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Abstract—In this paper we consider the downlink of an
OFDM cellular system. The objective is to maximise the system
utility by means of fractional frequency reuse and interference
planning. The problem is a joint scheduling and power allocation
problem. Using gradient scheduling scheme, the above problem
is transformed to a problem of maximising weighted sum-rate at
each time slot. At each slot, an iterative scheduling and power
allocation algorithm is employed to address the weighted sum-
rate maximisation problem. The power allocation problem in the
above algorithm is a nonconvex optimisation problem. We study
several algorithms that can tackle this part of the problem. We
propose two modifications to the above algorithms to address
practical and computational feasibility. Finally, we compare the
performance of our algorithm with some existing algorithms
based on certain achieved system utility metrics. We show that
the practical considerations do not affect the system performance
adversely.

I. INTRODUCTION

Consider two neighbouring cells that use the same carrier
and bandwidth on a downlink OFDM system. Let S1 be a
set of (let us say) half the subcarriers, and S2 the remain-
ing subcarriers. Frequency reuse 1/2 allocation (e.g., GSM)
restricts cell 1 transmissions on the downlink to set S1 and
cell 2 transmissions to S2. A generalisation of reuse 1/n, one
that is available in all fourth generation OFDM-based cellular
systems, is termed fractional frequency reuse. To get spectral
efficiencies larger than that available from reuse 1/2, mobiles
close to the cell may be allocated all subcarriers, while mobiles
close to the edge of the cell may be allocated subcarriers from
only part of the spectrum.

Flex-band is a generalisation of frequency reuse or fractional
frequency reuse [1]. In a two-band flex-band allocation, cells
with even ID (say) will allocate larger powers on one half of
the subcarriers and smaller powers on the other half. Cells
with odd ID will do the opposite. This too is like reuse 1/2,
except that nonzero powers may be allocated in the other set
of subcarriers. It may enable us to operate close to best-known
achievable rates on a multicell system. More importantly, these
rates can be attained with simple receivers that do not need
sophisticated interference cancellation. However, flex-band is
a static system, with static power allocation and subcarrier
assignment.

This paper will focus on a generalisation of flex-band and
study approximations that get us close to the best-known
achievable rates on the system. Coordination between cells is

restricted to identifying transmission power levels on different
subcarriers or groups of subcarriers in neighboring cells as
well as scheduling of users. These power levels and scheduling
constraints will be updated periodically in a dynamic fashion
based on received or inferred channel quality indications at
the network. We may call such a mechanism MAC-level
coordination. The dynamism enables adaptation to changing
mobile locations and interference scenarios; it is likely to
outperform the static flex-band of [1].

We now discuss a possible application of our study. We
may view the above system as one that does away with
extensive frequency planning and is therefore self-organising
in nature. Such a system is likely to be of use in buy and
deploy femto-cell systems. Femto-cell systems are made of
home-based base stations that one can buy in the market
and connect to the service provider via internet or other
means. They act as add-on base stations for operation within
the home. For such systems it is important to ensure that
similar base stations used by neighbours coordinate to plan
interference and enhance coverage and data rates. The network
level coordination may happen at some central controller that
has (or can get) knowledge of neighbouring and interfering
systems. Our approach is equally applicable to interfering
wireless local area networks.

Code level (or physical layer) coordination, as in dirty-paper
coding envisaged in a fully centralised MIMO-like broadcast
cellular network where each cell is viewed as a different
set of antennas, is out of scope of this work because such
a coordination requires a drastic over-haul of the inter-cell
interfaces on the infrastructure side.

This paper is organised as follows. In section II we introduce
the problem and describe the objective of our work. We
present prior works on related problems in section II-C. In
section III, we describe the multiuser power control problem.
We describe the gradient descent method and the Convex-
Concave Procedure (CCP) for solving the multiuser power
control problem. We then discuss techniques on solving a part
of CCP. In section IV we describe the iterative scheduling
and power allocation procedure (ISPA) that addresses the joint
scheduling and power allocation problem. We describe two
modifications to ISPA to address practical issues. In section
V we study the performance of the algorithms described in
section IV using simulation data.
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II. PROBLEM FORMULATION

