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Abstract—Representatives of several Internet access providers
have expressed their wish to see a substantial change in the
pricing policies of the Internet. In particular, they would like to
see content providers pay for use of the network, given the large
amount of resources they use. This would be in clear violation
of the “network neutrality” principle that had characterized the
development of the wireline Internet. Our first goal in this paper
is to propose and study possible ways of implementing such
payments and of regulating their amount. We introduce a model
that includes the internaut’s behavior, the utilities of the ISP and
of the content providers, and the monetary flow that involves the
internauts, the ISP and content provider, and in particular, the
content provider’s revenues from advertisements. We consider
various game models and study the resulting equilibrium; they
are all combinations of a noncooperative game (in which the
service and content providers determine how much they will
charge the internauts) with a cooperative one - the content
provider and the service provider bargain with each other
over payments to one another. We include in our model a
possible asymmetric bargaining power which is represented by
a parameter (that varies between zero to one). We then extend
our model to study the case of several content providers. We also
provide a very brief study of the equilibria that arise when one
of the content providers enters into an exclusive contract with
the ISP.

Index Terms—network neutrality; bargaining; two-sided mar-
ket; game theory; telecommunications policy.

I. INTRODUCTION

The huge growth of the Internet and related electronic
commerce and businesses was characterized by a neutral
(egalitarian) policy for accessing the global Internet (i) for
download or for using services, and (ii) for deploying services
or uploading contents. This neutrality principle meant that
packets could not be discriminated according to their origin
or destination, the application, or the protocol they use.

Those opposing the neutrality argue that (i) some appli-
cations (such as peer to peer (P2P) streaming applications)
require a lot of costly resources, and (ii) if a neutral policy
is pursued, there would be no incentive for investing in the
infrastructure of the network in order to upgrade it.

In a nonneutral net, discrimination of packets can mean
a selective blocking of packets, selective throttling of flows
(allocating less throughput to some flows), having exclusive
agreements between the access provider and some content
or service providers, and charging traffic in a discriminatory
way. Blocking and throttling P2P traffic has been a common
practice in several countries, and not just during congestion

epochs [1]. In the USA, such a practice was criticized by the
FCC telecom regulation body.

There is one particular economic issue that is at the heart
of the conflict over network neutrality. Hahn and Wallsten [2]
write that net neutrality “usually means that broadband service
providers charge consumers only once for Internet access, do
not favor one content provider over another, and do not charge
content providers for sending information over broadband lines
to end users.” This motivated a study [1] of the implications of
being nonneutral and of charging the content providers (CP).
Using non-cooperative game theoretic tools, [1] showed that if
one provider, say the internet service providers (ISP), has the
power to impose payments on the other provider (the CP), not
only does the content provider lose control over how much
they can pay, the internauts suffer, and moreover, the ISP’s
performance degrades. More precisely, reference [1] showed
that the only possible equilibrium would be characterized by
prices that will induce zero demand from the internauts. This
phenomenon does not occur if the price that one provider is
requested to pay to the other were fixed by some regulator. See
also Njoroge et al [3] for a study of multiple interconnected
ISPs, a continuum of internauts and several CPs.

The sources of income (other than side payments between
operators) in the model studied in [1] were payments of
internauts (to both the ISP as well as the CP), and some third
party payment (e.g. publicity income) that the content provider
receives. Our objective in this paper is to study mechanisms
for determining which provider should pay the other and how
much. We are in particular interested in the impact of such
mechanisms on the equilibrium.

The side payment from one provider to another is expected
to be financed by the income from the internauts and publicity.
Cooperative games is a well established scientific area that
provides us with tools for designing such mechanisms which,
moreover, possess some fairness properties. In [4]-[5] the
Shapley value (which is known to have some fairness proper-
ties [6]) was used for deciding how revenues from Internauts
should be split between the service and the content providers.

We shall focus in this paper on mechanisms based on the
Nash bargaining paradigm (which is known in the network
engineering context as the proportional fair assignment). It is
the unique way of transferring utilities that satisfies a well
known set of four axioms [7] related to fairness. We note
that assigning the side payments fairly is just part of the
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story. In practice one provider may have more weight than the
other one in the decision on the amount of side payment. We
then say that the provider has a larger bargaining power (we
shall make this precise in the next section). As an example,
the Spanish ISP “Telefonica” announced on 8 February 2010
that it is considering charging Google, indicating perhaps
that the bargaining power of Google is weaker than that of
Telefonica. Our work will allow to determine exactly how
much payment would go from one provider to another as
a function of the bargaining powers of each provider. For
quantifying the bargaining power of each side, we follow the
approach presented in [8].

Our goal in this paper is to understand a very simple model
of a two player game with one agent being a content provider
(CP) and another agent being an internet service provider
(ISP). Several ancillary parties are also involved – the users
who respond to prices via a demand function, advertisers who
are the main providers of revenue, and an arbitrator who
regulates the side payments taking into account the bargaining
power of the players. We then extend the results to the case
when there are multiple content providers. Finally, we provide
some results for the case when there are two CPs, but the first
CP has an exclusive contract with the ISP.

