool to prove the main result of this paper. The proof

is a modification of a procedure of Aldous et. al. [1].

Lemma 1. Let C' and F' be random variables taking only nonnegative integer values.
Let M < oo be an upper bound for both C and F. Let {(Cyw, Fyw)}, ,, be a set of i.i.d.
pairs of random variables with each pair having the distribution of (C,F). If

E[(C — F)*] - 2E[(F — C)*] > 0, (4)

the flow on G, obtained by setting fuw = Fyw Y{v,w} is feasible for all but finitely
many n, with probability 1.

Proof. Let C and F be such that (4) holds.

If Cyyy > Fyyy for a given pair {v, w}, we use only the direct edge vw for the flow
fow- Then, Cy,, — Fy, is the remaining capacity along edge vw. If F,,, > C\,, we use
the entire capacity C,,, of the direct edge for a part of f,,. Then, F,, — Cy, is the
remaining flow demand between v and w.

We decompose the original problem into M separate flow problems by constructing
M graphs Py, Ps,. ..,
Py, each with n vertices, as follows. For each vertex pair {v, w}, such that Fy,, > Cyup,
choose an Fyy, — Chyy size subset Sy of {1,2,..., M} uniformly and independently of
other vertex pairs. For each ¢ € S7, put a scarlet edge between v and w in graph P;.
Similarly, for each pair {v,w}, such that Cyy > Fyy, choose a Cyyy, — Fyy size subset
Sy of {1,2,..., M} uniformly and independently of other vertex pairs. For each i € S5,
put a blue edge between v and w in graph P;.
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Now focus on one particular graph P;. For a fixed vertex pair {v,w}, there is a
scarlet edge between v and w in P; with probability p, given in (5), a blue edge with
probability p; given in (6), and no edge with the remaining probability 1 — ps — py.
Also, this happens independently for all vertex pairs. As (]‘;[:11) / (];/I ) = j/M is the
probability that a particular ¢ € Sy given |S1| = j, and analogously for i € Sy given

|S2| = j, we have

M .
ps:ZPr{Fvw_va:j}ﬁ:E[(FTic)ﬂa (5)
= L J _E[C-F)]
po =) Pr{Cow—Fow=j} - =~ (6)

3=0
By the assumption in (4), we have p, > 2p;.

In the graph P;, a scarlet edge between vertices v and w indicates a yet to be fulfilled
unit demand for vw flow, and a blue edge between v and w indicates the availability
of unit capacity along the edge vw. Thus, if in all P;,;i = 1,2,..., M, the demands
along scarlet edges can be satisfied via the available capacities along blue edges, the
flow {fvw = Fvw}u,u; can be achieved.

Such a problem is solved in [1] by using a packing result to form edge-disjoint
triangles, each containing one scarlet and two blue edges, that cover all scarlet edges.
Here we use an alternate method. The argument proceeds roughly as follows. A blue
edge vw can potentially serve a vz flow for a vertex z if vz is a scarlet edge and wz
is a blue edge. Similar is the case when wz is scarlet but vz is blue. By the nature
of the colouring, the number of such vertices is a random variable having the binomial
distribution with parameters (n — 2,2pspp). The flow between two vertices having a
scarlet edge between them can be served via a vertex connected with both by blue
edges. The number of such vertices is a random variable having binomial distribution
with parameters (n— 2, p?). Dividing the flow across all such two-hop routes and using
the concentration of the binomial distribution, we can get the required flows with high
probability if p? > 2pspy.

Formally, let vw be a blue edge. Define N, as the number of vertices ¢ # v, w,
such that t is connected to v, w by one scarlet and one blue edge.

Now, consider a scarlet edge vz. For all vertices w # v,z connected to v,z by

two blue edges, allocate a fractional flow of 1/ max(Nyqy, N..) through the 2-hop path
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v —w — z. Do this for all scarlet edges. Then the flow through any blue edge is not

greater than 1. The flow allocated for the scarlet vz is given by the random variable

1
sz = 1 vw=Dblue 1 zw=blue AT AT )
Z { blue} *{ blue} X max(va,Nzw)
WHV,Z
1
> Jy, X (7)

maxy £y, » {Max(Nyy, Naw)}'

where J,, = Zw?éwz 1{vw=blue} L {zw=blue} is @ binomial random variable with param-
eters (n — 2,p§). Note that for a fixed scarlet vz and fixed w with blue vw and zw,
Nyw — 1 is a binomial (n — 3, 2psp,) random variable, conditioned on z contributing 1
to the N, count.