We now discuss the mathematical abstraction of our prob-
lem. Consider the downlink of a cellular system. We consider
an OFDM system with single user detection (SUD) at all
the receivers. Annapureddy & Veeravalli [2] showed that at
low interference regimes, considering interference as noise
achieves sum capacity. Further, simulation results from our
work [3] show that at low interference regimes, SUD with in-
terference planning achieves rates close to the best achievable
rates. Even at high interference, the loss is marginal and hence
we consider the use of SUD with interference planning over
other sophisticated techniques.
J is the number of base stations in the system, Mj is the

number of mobile stations associated with BS j. Let K =∑J
j=1Mj be the total number of users in the system. N is

the number of subcarriers. Pnj (t) is the power allocated by
base station j on subcarrier n at time slot t. There is a total
power constriant on each base station:

N∑
n=1

Pnj (t) ≤ Pj ∀t. (1)

At time slot t, Hn
j,k(t) is the channel gain seen by user k from

base station j in subcarrier n. The signal to interference and
noise ratio (SINR) seen by mobile station k associated with
base station j on subcarrier n at time t is

SINRnk (t) =
Hn
j,k(t)Pnj (t)

σ2 +
∑
j′ 6=j H

n
j′ ,k

(t)Pn
j′

(t)
. (2)

The rate user k can obtain in subcarrier n at time t is

Rnk (t) = log (1 + SINRnk (t)) . (3)

The actual rate obtained by user k in subcarrier n at time t is

cnk (t) =

{
Rnk (t) if k was scheduled at time t
0 otherwise.

(4)

For ease of implementation in existing systems, we assume
that each subcarrier can carry at most one user from each
base station. The total rate obtained by user k at time t is

ck(t) =
N∑
n=1

cnk (t). (5)

The average rate obtained by user k in T time slots is

R̄k(T ) =
1
T

T∑
t=1

ck(t). (6)

Utility Functions: We consider system performance to be
measured in terms of achieved utility with respect to some
utility function. In this paper we consider the class of utility
functions defined by:

U(R̄1, R̄2, . . . , R̄K) :=

{P
k(R̄1−α

k −1)

1−α α ∈ (0,∞), α 6= 1∑
k log(R̄k) α = 1

(7)

where R̄k is the average rate obtained by user k. When α = 0,
U is sum rate minus a constant, and so the arithmetic mean of
average rates is maximised. When α = 1, U is

∑
k log(R̄k),

and so the geometric mean of average rates is maximised. The
case α = 2 leads to maximisation of the harmonic mean of
the average rates, and the case α =∞ results in maximisation
of the minimum average rate (the so-called max-min fairness
objective). By varying α, we can adjust the utility function
to balance throughput and fairness. The theory however is
applicable to any strictly increasing concave utility function.

A. Objective

Our objective is to maximise system utility subject to power
and scheduling constraints at each base station. Observe
that the problem spans across time, subcarriers and users.
Given that channel estimates are not available beforehand, an
exact solution becomes intractable or impossible. As a first
simplification we break the problem into smaller optimisation
problems at each time slot. Kushner & Whiting [4] and
Stolyar [5] showed that gradient scheduling algorithm at each
time slot asymptotically converges to the optimal allocation.
Further, gradient scheduling boils down to a weighted sum-rate
maximisation problem with power constraint and scheduling
constraint at each base station of the form:

Problem 2.1: 1

Minimise −R = −
K∑
k=1

wk(t) .

(
N∑
n=1

xnk R
n
k (t)

)
(8)

where wk(t) = U
′
(R̄k(t− 1))

subject to

N∑
n=1

Pnj (t) ≤ Pj ∀j (9)

xnk ∈ {0, 1} (10)∑
k∈Sj

xnk ≤ 1 ∀j, n (11)

Pnj ≥ 0 ∀j, n (12)

where Sj = {k : k associated with BS j}.

We make the following observations.

• The objective function (8) is not a convex function in the
variables xnk ’s and Pnj ’s.

• The constraint set specified by (11) is a nonconvex set,
because of the discrete nature of xnk ’s.

• Scheduling and power allocation are interlinked. Tackling
this joint problem together is a difficult computational
problem. We simplify it via an iterative procedure de-
scribed below.

1Throughout this paper all optimisation problems will be represented as
minimisation problems.



B. Iterative scheduling and power allocation

The procedure involves a multiround algorithm which goes
back and forth between power allocation and scheduling until
convergence of the weighted sum rate is attained.

Algorithm : Iterative Scheduling and Power Allocation (ISPA)
At each time t,
• initialise P = a random feasible power allocation.
• repeat

– Fixing power allocation at P , find an appropriate schedule.
– Using the above schedule, update power allocation P .