II. THE CASE OF A SINGLE CP AND A SINGLE ISP

We first begin with the simple case of a single CP and a
single ISP. All the internauts are connected to the ISP, and can
access the content of the CP only through the ISP. See Figure
1 for a payment flow diagram. The various parameters of the
network neutrality game are as follows.

Parameter Description
ps Price per unit demand paid by the users to the

ISP. This can be positive or negative.
pc Price per unit demand paid by the users to the

CP. This too can be positive or negative.
d(ps, pc) Demand as a function of prices. We shall take

this to be d(ps, pc) = [D0 − α(ps + pc)]+,
where [x]+ = max{x, 0} is the positive part
of x.

pa Advertising revenue per unit demand, earned
by the CP. This satisfies pa ≥ 0.

pd Price per demand paid by the CP to the ISP.
This can be either positive or negative.

UISP The revenue or utility of the ISP, given by
d(ps, pc)(ps + pd).

UCP The revenue or utility of the CP, given by
d(ps, pc)(pc + pa − pd).

γ Bargaining power of the ISP with respect to
the CP. This satisfies 0 < γ < 1.

We consider two interesting games. The timing for the first
game is as follows.

• The ISP and the CP bargain over the payment pd from
the CP to the ISP. This can be positive or negative.

ISPCP InternautsAdvertisers

p p p

p

a d

c

s

Fig. 1. Monetary flow in a nonneutral network.

• The CP sets the price pc. The ISP sets the price ps. Both
set their prices simultaneously.

• The internauts react to the prices and set the demand.

In the second game, bargaining is done later:

• The ISP and the CP set their respective access prices ps

and pc simultaneously.
• The ISP and the CP bargain over the payment pd from

the CP to the ISP. This can be positive or negative.
• The internauts react to the prices and set the demand.

The first game arises when the charges per unit demand can
change over a comparatively faster time-scale while the CP-
ISP price changes over a slower time-scale. The second one
is an interesting case that may arise in a regulatory setting
where the prices per unit demand charged to the internauts
varies over a slower time-scale, but the ISP and the CP can
quickly renegotiate their prices. We analyze both models via
backward induction and identify the equilibria.

For a fixed ps and pc, bargaining results in an agreement
of a payment pd from the CP to the ISP, determined by

pd∗ ∈ argmax
pd

Uγ
ISP × U1−γ

CP .

The parameter γ determines the bargaining power of the ISP
with respect to the CP. When pd∗ is negative, the ISP is the
one that makes a payment to the CP.

We now discuss some properties of the bargaining solution.
If we take γ = 1/2 then the maximization is equivalent

to that of the product of the utilities of the ISP and the CP.
This is then the standard Nash bargaining approach [7] for
resource allocation, known in networking as the proportional
fair allocation [9]. (It is known to be the unique assignment
satisfying a set of four axioms.) To understand the case of
general γ, consider first the problem of maximizing Um1

ISPU
m2

CP
where m1 and m2 are integers. The form of the objective
function suggests that we are simply searching for a standard
proportional fairness solution but where there are m1 ISP’s
and m2 content providers. Thus the ISP is said to have a
bargaining power equivalent to that of m1 players, and the
CP equivalent to that of m2 players. Finally, we note that
argmax(Um1

ISPU
m2

CP ) is the same as that of (Uγ
ISPU

1−γ
CP ) where

γ := m1/(m1 +m2).
Remark: The optimization problem involved in computing

the proportional fair solutions, that of maximizing the product
of utilities, may have some constraints. We do not modify the
constraints when altering m1 or m2. The change in m1 or m2
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merely corresponds to a re-weighting of the utilities and not
of addition or removal of users.

We next observe that the game problem is equivalent to
replacing all utilities by the log of the utilities. We may
imagine that the bargaining is done by another player, whose
(log) utility equals

U regulator := γU ISP + (1− γ)UCP, (1)

where U ISP = logUISP and UCP = logUCP. At least
one previous work has already used as utilities the linear
combination of performance measures of other players and
interpreted γ as some measure of the “degree of cooperation”,
see [10], in other contexts.

Let us now return to our games. In the first game, the CP
and the ISP bargain over Nash equilibria. In the second, they
choose pa and pc knowing that they will bargain subsequently.
A summary of the results for the single-CP single-ISP games
are as follows.

1) In both cases, there exists a pure strategy Nash equilib-
rium, in a sense that will be made precise, with strictly positive
demand and strictly positive utilities for the agents. In the pre-
bargaining problem there are other zero-demand equilibria. In
the post-bargaining problem, the aforementioned pure strategy
Nash equilibrium is unique.

2) In all cases with strictly positive demand, users pay the
ISP. But users pay the CP only if the advertising revenue is
small. Otherwise the CP subsidizes the users.