Since py, > 2p,, we have pi — 2psp, > 0. Choose € such that 0 < € < (p? — 2pspp) /2

Then,
2
Py~ € > 1. (8)
2pspy + €

From (7) and (8), the event

{sz < 1} = {JUZ < (’I’L - 2)(1’5 - E)} U

{ max {max(Nyy, Naw)} > (n—2)(2psps + e)} . (9)

wH#v,z

By Bernstein’s inequality [5, p.31],
Pr{J,. < (n—2)(p} —€)} < e "D/ (10)
Noting that
(n—2)(2pspy +€) — 1> (n—3)(2pspy + €/2)

for all n > 3+ 2/e, we get

Pr{ max {max(Nyw, Now)} > (n— 2)(2pspy + 6)} <2(n— 2)67(7;73)62/16 (11)

wWHV,Z

by the application of Bernstein’s inequality and the union bound. Using (10) and (11)
in (9), we get

Pr{R,, <1} < e~ (n=2)e?/4 | 2(n — 2)6—(n—3)e2/16

< Qnef(nfg)é/m'
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Since there are a maximum n(n — 1)/2 < n?/2 scarlet edges, we have

2
Pr{R,. <1 for some scarlet edge vz} < %Qne_(”_?’)g/w.

Using the same procedure over all M graphs, and denoting by A, the event that
the flow profile { fuw = Fuw}, ,, o0 Gp is not feasible, i.e., there is some scarlet edge

vz in one of the M graphs with R,, < 1, we get
Pr{A4,} < Mnde ("3 /16, (12)

From (12), >°7° | Pr{A,} < cc. This ensures, by Borel-Cantelli lemma [5, p.288], that
the probability of A,, occurring infinitely often is 0. Hence, the flow {f,,, = vw}v,w
on G, is feasible for all but finitely many n, with probability 1.

3.2. Sufficient condition for a feasible flow
Lemma 2. Let h: ¢ — R be a function such that inf e h(z) > 0 and
sup,cq h(z) < co. If

E[(C - h(O))*} _9E [(h(C) - C)ﬂ >0, (13)

then liminf,, o pn > E[¢ (R(C))] with probability 1.

Proof. First observe that the expectation in (13) exists and is finite because E|h(C)—
C| < Eh(C)+EC, both of which exist and are finite. The expectation E[((h(C))] exists
by Jensen’s inequality and the assumption on ¢ that {(z) > —oo if > 0.

Choose ¢ such that 0 < 2§ < inf,ec¢ h(x) and choose an integer k large enough that

k> 2/6 and k > sup,ce h(z). Define random variables

ck) = % | min(kC, k)] (14)
and
F®) = % |kh(C) — k6 —1]. (15)
Observe that
o<c® <

and
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Moreover, (kC’i()]fU), k‘Fﬂ?) are i.i.d. nonnegative integer quantities, so that we are in a
position to apply Lemma 1 if we can verify (4) for (C(k),F(k)). To do this, we may
write the expectation in (4) as an integral over {C < k} and {C > k}, and use (14)
and (16) to get

E {(Cw) _ F(k))* 2 (P - C(k))*}

> % /M [(Uw — 1) — (kh(c) — ks — 1)) " = 2((kh(c) — k6 — 1) — (ke — 1))+} du(e)
+/ [(k—k+8)T —2(k—0—k)"]| du(c)
c>k
= /<k {(C — h(c) + 5)+ —2(h(c)— 0 — c)+] du(c) + . 6 du(c)

VE
T~

[(c “ )t —2(h(e) — o) + 5} du(e)+ [ 6 du(c)

<k c>k

| [e=he™ =200 = aute) +5 (17)

where (a) follows because
(x+6)t -2+ >zt -2z~ +6 VxecR.
By the dominated convergence theorem,

lim [(C —h(e)" =2(h(e) — )" | du(e) = E[(C — h(C))* —2(h(C) — O)7]

k—o0 o<k

> 0.

So choose k large enough that

/(k [(c — ()" =2 (h(c) — c)+] du(c) > —0.
Its substitution in (17)_ implies

E [(C(k) - F(k)>+ —9 (F(k) - O(’“))T > 0.

Hence by Lemma 1, the flow { Jow = kFlgﬁ,)} is feasible for all but finitely many n,

v,w

with probability 1 when we have integer capacities {kCSIfU)} . Scaling by 1/k and

v,W

noting that C*) < C, the flow { fow = qfﬁ)} is feasible for all large enough k£ and

v, W

for all but finitely many n, with probability 1. For this flow profile, the utility is

U = L 3 ().