• until convergence of weighted sum rate.

The algorithm generates a nondecreasing sequence of
weighted sum rates. Since the maximum weighted sum rate
is bounded from above, value of the objective function con-
verges. Given a power allocation, computing the optimum
schedule is easy. Given a schedule, the optimum power al-
location is a solution to a weighted sum-rate maximisation
problem. We address this problem in section III.

C. Prior Work

Kushner & Whiting [4] and Stolyar [5] showed that max-
imising ∑

k

U
′
(R̄k(t− 1)) ·Rk(t)

at each time slot t achieves the optimal rate allocation that
maximises the system utility

∑
k U(R̄k) asymptotically. In our

problem this translates to maximising a weighted sum rate at
each time slot for optimal performance, where U

′
(R̄k(t− 1))

is taken to be the weights. Hence at each time slot the optimal
power allocation and scheduling boils down to maximising a
weighted sum rate problem as considered by Yu & Lui in [6].

Yu et al. [7] modelled the multiuser power control problem
as a noncooperative game between the different base stations.
They obtained conditions for the existence and uniqueness of a
Nash equilibrium for a two-user case. They further showed that
if the conditions for existence and uniqueness hold, then the
iterative waterfilling algorithm, where each base station does
waterfilling allocation considering signal from the other base
stations as noise, converges to the unique Nash equilibrium.

Cendrillion et al. [8] studied the power control problem
using duality methods. They proposed OSB (Optimal Spec-
trum Balancing) algorithm with linear complexity in number
of subcarriers but still exponential complexity in the number
of base stations. They showed that their algorithm performed
better than the iterative waterfilling scheme of [7].

Yu & Lui [6] proposed an extension to OSB algorithm called
ISB (Iterative Spectrum Balancing). This has linear complexity
in the number of base stations, but at the cost of optimality.
They further showed that as the number of subcarriers goes
to infinity the duality gap between the primal solution and the
dual solution goes to zero.

Tsiaflakis et al. [9] proposed the convex concave procedure
(CCP) for solving the weighted rate maximisation problem.
CCP involves solving a sequence of convex optimisation
problems, which yields a lower bound on the original problem.

The procedure yields a nondecreasing sequence of function
values.

Stolyar & Viswanathan [10] proposed a distributed proce-
dure. At each base station power allocation and scheduling
is done in a two-step procedure. Assuming a fixed schedule,
power in each band is increased or decreased by a small
quantity depending on the change it will bring to the entire
system utility. Similarly for scheduling, for each band a user
who maximises the weighted rate is selected.

Son et al. [11] considered the same problem of maximising
system utility in a multicell OFDM downlink scenario. As
in this paper and in the dissertation of the first author [3],
they used gradient scheduling algorithm to transform the
problem into a weighted sum-rate maximisation problem at
each time slot. Further for the weighted sum-rate maximisation
problem Son et al. [11] proposed iterative scheduling and
power allocation algorithm. But differing from this work
and the dissertation [3], for the power allocation problem,
they proposed a distributed scheme where each BS tries to
maximise the weighted sum rate for its users and that of its
worst victims in its neighbouring cells.

D. Our Contribution

Building on the two-cell results of the first author’s disser-
tation [3], we do the following in this paper.
• We compare the performance of CCP based algorithms

with that of plain gradient descent algorithm. We show
that the gradient descent algorithm yields similar system
performance at lower computational costs, even in a 19-
cell cluster.

• We propose a two time-scale scheduling and power
allocation scheme, where the radio network controller
(RNC) computes a schedule and power allocation for
the base stations at a slower pace, and the base stations
perform fast local scheduling based on the RNC power
allocation.

• We propose the top-two interferers scheme, where instead
of considering interference from all the base stations in
the network, we consider only the top two interferers per
user. We show that this consideration does not affect the
system performance adversely. We chose only the top
“two” interferers because in a sectorised system on a
hexagonal lattice a cell edge user sees interference from
two immediate neighbouring cells.

• We propose a further simplification where, during an
RNC scheduling/power allocation interval, each base
station schedules only a subset of users instead of consid-
ering all the associated users. Empirically, we show that
even a subset size of five achieves system performance
close to the case when all the users are eligible for
scheduling.

III. MULTIUSER POWER CONTROL PROBLEM

We now consider the problem of finding the optimum power
allocation, given a schedule.