3) If either of the agents have control over pd, the equilib-
rium demand is zero. None of the parties benefit from this
situation. On the contrary, if pd is under the control of a
disinterested arbitrator, there is an equilibrium where every
one benefits. This is the key insight gained from our analysis,
that some sort of regulation can bring benefits to all.

4) Interestingly, if the agents bargain beforehand and the
strictly positive demand equilibrium ensues, the payments by
the users and resulting utilities of all agents are independent
of the actual value of pd.

5) If the agents bargain beforehand, over Nash equilibria,
then demand settles at a lower value than if the agents bargain
after setting their prices.

6) If the agents bargain beforehand, they end up with equal
revenues. If they bargain afterward, they share the net revenue
in the proportion of their bargaining power.

7) Finally, if γ ∈
[
4
9 ,

5
9

]
, then both agents prefer to fight it

out after setting their prices. For γ > 5/9, the ISP prefers post-
arbitration, and for γ < 4/9, the CP prefers post-arbitration.

While the above appear to suggest that post-arbitration may
prove to be good to the internauts, there are no pure-strategy
Nash equilibria in the post-arbitration game when there are
two or more CPs under a model where the demand for content
from a CP is positively correlated with a competing CP’s price.
We shall return to this in a later section.

With these motivating remarks, we shall now proceed to
state these claims in a precise fashion and to prove them.
In subsequent sections we shall study the extension of the

above results to the case of multiple CPs and to the case of
an exclusive contract between one of the CPs and the ISP.

A. Bargaining over Nash equilibria

We first consider the case where the agents bargain over
Nash equilibria. Both agents bargain over the choice of pd,
knowing that they will subsequently play a simultaneous
action game where the ISP and CP will choose ps and pc,
respectively. Our main result here is summarized as follows.

Theorem 1. When the CP and the ISP bargain beforehand
over Nash equilibria, we have the following complete charac-
terization of all pure strategy Nash equilibria.

(a) Among profiles with strictly positive demand, there is
a unique pure strategy Nash equilibrium with the following
properties:

• The uniqueness is up to a free choice of pd.
• At equilibrium, we have:

ps =
D0 + αpa

3α
− pd, (2)

pc =
D0 − 2αpa

3α
+ pd. (3)

• The net user payment per demand ps + pc is unique and
is given by

ps + pc =
2D0 − αpa

3α
.

Any pd paid by the CP is collected from the user and
further returned back to the user by the ISP.

• The demand is unique and is given by (D0+αpa)/3 > 0.
• The utilities of the ISP and CP are equal and given by

UISP = UCP =
(D0 + αpa)2

9α
.

(b) For each choice of pd, a strategy profile (ps, pc) consti-
tutes a Nash equilibrium with zero demand if and only if the
following two inequalities hold:

ps ≥ D0/α+ pa − pd, (4)
pc ≥ D0/α+ pd. (5)

Proof: We first observe that at equilibrium, UISP and
UCP are both nonnegative. If not, the ISP (resp. CP) has
strictly negative utility. He can raise the price ps (resp. pc)
to a sufficiently high value so that demand becomes zero, and
therefore UISP = 0 (resp. UCP = 0). Thus a deviation yields a
strict increase in utility and therefore cannot be an equilibrium.
It follows that at equilibrium, we may take the revenues per
demand for the ISP and CP to be nonnegative, i.e., ps+pd ≥ 0,
and pc + pa − pd ≥ 0.

We next deduce (b), i.e., all the pure strategy NE with
zero demand. Consider a fixed pd. If a pair (ps, pc) were an
equilibrium with zero demand, then clearly

D0 ≤ α(ps + pc),

and
UISP = d(ps, pc)× (ps + pd) = 0.
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Moreover, the ISP should not be able to make his utility
positive, i.e., any ps that makes demand strictly positive,
ps < D0/α − pc, must also render price per unit demand
zero or negative, ps + pd ≤ 0. This can happen only if
(D0/α−pc)+pd ≤ 0 which is the same as (5). Similarly, the
CP should not be able to make his utility positive, i.e., any pc

that makes demand strictly positive, pc < D0/α − ps, must
render CP price per unit demand nonpositive, pc+pa−pd ≤ 0.
This can happen only if (D0/α−ps)+pa−pd ≤ 0 which is the
same as (4). This proves the necessity of (4) and (5). To prove
sufficiency, if (5) fails, then with ε = (D0/α+ pd)− pc > 0,
the ISP can set ps = D0/α − pc − ε/2 yielding a demand
of ε/2 and a revenue per demand of ε/2 and thus a strictly
positive utility for the ISP. If (4) fails, the CP can analogously
get a strictly positive demand. Thus (b) holds.

Let us now search for an equilibrium with a strictly positive
demand. Such a (ps, pc) must lie in the interior of the set of
all pairs satisfying D0 ≥ α(ps+pc). As UISP is concave in ps

for a fixed pc and pd, whenever the utility is strictly positive,
we must have a local maximum at equilibrium, i.e.,

∂UISP

∂ps
=

∂

∂ps
(D0 − α(ps + pc))(ps + pd)

= D0 − αps − αpc − α(ps + pd)

= 0,

which yields

ps =
D0 − αpc − αpd

2α
.