Qn
{v,w}
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Since F*) > h(C) — 26 > 0, as is easily verified, and ¢ is an increasing function,

*) > 1 _
U 2 > C((Cu) — 20)

{v.w}
> 37 [C((Con)) = 26 (h(Co) — 20)
" {vw)
1
> — Y [C(h(Cuw)) —26¢" ( inf h(z)—25)|.
Qnp (o0} |: (ze% >:|

The second inequality above follows from the strict concavity of . Since
§¢'(inf h(x) — 26
¢'(inf h(z) —20) =0

as 0 — 0, we have

U > LS ((h(Cu) ~ ¢

" {vw}
for any € > 0. Noting that p, > U,(Lk), the event

B. 2 {nm inf p, > E[C(h(C))] — e}

n—oo

occurs with probability 1. Consequently, the event

B= () By = {liminf p,, > E[(W(C))]}

m=1

also occurs with probability 1.

3.3. A distributed implementation

The proofs of Lemma 1 and Lemma 2 provide a randomised algorithm to obtain
the feasible flow, which can be implemented in a distributed manner. The first step
is to obtain an integer approximation as defined in (14) and (15). We may need to
choose k large enough to get a utility sufficiently close to E [( (h(C))]. Then, we use
the algorithm in the proof of Lemma 1 to obtain a routing for this flow. Note that
randomisation arises from the choice of the subsets that determine the edge colours in
the M subgraphs. Here, we highlight the distributed nature of this algorithm.

The information available at an edge is assumed to be available also at its end-
vertices. These include the capacity C*), the flow requirement F*) the presence or

absence of the edge in each of the M graphs and their colours. Fix one of the M
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graphs. Then each vertex will query each of its neighbours to obtain N, for each
vertex w such that vw is blue. Then v exchanges the information on edge colours with
each vertex z with vz scarlet to determine the vz flow on the path v — w — z where
vw and wz are both blue. This happens for each of the M graphs. Even though every
node exchanges data with every other node, the graph is complete, the flow values and

routes are determined based on locally available information.

4. Optimisation of the lower bound

Having found a sufficient condition (13) for feasible flow in Lemma 2, we optimise the
utility over all such functions h. Recall that ( is a strictly concave function. Consider

the following functional optimisation problem:

. max E[C(h(C))] (18)

subject to E[(C — h(C))T] — 2E[(h(C) — C)T] > 0.

Let A* be the optimising function. We will show that under the stated assumptions
on (, h* exists, so that the use of max in (18) is justified.

Let 6 = lim, o ¢'(x) and @ = lim,1o ¢'(z). We have 0 < 6 < 6 and may assume

6 < oo and 6 > 0. Define

and

&) =E (€= n(O))*] - 2 |(a(0) - C)F]. (19)
Proposition 1. If § < 20, then h*(c) = cVc € €.

Proof. Choose A > 0 such that

Consider the function
w(h, A) = ¢(h) + A§(h)
= E[{(R(C)) + MC = h(C)) = 2X(h(C) — O)F]. (21)

We first maximise w(h, ) over all functions h : ¥ — R™T for a fixed A. Let the

optimising function exist and be given by hy and suppose A is such that £(hy) = 0.
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Then, since w(hx,A) > w(h,A), we have (hy) + A(hy) > ¥(h) + A(h). Thus,
P(ha) > (k) + Aé(h) > 1(h) over all functions h that satisfy £(h) > 0. Thus, hy is
the optimising h* for problem (18). We now prove the existence of such a A and hy.

We may write (21) as

w(h, A) = L[C(h(C)) + (e = h(e)" = 2X(h(c) — c) T]du(c).

Maximising w(h, A) is equivalent to maximising the integrand ¢(h(c)) + A(c— h(c))* —
2X\(h(c) — ¢)* pointwise for each ¢ € [0,00). Thus, writing h(c) = f, we look to

CH+AMe=fF =2M(f - o)F (22)
over f > 0 for a fixed c.
Define
91(f) = C(f) = 2A(f — o), (23)
and
92(f) = C(f) + Me—f). (24)