Problem 3.1:

Minimise −R = −
J∑
j=1

Rj

subject to
N∑
n=1

Pnj ≤ Pj ∀j

Pnj ≥ 0 ∀j, n

(13)

where Rj can be expanded as

Rj =
N∑
n=1

wnj log

(
1 +

Hn
j,jP

n
j

σ2 +
∑
j′ 6=j H

n
j′ ,j

Pn
j′

)
. (14)

Note that the objective function of Problem 3.1 is a difference
of two convex functions and hence the function may not be
convex. Observe that the objective function can be written as

−R = g(p)− h(p) (15)

where

g(p) = −
N∑
n=1

J∑
j=1

wnj log(σ2 +
∑
j′

Hn
j′ ,j

Pn
j′

) (16)

h(p) = −
N∑
n=1

J∑
j=1

wnj log(σ2 +
∑
j′ 6=j

Hn
j′ ,j

Pn
j′

). (17)

In general it is difficult to verify the following necessary and
sufficient condition on the Hessian for convexity:

∇2g(p)−∇2h(p) � 0 (18)

for every feasible p. Hence we explore numerical methods
to solve Problem 3.1. Since the problem is nonconvex the
convergence of numerical methods to a global minimum is
not assured. We implemented the following algorithms to solve
Problem 3.1.

A. Gradient Descent Algorithm
Gradient descent algorithm attacks the problem variables

directly. From any point inside the feasible set, the algorithm
moves in the direction opposite to the gradient at that point. If
the point goes outside the feasible set, it is projected back onto
the feasible set and the algorithm continues until a termination
criterion is reached. This method was found to be the fastest
among the other methods discussed in this paper. Since the
algorithm yields a sequence of decreasing function values, the
algorithm has to converge to possibly a local minimum.

Algorithm : Gradient Descent
• initialise x0 to a random feasible vector
• repeat

– dk = gradient(xk)
– repeat
∗ xk+1 = xk − βdk where β > 0 is a parameter known as

step size.
∗ if xk+1 is outside the feasible set, then xk+1 =

projection(xk+1)
∗ if f(xk+1) > f(xk) then dk = dk

2

– until f(xk+1) ≤ f(xk)

• until convergence of f(xk) or maximum number of iterations.

B. CCP on Multiuser power control problem

We now describe the convex-concave procedure (CCP) and
how it can be used in the multiuser power control problem.

1) General CCP: Sriperumbudur et al. [12] described the
convex-concave procedure (CCP) procedure for addressing
minimisation of a difference of two convex functions. CCP
yields an upper bound on the minimum value of a difference
of two convex functions. The procedure involves solving a
sequence of convex optimisation problems. The following
properties of CCP are taken from [12]. Consider a nonconvex
optimisation problem of the form

Problem 3.2:

Minimise f(x) = g(x)− h(x)
subject to fi(x) ≤ 0 i = 1, 2, . . . ,m

(19)

where g(x), h(x) and fi(x) are convex functions.
Since h(x) is a convex function, it can be lower bounded by

any of its supporting hyperplanes. The particular supporting
hyperplane at an arbitrary y yields the following result.

Proposition 3.3: Let h(x) be a convex function. Define

j(x, y) = g(x)− h(y)−∇h(y)T (x− y). (20)

Then
f(x) = j(x, x) ≤ j(x, y) ∀y. (21)

It is immediate that if x∗ is a solution to Problem 3.2, then

f(x∗) ≤ f(x) ≤ j(x, y) ∀x, y. (22)

Consider the new problem:
Problem 3.4:

Minimisex j(x, y) = g(x)− h(y)−∇h(y)T (x− y)
subject to fi(x) ≤ 0 i = 1, 2, . . . ,m.

(23)

This is a convex optimisation problem and the solution can be
obtained by using convex optimisation techniques. Let x∗y be
the solution to Problem 3.4 for a given y, then

f(x∗y) ≤ j(x∗y, y) ∀y (24)
f(x∗) ≤ min

y
f(x∗y) ≤ min

y
j(x∗y, y) (25)

This motivates us to use Problem 3.4 to obtain an upper bound
on Problem 3.2. This is called the convex-concave procedure
or CCP.

Algorithm: CCP
• initialise y0 = a random feasible vector
• repeat

– yk = arg minx j(x, yk−1)

• until convergence of f(yk) = j(yk, yk).

Lemma 3.5: The sequence of function values {f(yk)}k≥1

is a monotonically decreasing sequence and converges if f is
bounded from below.