Analogously, UCP is concave in pc for fixed ps and pd

wherever the function is positive, and so the equilibrium pc

should be a local maximum, i.e.,

∂UCP

∂ps
=

∂

∂ps
(D0 − α(ps + pc))(pc + pa − pd)

= D0 − αps − αpc − α(pc + pa − pd)

= 0,

which yields

pc =
D0 − αps − α(pa − pd)

2α
.

Solving these two simultaneous equations in the variables ps

and pc, we see that ps and pc are given by (2) and (3),
respectively. Note that the choice of pd is free. Once this is
chosen, this fixes both ps and pc. This proves the second bullet.
We shall return to prove the first bullet after proving the others.

Adding these two, we see that ps + pc is a constant for
each such equilibrium. Choice of pd fixes both ps and pc.
This is true for any Nash equilibrium with a strictly positive
demand. Furthermore, any pd that is paid reduces ps by the
same amount and increases pc by that amount. This proves
the third bullet.

The last two bullets follow by direct substitutions into
d(ps, pc), UISP, and UCP.

As a consequence of the observation that UISP = UCP at
any equilibrium regardless of the value of pd, we have

Uγ
ISP × U1−γ

CP

is independent of pd at any equilibrium, for any fixed bar-
gaining power γ ∈ (0, 1). The arbitrator may thus pick any
pd. This proves the first bullet. (This observation holds even
for zero-demand equilibria). The proof is now complete.

Remarks: 1) Every choice of pd can also result in the
undesirable zero-demand equilibria, and not just the desirable
equilibrium with strictly positive demand.

2) For this strictly positive demand equilibrium, the most
natural choices of pd are those that make one of the payments
zero. For example, when pd itself is 0, there is no payment
from CP to the ISP. When pd is set such that pc = 0, there is
no payment from the user to the CP. When pd is set to make
ps = 0, there is no payment from the user to the ISP.

3) If one places the additional restriction that ps ≥ 0,
the only effect of this constraint is that the choice of pd is
restricted to pd ≤ (D0 + αpa)/(3α), and the above theorem
continues to hold.

4) It is easily seen that if pd is controlled by either
agent, the only equilibria fall amongst the deadlocking zero
demand points. Thus bargaining beforehand induces a good
equilibrium point.

B. Bargaining after actions

We next consider the case when the CP and ISP decide
on their respective prices first, knowing that they will subse-
quently bargain over pd, say in the presence of the arbitrator.

Theorem 2. When the CP and the ISP set prices simul-
taneously before agreeing on pd and then bargain in the
presence of an arbitrator, there is a unique pure strategy Nash
equilibrium with the following properties:

• The uniqueness is up to a free choice of either ps or pc.
Without loss of generality, we may assume a free ps.

• At equilibrium, the net user payment per demand is
uniquely given by

ps + pc =
D0 − αpa

2α
.

• The demand is unique and is given by (D0+αpa)/2 > 0.
• The arbitrator will set pd so that the net revenue per

demand ps+pc+pa = D0+αpa

2α is shared in the proportion
γ and 1− γ by the ISP and the CP, respectively.

Proof: As in the previous section, it is clear that the
revenues per demand and the utilities for both agents are
nonnegative. If this is not the case, the aggrieved CP or the
ISP guarantees himself a strictly larger zero utility by raising
the price under his control so that demand reduces to 0.

Let us now perform a search for equilibria with strictly
positive demand. Such a (ps, pc) is an interior point among
all those pairs that satisfy D0 − α(ps + pc) ≥ 0. Consider a
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fixed interior point (ps, ps). The arbitrator sets pd to

argmax
pd

Uγ
ISP × U1−γ

CP

= argmax
pd

[
γ log(ps + pd) + (1− γ) log(pc + pa − pd)

]
,

where the equality follows because the demand can be pulled
out of the optimization. The optimization is over the set of
pd that ensure that the arguments inside the logarithm remain
strictly positive. It is easy to see that the latter function is
concave in pd, and thus the maximizing pd satisfies

γ

ps + pd
− 1− γ

pc + pa − pd
= 0,

which yields pd = γ(pc + pa)− (1− γ)ps.
Substitution of this pd yields

ps + pd = γ(ps + pc + pa)

pc + pa − pd = (1− γ)(ps + pc + pa).

Clearly, ps + pc + pa is the net revenue per demand for both
ISP and CP put together, and the ISP and the CP share this
booty in the fraction of their bargaining powers.

Knowing this action of the arbitrator, the ISP will respond
optimally to a CP’s pc by maximizing

UISP = d(ps, pc)(ps+pd) = (D0−α(ps+pc)×γ(ps+pc+pa).