The maximum value of (22) can be written in terms of g; and go as

max { sup gQ(f)a sup gl(f)7 C(C)} . (25)
0<f<e f>c

The functions g1 (f) and g2(f) are strictly concave functions in f. By the conditions
on the slopes in the hypothesis and by (20), we have ¢1(f) < 0 and g5(f) > 0; so g1(f)
is maximised at f = 0 and go(f) is maximised at f = co. Because of concavity of g1 (f)

and g2(f), we have

91(0) = 91(¢) = ¢(¢) = g1 (f) for ¢ < f,

92(20) = ga(¢) = ((¢) = g2(f) for 0 < f <,

The above equations imply that supg< ;. g2(f) < ((c) and sup;~ . g1(f) < ((c). Thus,
for each fixed ¢, the optimal value of (22) is ((c¢) and is achieved by setting f = c.
Hence, the optimisation function hy(c) = ¢ Ve € € and for any A that satisfies (20).
Further, £(hy) = 0, and hence, h*(¢) = ¢ is the optimising function.
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For the other case, 8 > 26, we need the following definition. Define
SAT(c, a,b) = min(max(a, ¢), b)
for given a < b and
px = SAT (e,¢120),¢ 7' (V)
for A € [6,6/2].

Proposition 2. If 0 > 20, then
h*(c) = pa-

where \* € [0,6/2] N[0, 00) is such that {(px+) = 0.

Proof. Choose A > 0 such that § < X\ < /2. We proceed as in the proof of
Proposition 1 to maximise (22) for a fixed ¢ € [0, c0).

In this case, g1(f) and g2(f), defined in (23) and (24), have unique maxima g (f1)
and ga(f2) obtained at fi = ¢/~ (2X) and f, = ¢’~'(\) respectively. Observe that
fi < fa. Because of concavity of ¢g1(f) and g2(f), we have the following inequalities

under the specified cases on c.

g1(f1) = g1(c) = ((c) > g1(f) for fr <c < f, (26)
g2(f2) = g2(c) = ((c) > ga(f) for f < c < fo. (27)

For f < ¢ < f1, and since f; < fo, we have from (27), the condition

91(f1) 2 ¢(c) = ga(f) for f <c < fi. (28)

Analogously, for fo < c¢ < f, and since f1 < fo, we have from (26), the condition

92(f2) > ((c) > g1(f) for fa <c < f. (29)

For ¢ < f1, f* = f1 maximises (25) because of (28). Similarly, for ¢ > fo, f* = fo
maximises (25) because of (29). For f; < ¢ < fa, f* = ¢ maximises (25) because of
(26) and (27). Hence, hy = p) maximises w(h, \).

We next check that there exists a A* € [0,0/2] with £(hy-) = 0. Note that

) = [@a [(C B C/_lo\)) Wesern) =2 (C/_l(”\) a C) Wecorany du(c). (30)
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€(hy) is a continuous function in A. Also, {(hg) < 0 and &(hg,,) > 0. Hence, there
exists a A* € [0,0/2] such that £(hy-) = 0. Note that if § = oo, then limoo &(hy) =
E[C] > 0. Thus, the A* that solves £(hy) = 0 is finite.

Using the observations of the above propositions with Lemma 2, we have the fol-

lowing result.

Theorem 2. Let U* be the optimal solution to (18). Then, liminf, . pn, > U* with

probability 1.

Proof. Suppose 6 < 20. Then by Proposition 1, h* solving (18) is h*(c) = c. In
this case, U* = E[((C)] can be achieved via the flow profile {f,,, = Cyw}, ,,, Which is
shown to be feasible in Theorem 1.

Now, suppose 0 > 20. We saw in Proposition 2 that there exists a
A€ [0,0/2] ()0, 00)
with £(hy«) = 0, and
h*(c) = hy-(c) = SAT (c, g/‘l(w),g'—lw)) .

Suppose \* € (Q, 0/ 2). Then, the optimising function h*(¢) is bounded below by
¢""H(2X*) > 0 and is bounded above by ('71()\*) < 00. Then by Lemma 2, the
corresponding U* is achievable.

If \* = 6, then ¢’~'(\*) = co. Then using (30), we have
=1 *
E(hy) =0 = Pr{0<g (2 )}:o.

In this case, h*(c) = ¢ over a set with probability 1. Similarly, if A\* = 6/2, then
¢’ (2)\*) = 0, and therefore by (30), we have

€(hy) =0 = Pr {c > (’_1()\*)} —0.

In this case also, h*(¢) = ¢ over a set with probability 1. Hence, in the above two

cases, U* is achievable via the flow profile { fyw = h*(Cyw)}, ,,,» Which is feasible with

v,w’?

probability 1.
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5. Converse

In this section, we prove the converse of Theorem 2.

Theorem 3. Let U* be the optimal solution to (18). Then, limsup,,_, . pn < U* with

probability 1.