Proof: The algorithm is such that

j(yk+1, yk) = min
x
j(x, yk).



We therefore have the sequence of inequalities:

j(yk+1, yk+1)
a
≤ j(yk+1, yk)

b
≤ j(yk, yk) (26)

where (a) follows from Proposition 3.3 and (b) follows from
the definition of j(yk+1, yk).

Lemma 3.6: If {yk}∞k=0 is a sequence of vectors generated
by the CCP procedure, then all limit points are stationary
points of the original problem.

Proof: See [3, Appendix A].
2) CCP on multiuser power control problem: Tsiaflakis et

al. [9] suggested the use of CCP for the multiuser power
control problem. We have seen that the weighted sum rate
function (15) can be written as the difference of two convex
functions:

−R = g(p)− h(p),

thereby qualifying for the CCP procedure, with

j(p, y) = g(p)− h(y)−∇h(y)T (p− y).

The CCP procedure for multiuser power control problem is:

Algorithm : CCP Procedure for multiuser power control
• initialise y0 = random feasible power allocation.
• repeat

yk+1 = arg min
p∈P

j(p, yk)

= arg min
p∈P

g(p)− h(yk)−∇h(yk)T (p− yk)

where P is the feasible set.
• until convergence of j(yk+1, yk+1).

3) Convex optimisation part of CCP: The convex optimi-
sation part of CCP involves solving the problem:

z = arg min
p∈P

j(p, y) = g(p)− h(y)−∇h(y)T (p− y). (27)

We present three methods that can solve the above problem.
a) CCP with Gradient Descent: This is a straight for-

ward method wherein we start from a random feasible point
and move along the direction opposite to the gradient, but
making sure that the step size is chosen such that at each
step the function value decreases. Since the problem is a
convex optimisation problem, this method converges to a
global minimum.

Algorithm : CCP GD
• initialise p0 = a random feasible power vector
• repeat

– dk =gradient(pk) = ∇g(pk)−∇h(y)
– repeat
∗ pk+1 = pk − αkdk.
∗ if j(pk+1, y) > j(pk, y) then dk = dk/2.

– until j(pk+1, y) < j(pk, y)

• until convergence of j(pk, y)

The algorithm has the following pros and cons.
• Pros: Since gradient can be explicitly computed, this

method is easily implemented. It is the fastest among

the three algorithms. It scales well with the number of
base stations and subcarriers.

• Cons: We do not know the rate of convergence of this
method.

b) Dual Method and Block Descent Method: Two other
techniques for addressing the convex optimisation part of
CCP, 1) Dual method and 2) Block descent, are explored in
[3]. Dual method addresses the dual of the problem. Given
a price vector, the Lagrangian minimiser can be obtained
by solving two systems of linear equations. But finding the
optimal price vector is a bottle-neck in the algorithm. Block
descent tries to solve the problem in an iterative fashion
wherein, at each step, we optimise the function with respect
to a subset of variables, while keeping the values of other
variables constant. In our case, a subset of users corespond to
the power allocation at a particular base station. We iterate this
across base stations. It is shown that given a price value, the
Lagrangian minimiser can be obtained by solving polynomials
of degree equal to the number of base stations. This results
in an easily implementable algorithm for a two base station
scenario, which consists of solving a quadratic equation. But
for more number of base stations other methods have to be
used.

Based on simulation study [3], we propose the use of
gradient descent method over the other two variants of CCP
for its speed and scalability in number of base stations.

IV. SCHEDULING AND INTERFERENCE
PLANNING

In this section we address the problem of joint scheduling
and power allocation. The aim is to find a suitable joint
scheduling and power allocation scheme to maximise the sys-
tem utility, in our case α-utility. Son et al. [11] also proposed
an iterative scheduling and power allocation algorithm (ISPA)
for the joint scheduling and power allocation problem. (We
remark that our power allocation algorithm part is different
from Son et al. [11] as indicated in Section II-C). For the
scheduling problem we use gradient scheduling ideas analysed
by Kushner & Whiting [4] and Stolyar [5]. For the power
allocation problem we propose the use of gradient descent
based algorithms. Taking practical considerations into account,
we propose two modifications to ISPA algorithm.