This is a concave function of ps, and the maximum is at

ps =
D0 − αpa

2α
− pc. (6)

Similarly, for an ISP’s ps, the CP’s best response is

pc =
D0 − αpa

2α
− ps,

which is the same equation as (6).
At equilibrium, we thus have ps + pc uniquely determined

and given by the second bullet. A substitution yields that the
demand is given by

d(ps, pc) = D0 − α(ps + pc) =
D0 + αpa

2
,

which proves the third bullet.
The revenue per demand is easily seen to be (D0 +

αpa)/(2α). Further substitution yields that net revenue is

d(ps, pc)(ps + pc + pa) = (D0 + αpa)2/(4α),

a strictly positive quantity shared in proportion of the bargain-
ing powers by the ISP and CP. This proves the last bullet.

Finally, for any ps, the arbitrator will set pd to ensure
this proportion, and thus ps may be taken as a free variable.
Each ps and pc satisfying the above conditions is a Nash
equilibrium. This proves the first bullet.

Finally, it still remains to prove that there is no zero-demand
equilibrium. Suppose that (ps, pc) is such that we get a zero-
demand, i.e., D0 ≤ α(ps + pc). With ε = (D0 +αpa)/2 > 0,
the ISP can set his price to

ps = D0/α− pc − ε/α

yielding a demand D0 − α(ps + pc) = ε > 0 and a revenue

γ(ps + pc + pa) = γ(D0/α− ε/α+ pa) = γε/α > 0,

and therefore a strictly positive utility. A unilateral deviation
yields the ISP a strict increase in his utility. Thus such a
(ps, pc) cannot be a pure-strategy equilibrium. This concludes
the proof.

Remarks: 1) The equilibrium utility for the ISP under post-
bargaining is easily seen to be 9γ/4 fraction of that under
pre-bargaining. Clearly then, post-bargaining is favourable if
γ ≥ 4/9.

2) Similarly, the equilibrium utility for the CP under post-
bargaining is 9(1−γ)/4 fraction of that under pre-bargaining.
The CP prefers post-bargaining if 1− γ ≥ 4/9 or γ ≤ 5/9.

3) Thus, if γ ∈
[
4
9 ,

5
9

]
, both will prefer post-bargaining.

4) For γ > 5/9, ISP prefers post-bargaining while CP
prefers pre-bargaining. Opposite is the case when γ < 4/9.

III. THE CASE OF MULTIPLE CPS

We now consider the case when there are several content
providers. Internauts connect to each of the content providers
through the single ISP. See figure 2. The parameters of this
game are given as follows.

Parameter Description
n Number of content providers.
psi Price per unit demand paid by the users to

the ISP for connection to CP i. This can be
positive or negative.

pci Price per unit demand paid by the users to CP
i. This too can be positive or negative.

pai Advertising revenue per unit demand, earned
by the CP. This satisfies pai ≥ 0.

pdi Price per demand paid by the CP to the ISP.
This can be either positive or negative.

px Vectors of aforementioned prices, where x is
one of s, c, a, d.

di(p
s, pc) Demand for CP i as a function of the prices.

See (7) below and the following discussion.
UISP The revenue or utility of the ISP, given by∑

i di(p
s, pc)(psi + pdi ).

UCP,i The revenue or utility of the CP, given by
di(p

s, pc)(pci + pai − pdi ).
γi Bargaining power of the ISP with respect to

CP i.

The demand function for content from CP i is such that it
depends on ps and pc only through the sum ps+pc. Moreover,
if the ith CP and ISP increase their prices, demand for content
from the ith CP goes down. On the other hand, when the price
of the jth CP increases, j ̸= i, since demand for content from
the jth CP goes down, this frees up some capacity thereby
providing a marginally better delay experience. This positive
effect creates a marginal increase in the demand for content
from the other CPs, in particular, an increase in the demand
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for content from CP i. We thus model demand for the ith
content as a function of the prices as follows:

di(p
s, pc) =

D0 − α(psi + pci ) + β
∑
j:j ̸=i

(psj + pcj)

 , (7)

provided each of the demands are strictly positive. Further
thought suggests that when demand di is zero, additional
increase in psi + pci holds the demand at zero. The capacity
freeing that we indicated earlier no longer occurs and the
additional price rise will have no tangible effect on the other
internauts’ behavior. Let En denote the all-one vector of size
n× 1.

ISP

CP InternautsAdvertisers

CPAdvertisers

p d

pa

pa

p d

p
c

p
s

Internauts

p
s

p
c

1

1

11

n

n

n

n

Fig. 2. Monetary flow in a nonneutral network with multiple CPs.