Proof. First, we proceed as in Aldous et al. [1], to get a necessary condition for any
flow (see (33) below).
Consider an arbitrary capacity realisation {Cyy}, - For any pair {v,w}, we have

fow = Z ‘va(e)a

e:e incident on v

and therefore
> eowl€) = fou- (31)

For pairs {v,w} such that f,, > Cyu, since at least f,, — Cyy flow has to be carried

by a path of length two or more, we have the stronger condition
Z @vw(e) 2 va + 2(f7jw - Cv ) (32)
e
Combining (31) and (32), we have
Z @vw(e) Z min{f’uw7 va} + 2(fvw - va)+~
Summing over all {v, w} pairs and using (2), we get
Z 0(6) Z Z (min{fmu; Cmu} + 2(fvw - va)+) .
e {v,w}
Division by a,, and rearrangement yields
1
ai Z ((va - fvw)+ - Q(fvw - va)+) Z 07 (33)
" {v,w}
a necessary condition for any flow { fvw}v,w to be feasible. This was obtained by Aldous
et al. [1] in the context of uniform multicommodity flow with f,, = ¢ V{v,w}. But
we see that (33) holds for any feasible flow.

It follows that p, is always less than or equal to the solution to the following

optimisation problem:

max ai Z C(fow)

" {vw}
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subject to
- Z - fvw (fvw - vw)+) 2 0.
" {v,w}
Let U be the optimal solution to this problem. Let f = { fvw}v,w’ and define
= LS ), (34)
{v,w}

S 1

€N =D ((Cow— fou)" =2(fow — Cow)"). (35)

" {v,w}
For A > 0, independent of the realisation, define @(f,\) = {(f) + AE(f). We first
optimise w(f, \) for a fixed A > 0.
Using (34) and (35), we get

’l@(f, )‘) = ai Z (C(fvw) + )‘( fvw) - 2)‘<wa - va)+) .
RRCED:

The maximisation of w(f,A) is separable in {v,w}, and therefore, we optimise the
summand for each {v,w} by choosing an appropriate f.,.

Comparing with the optimisation of w(h,A) in section 4, the optimising flow f) is
of the same form, i.e., fxyw = hr(Cow)-

If § < 20, then for A such that 6/2 < X\ < @, £, is given by fivw = Cypw V{v,w}, as
obtained in the proof of Proposition 1. In this case, é(f)\) =0 and

chw

" {v,w}
Thus,
lim sup p,, < lim sup —— Z C(Couw)-

n—oo n—0o0 {U w}

The right-hand side is almost surely E[¢(C)], which is equal to U* in this case, and so
limsup,,_, . prn < U* with probability 1.

If § > 20, choose A = A\* € [6,60/2] N[0,00) so that ¢ as defined in (19) satisfies
&(hx+) = 0 (Note the distinction between & and é ). As discussed in Proposition 2, such
a \* exists and is independent of the realisation with which we are now working. With
this A*, fas vw = has (Cow) = W (Cuup)-

Now,

W(fae, A) = (f, A7),
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which implies

() + A E(fre) = () + AE(),
and therefore

S < D) =2 (40 - €0)-
Hence, for all flow profiles f that satisfy £(f) > 0, we have

D(f) < D(fax) + X E(fas),

which implies that
prn < U <D(fre) + N E(far) (36)

Note that

which converges to E[¢ (h*(C))] = U* with probability 1. Also,

é(f/\*) = i Z ((C'uw - h*(cvw>)+ - Q(h*(C'uw) - C’uw)+) 3

an

{v,w}

which converges to
E[(C—m(@) —2(0(0) - )] =) =0,

with probability 1. Thus, taking limsup in (36), we have limsup,,_, . pn < U*, and

the proof is complete.

6. Conclusion

We studied the asymptotic behaviour of optimal flows on the complete graph.
The optimal net utility converges with probability 1 to a value that depends on the
distribution of C'. Interestingly, the volume of each flow depends only on the capacity
of the corresponding direct link via a simple function. More precisely, we have shown

the following.

1. If the slope of the utility function ¢ at the origin is less than twice the slope at
infinity, i.e., § < 20, then lim, .o p, = E[((C)] with probability 1, and it is

optimal to route each flow entirely via the direct link.
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2. If 6 > 20, then lim,, .. p, = E[¢ (h*(C))] with probability 1, where

(1]

P (e) = SAT (e,¢' 71 20"),¢ 7' (V)
and \* solves
E[ - h*(C))*] _9E [(h*(C) - C)ﬂ —0.

The flows for each pair {v,w} is h*(Cyy) and is routed through only direct and
two-hop routes. The resultant flow profile can be obtained through a simple
distributed algorithm that requires information sharing only among links that

share a vertex.
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