A. Iterative joint scheduling and power allocation

The procedure involves a multiround algorithm which goes
back and forth between power allocation and scheduling until
convergence of the weighted sum rate.
• At time slot t, wk = R̄k(t− 1))−α.
• Rnk := Rnk (t)
• WR := weighted rate as defined in Problem 2.1
It can be seen that the algorithm generates a nondecreasing

sequence of WRs after each iteration. Since the maximum
weighted sum rate is bounded from above, the algorithm
converges. In this work, we study two variants of ISPA:
1) ISPA GD where the power allocation algorithm is based



on plain gradient descent algorithm, and 2) ISPA CCP GD,
where the power allocation algorithm is based on CCP pro-
cedure with gradient descent used in the convex optimisation
part of CCP.

Algorithm : Iterative Scheduling and Power Allocation (ISPA)
At each time slot t,
• initialise P = a random feasible power allocation (or the previous slots

value).
• repeat

– Fixing power allocation at P , at each base station j and subcarrier
n, schedule user sn

j = arg maxk wkR
n
k , i.e, select the user with

the maximum weighted rate.
Assign wn

j = wsnj
and Gn

j′,j = Hn
j′,snj

∀j = {1, 2, . . . , J}.
(Gradient scheduling)

– Fix w and G to the ones obtained in the previous step. Update P by
solving the multiuser power control problem 3.1, with arguments
w for weights and G for channel gains.

• until convergence of weighted rate WR.

B. Stolyar & Viswanathan Algorithm

Stolyar & Viswanathan [10] proposed a distributed proce-
dure, Multicell Gradient (MGR), where at each base station
power allocation and scheduling is done in a two-step pro-
cedure. Assuming a fixed schedule, power in each band is
increased or decreased by a small quantity depending on the
change it will bring to the entire system utility. Similarly for
scheduling, in each band a user who maximises the weighted
rate is selected. See [10] for details.

C. Practical Considerations

The scenario under consideration till now involved schedul-
ing and power allocation on a per time-slot basis. But such a
consideration has the following practical issues:
• Every user has to estimate the channel gains from all of

the other base stations in all the subcarriers, i.e., if there
are M users per BS, J BSs and N subcarriers, a total of
MJ2N values have to be estimated.

• The estimated values have to be communicated to the
corresponding base stations and from there to the Radio
Network Controller (RNC).

• Before every time slot, the RNC has to communicate the
power allocation and schedule for that time slot to all the
base stations.

The above issues can result in huge amounts of control
signaling in the network.
• RNC has to compute the power allocation and scheduling

algorithms every time slot. This may require significant
computing capabilities.

We propose a modified scheme which is low on control
signaling and computational requirements, but at the cost of
performance.

1) Top Two Interferers: Here the idea is to restrict our atten-
tion to only the top two interferers for each user. This reduces
the signaling overhead required to communicate the channel
gains from the base stations to RNC. Such a consideration is
justified by the fact that a cell-edge user will have atmost two
first level interfering base stations.

• Algorithm : Top-Two Interferers
– At each RNC scheduling instant, determine the top two interferers

for each mobile. (Averaged over channel gains in all the subcar-
riers)

– Run previous algorithms with the channel gains from other BSs
set as zero.

2) Slow scheduling and power allocation at RNC and fast
local scheduling at base stations: As before, the RNC does
a power allocation and scheduling, but at a slower pace than
before (say 10 Hz) and the base stations do local scheduling
at a faster rate (say 500Hz) without adjusting the power
allocation. Scheduling at the RNC provides a subset of users,
among whom local scheduling is done at the base stations.
Such an approach reduces the computational requirements and
also reduces the frequency of transmission of control signaling
between the base stations and RNC.

• Algorithm : Subset Schedules
– Step 1 : At each RNC scheduling instant, allow ISPA GD /

ISPA CCP GD to converge. After convergence, for each subcar-
rier, determine top Ns users that maximise the weighted rate.
These Ns users form the subset on which the local schedulers
work.

– Step 2 : Communicate power allocation P and subsets of users to
the base stations.

– Step 3 : At each BS scheduling instant, determine the user from
among the Ns users who has the highest weighted rate. Schedule
this user for that time slot.

– Step 4 : Update the cumulative rate obtained by the scheduled
user.

– If it is the next RNC scheduling instant, then jump to Step 1, else
repeat Steps 2 - Step 4.