For simplicity, however, in the pre-bargaining case, we
restrict attention to the case when each demand is strictly
positive. In other words, given the other prices, CP i will not
set a price higher than what makes di zero, i.e., that there is
a joint constraint on the price vector that di(ps, pc) > 0 for
every i, i.e.,

D0 − α(psi + pci ) + β
∑
j:j ̸=i

(psj + pcj) > 0, i = 1, . . . , n. (8)

This may be compactly summarized by defining the matrix
A = (α+ β)In − βJn where In is the identity matrix of size
n×n, and Jn is the square matrix with all-one entries of size
n×n. The matrix A has diagonal entries α and all off-diagonal
entries −β. Then the constraint (8) in matrix notation is

D0En −A(ps + pc) > 0. (9)

By summing (8) over all i and setting the sum price P =∑
i(p

s
i + pci ), we see that the total demand is

nD0 − (α− (n− 1)β)P

when demand for each content is strictly positive. For this to be
negatively correlated with the average price per unit demand
P/n, we must have that (n−1)β ≤ α, an assumption that we
make from now on. As before we assume that psi and pci can
be negative, i.e., the ISP and the CPs can pay the internauts
for their usage, with a consequent increase in demand. Finally,
it is a simple matter to verify that UISP is a concave quadratic

function of the vector of service provider’s price vector per
unit demand ps. Indeed the Hessian matrix is simply −2A.
Matrices of this form arise quite often in the sequel. Since
this is −2α times the matrix

(1− ρ)In + ρJn

where ρ = −β/α, a matrix that has 1 − ρ repeated as
eigenvalue n−1 times and 1+ρ(n−1) once, and is therefore
positive semidefinite by our assumption that (n − 1)β ≤ α
(positive definite if strict inequality), we have that the Hessian
is negative semidefinite. This yields that UISP is a concave
function of ps.

The timing of actions for the games are indicated as follows.
• The ISP bargains with each of the CPs, separately and

simultaneously, over the payment pd from the CPs to
the ISP. This can be positive or negative. In bargaining
with CP i, the ISP shall bring only that revenue into
consideration which is generated by internauts connected
to CP i.

• All the CPs choose their price pci . The ISP chooses the
vector ps. All these actions are taken simultaneously.

• The internauts react to the prices and set their demands.
As before, bargaining comes later in the second game.
• The ISP and each of the CPs set their respective access

prices ps and pci simultaneously.
• The ISP and each of the CPs bargain over the payment

pdi from the CP to the ISP. This can be positive or
negative. Yet again, the ISP shall be able to bring only
that revenue into consideration which is generated by
internauts connected to CP i.

• The internauts react to the prices and set their demands.
The case when β = 0 is easily handled in either scenario.

The actions of the various CPs (prices) do not influence
each other. Though the ISP’s utility is the sum over all
revenues accrued from access to each CP, in bargaining with
CP i, only the revenue generated by accesses to content of
CP i matters. The ISP’s utility is thus separable, and the
problem separates into n single-CP single-ISP problems. The
results of Theorems 1 and 2 immediately extend to this case.
Notably, an equilibrium with strictly positive demand exists in
either scenario. Further, in case of bargaining before-hand, all
combinations, with zero-demand equilibria for some contents
(components) and strictly positive (unique) demand for other
contents, also exist. We shall henceforth assume that β > 0.

A. Bargaining over Nash equilibria

As indicated earlier, we assume a joint constraint on the
prices in this section. Zero-demand equilibria are thus not stud-
ied. We now argue that the qualitative conclusions of Theorem
1 for equilibria with strictly positive demand continue to hold.
Suppose for instance that all the CPs and the ISP do not keep
any revenue, and transfer the collected advertisement payments
to the internauts. In other words, ps + pc = −pa. The matrix
A is as defined before. Then, the demand vector is

D0En −A(ps + pc) = D0En +Apa.
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We make the assumption that in this situation, which is rather
favorable to the internauts, the demand vector is nonnegative,
i.e., this is a feasible profile with contents from all CPs
accessed. The result below is under this hypothesis.

Theorem 3. Assume α > (n− 1)β > 0. Let pa be such that
the vector D0En + Apa is made up of nonnegative entries.
Let the CPs and the ISP bargain beforehand. Among profiles
with strictly positive demand, there is a unique pure strategy
Nash equilibrium with the following properties.

• The uniqueness is up to a free choice of the vector pd.
• At equilibrium, for each i, there exist constants gi and hi

that depend only on pa, D0, α, β such that

psi = gi − pdi

pci = hi + pdi ,

• For each CP i, the net internaut payment per demand is
unique and is given by psi + pci = gi + hi. Any payment
pdi paid by the CP is collected from the internaut and
further returned to the internaut by the ISP.

• The demand vector is unique and does not depend on pd.
• The revenues per unit demand, and therefore the total

revenues collected by the CPs and the ISP, does not
depend on pd.

The recipe for the proof is identical to that of Theorem 2,
only with some matrix algebra.

Remarks: 1) The hypothesis that (D0En+Apa) is made of
nonnegative entries holds, for example, when revenues from
advertisers are either the same, or when D0 is large. Under the
hypothesis, it turns out that contents of all CPs are downloaded
when all revenue is transferred to the respective internauts.

2) Yet again we notice that the actual choice of pd does
not affect the net cost to internaut per unit demand, nor does
it affect the equilibrium demand. It merely affects the way in
which the payment by internaut is split between CP i and ISP.
The mere fact that they agreed on an arbitrary pd suffices to
get an equilibrium more favorable than the case when pd is
under the control of one of the players.

3) The zero-demand equilibria remain to be characterized.
4) When τ . 1, any increase in price of CP i causes a

reduction in demand for that content, but results in nearly
similar magnitude increase in demand of all other contents.
The ISP remains nearly fully utilized. This puts the ISP in an
advantageous positive, and one anticipates that the ISP prices
are high. The solution to ps does indeed exhibit this behaviour
with a 1− τ in the denominator.

B. Bargaining after setting prices

As done previously, the ISP and the CPs will choose their
respective prices knowing that the revenue they will get is the
outcome of bargaining. In this section, we do not place the
constraint that demand be strictly positive. The ISPs and the
CPs are free to set any price they wish and no joint constraints
are placed. Thus we shall aim to characterize all equilibria,
including those with zero demand.

We shall present our results under a condition on the
bargaining powers, namely, the matrix H with entries

Hij =

 γ−1
i i = j,

−(βα )

(
γ−1
i +γ−1

j

2

)
i ̸= j,

(10)

is negative definite. As we will see later, this condition arises
to keep the utility of the ISP a concave function of ps. It holds
for example when the γi’s are all equal and under our standing
assumptions: α ≥ (n− 1)β and D0En +Apa ≥ 0.

As in the n = 1 case, the ISP and CP i will share psi +
pci +pai , the revenue coming from internauts accessing content
from CP i, in the proportion γi and 1− γi. This revenue will
turn out to be nonnegative because otherwise CP i can just
opt out. More compactly, ps + pa + pc ≥ 0. Recall the earlier
condition (9) on the prices so that demands are nonnegative.

One immediate observation is that all utilities and the
constraints depend on psi and pci only through the sum psi +pci .
While this sum is bounded if the demand vector is to be strictly
positive, neither psi nor pci need be bounded, and so the action
sets for each of the agents is unbounded. Our main result is
then the following mixed bag. (Recall that the case β = 0 was
already considered and disposed).

Theorem 4. Let the matrix H given by (10) be negative
definite. Also let α > (n − 1)β > 0 and D0En + Apa ≥ 0.
For the case when bargaining is done after setting the prices,
the following hold.

• There exists no pure strategy Nash equilibrium.
• If the prices are constrained to lie in a convex, closed, and

bounded set, there exists a pure strategy Nash equilibrium
on the boundary.

Thus even though post-arbitration in the single-CP single
ISP case always gave a unique Nash equilibrium with the
desirable strictly positive demand, the desirable feature disap-
pears when there are multiple CPs and β > 0. Pre-arbitration
continues to yield a unique Nash equilibrium among those
profiles with strictly positive demand vectors.

IV. THE EXAMPLE OF AN EXCLUSIVE CONTRACT

We now study the multiple CP problem but in a setting
where the ISP and one of the CPs, say CP 1, enter into an
exclusive contract. ISP and CP 1 now form a super ISP. This
situation also arises when the ISP himself provides content.
In this paper, we study only the case when the prices are
constrained (jointly) to lie within the set that yields a strictly
positive demand. Relaxation of this constraint is under study.
Further, we restrict attention to n = 2 CPs.

Note that pd1 no longer matters as this is an internal exchange
within the agent ISP of no consequence to the overall game.
The utility of ISP is

UISP = d1(p
s, pc)(ps1 + pc1 + pa1) + d2(p

s, pc)(ps2 + pd2),

UCP,2 = d2(p
s, pc)(pc2 + pa2 − pd2).

Note that d1(ps, pc) = D0 −α(ps1 + pc1)+ β(ps2 + pc2) with an
analogous formula for d2(p

s, pc), since our current focus in
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this paper is study of equilibria with strictly positive demand.
Calculations entirely analogous to earlier ones show that the
Hessian of UISP with respect to the variables (ps1 + pc1, p

s
2) is

−2A, where A is as defined before with diagonals α and off-
diagonals −β. The Hessian is thus negative definite under the
assumption β < α/(n − 1) = α since n = 2. Thus ISP is a
concave function of (ps1 + pc1, p

s
2). Similarly UCP,2 is strictly

concave in pc2. An equilibrium with strictly positive demand
must satisfy the first-order conditions as before which can be
shown to yield ps1 + pc1

ps2
pc2

 =

 0 −1/2 0
−1 τ/6 1/3
1 −τ/3 −2/3

 ·

 pd2
pa1
pa2


+
D0

6α

 3/(1− τ)
(2 + τ)/(1− τ)

2

 , (11)

where τ = β/α and τ ∈ [0, 1). The details of these
calculations are straightforward and thus omitted. The case
when τ = 0 is easily handled as a separated case.

Remarks: 1) From (11), we see that when τ . 1, the ISP
prices ps1 + pc1 and ps2 are high. The price charged by CP 2
remains bounded. This is analogous to the case when there
was no exclusive contract.

2) Calculations that compare prices with and without exclu-
sive contracts show that exclusive contract helps both types of
internauts if and only if (2τ)pa2 ≤ (3−τ2)pa1+(D0/α)(3+τ),
which holds for a wide range of the above parameters, and in
particular when pa1 = pa2 .

V. DISCUSSION

In this paper, we studied a model of a nonneutral network
and investigated the role of bargaining power in identifying
side payments. We began with the simple case of a single CP
and a single ISP and studied the equilibria when they bar-
gained with each other over the side payment. The bargaining
could happen either before they set their prices or afterward.
The relative bargaining power of the ISP with respect to the
CP was captured by a single real number between 0 and 1.
We highlighted several interesting features of the equilibria.
If the agents bargain beforehand, there can be zero-demand
equilibria, but there is one unique desirable equilibrium with
strictly positive demand. The actual amount of the payment
that they agree upon is inconsequential to the users, but the
mere fact that they agree upon it before-hand (via bargaining)
is beneficial to all agents. If the agents bargain afterward,
the agents share the revenue in proportion of their bargaining
powers. There is a unique equilibrium and it has the desirable
feature of a strictly positive demand.

When there are multiple CPs and demand for content i
depends only on the content i’s price (sum of CP price and
ISP price), then the problem reduces to n separable single-
CP single-ISP problems. If the demand for content i is posi-
tively correlated with pricing of other contents, then for pre-
bargaining, the results are qualitatively similar to the single-CP
single-ISP case. Under a certain condition on the payments, we

demonstrated that there is exactly one unique equilibrium that
has strictly positive demand for all contents. In this setting,
zero-demand equilibria remain to be characterized. For post-
bargaining, however, no equilibrium exists unless the prices are
forced to lie in a bounded set. This is in contrast to the single-
CP single-ISP case. We also provided some comparisons with
a case when CP 1 and ISP enter into an exclusive contract.

Some questions remain unaddressed even within the model
under study. We are yet to characterize zero demand equilibria
(i) in the multi-CP pre-bargaining case, and (ii) in the case
when one CP has an exclusive contract with the ISP. The latter
case should be extended to more than two CPs. Also, when
there are several equilibria, are some preferred over others?

Our model is, needless to say, a mere caricature that captures
certain types of interactions between ISPs, CPs, and internauts.
The biggest benefit is that it is tractable, as evidenced by
the obtained expressions in this paper. The litmus test of
its usefulness will be its ability, or otherwise, to explain
some observed behavior, even if only qualitatively. Studies
in this direction are ongoing. Finally, aspects of investment in
infrastructure by the CPs and the ISPs should be brought in
to enrich the model. We hope to pursue this in future works.

ACKNOWLEDGMENTS

This project was supported by IFCPAR/CEFIPRA (Indo-
French Centre for the Promotion of Advanced Research),
Project 4000-IT-1, and the Euro NGI Network of Excellence.

REFERENCES

[1] E. Altman, P. Bernhard, G. Kesidis, J. Rojas-Mora, and S. Wong,
“A study of non-neutral networks,” INRIA, INRIA Research Report
00481702, 2010. Will appear in the 3rd Workshop on Economic Traffic
Management (ETM), Collocated with 22nd International Teletraffic
Congress (ITC 22), September 6 2010, Amsterdam, Netherlands.

[2] R. Hahn and S. Wallsten, “The economics of net neutrality,” Economists’
Voice, The Berkeley Electronic Press, vol. 3, no. 6, pp. 1–7, Jun. 2006.

[3] P. Njoroge, A. Ozdagler, N. Stier-Moses, and G. Weintraub, “Investment
in two-sided markets and the net-neutrality debate,” Columbia Business
School, Decision, Risk, and Operations Working Papers Series DRO-
2010-05, Jul. 2010.

[4] R. T. B. Ma, D. ming Chiu, J. C. S. Lui, V. Misra, and D. Rubenstein,
“Interconnecting eyeballs to content: A Shapley value perspective on
isp peering and settlement,” in Proceedings of the 3rd International
Workshop on Economics of Networked Systems, NetEcon ’08, Seattle,
Washington, USA, Aug. 2008, pp. 61–66.

[5] ——, “On cooperative settlement between content, transit and eyeball
internet service providers,” in Proceedings of the 2008 ACM CoNEXT
Conference - 4th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’08, Madrid, Spain, Dec. 2008.

[6] E. Winter, The Handbook of Game Theory. ed: R. J. Aumann and S.
Hart, North-Holland, 2002, vol. 3, ch. 53: The Shapley value.

[7] J. F. Nash Jr., “The bargaining problem,” Econometrica, vol. 18, pp.
155–162, 1950.

[8] C. Saavedra, “Bargaining power and the net neutrality problem,” in
NEREC Research Conference on Electronic Communications, Ecole
Polytechnique, 11-12 Sep. 2009.

[9] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, pp. 33–37, 1997.

[10] A. P. Azad, E. Altman, and R. El-Azouzi, “From altruism to non-
cooperation in routing games,” in Proceedings of the Networking and
Electronic Commerce Research Conference (NAEC 2009), Lake Garda,
Italy, Oct. 2009.