V. SIMULATION STUDY

A. 19-BS Hexagonal Cluster

We consider a 19-BS hexagonal cluster. M mobiles are
uniformly deployed in each hexagon. For simplicity, mobiles
are associated with the nearest BS, irrespective of their channel
gains. Path losses and channel fading factors (K-factors) are
dependent on the respective BS-user distances. Over and above
path loss, the channel fades slowly as per the SUI model [13].
A few of the parameters used for the simulation were:

Cell size (side of a hexagon) 1 km
Carrier frequency 2.4 GHz
Bandwidth allocated 5 MHz
Number of subcarriers 128
Variance of shadow fading 8dB
SUI-model 1
RNC scheduling rate 10 Hz
Channel observation rate 100 Hz
Base station scheduling rate 500 Hz
Simulation length 5000 time slots
Number of deployments 10

1) Separated Power Allocation And Scheduling With Top
Two Interferers: We now describe the performance curves
in Figures 1 - 5. In these figures, three different algorithms
– ISPA GD, ISPA CCP GD, and Full Reuse (FR) – are
compared with each other and with variants as described
below. (Full reuse (FR) corresponds to all the base stations



using all the subcarriers and with equal power allocation
in each subcarrier). For these algorithms power control and
scheduling are adapted at different rates. Power control is done
at the RNC at a much slower rate since this requires signaling
of channel states to the RNC. This is done at a rate of 10 Hz
(once every 100 ms), as indicated in the simulation parameters
above. Scheduling is done at a much faster rate of 500 Hz
(once every 2 ms). The channel itself is observed at rate 100
Hz (once every 10 ms).

We also show performances of approximations of the power
control algorithm where only the top two interferers are
assumed to cause interference. Other channel gains are not
signaled and assumed 0 during the optimisation. This is
done to alleviate both computation and signaling require-
ments for the algorithms. The corresponding curves are de-
noted ISPA GD TopTwo, ISPA CCP GD TopTwo, and Full
Reuse TopTwo. Here too power allocation is done at rate 10
Hz, scheduling at 500 Hz, and channel is sampled at 100 Hz.

Finally, these are compared with the algorithm of Stolyar-
Viswanathan (see section IV-B). This last algorithm is given
the advantage of power and scheduling adaptation at the much
faster rate of 500 Hz (once every 2 ms), since their algorithm
is a joint power allocation and scheduling algorithm.

We make the following remarks:
• A quick scan of the Figures 1-5 indicates that our

proposed algorithms outperform the Stolyar-Viswanathan
algorithm and the Full Reuse algorithm in terms of sum
utilities. (We suggest that the plots be viewed in colour.)

• Despite the aforementioned advantage for the Stolyar-
Viswanathan algorithm, the only α for which their algo-
rithm gives a better sum rate is the case when α = 1. This
is at the expense of fairness, as seen from the CDF plots.
Our algorithm gives better rates to the low rate (edge-
cell) users. We expect that the sum rate of the Stolyar-
Viswanathan algorithm will suffer a worse degradation
compared to ours when their algorithm is modified to
adapt powers at a slower rate.

• ISPA GD has nearly the same utility as ISPA CCP GD,
but fared better in terms of sum rate. This makes
ISPA GD a better choice.

• The top-two interferers’ approximation suffers from a
marginal loss in sum rate, but otherwise has all the
qualitative features of the more accurate case.

• The CDF plots suggest that our proposed algorithms
provide a fairer solution to the low rate (edge-cell) users
than the Stolyar-Viswanathan algorithm.
Table I gives the rates obtained by the 10th percentile
user, the median user and the average rate for the various
schemes at α = 1 and Ns = all users. The data
corresponds to 48 users per base station.

2) Local Subset Scheduling: Simulation Results: We next
refer the reader to Figure 3, and Figures 6 - 8. These are for the
case of proportional fair scheduler when α = 1. Note that in
all these curves, the Stolyar-Viswanathan algorithm retains the
advantage of fast adaptation of powers and schedules (500 Hz),
while our algorithms adapt powers at 10 Hz. In addition, the

TABLE I
PROPERTIES OF CDF OF RATES. α = 1.0. Ns = ALL USERS

Scheme

Rate
of 10th

percentile
user

Rate of
median
user

Average
rate

ISPA GD 1.040 3.096 1.536
ISPA GD
Top-Two Intf. 0.998 3.124 1.500

ISPA CCP GD 1.218 2.536 1.440
ISPA CCP GD
Top-Two Intf. 1.164 2.518 1.463

Full Reuse 0.184 2.406 1.259
Stolyar-
Viswanathan 0.642 3.146 1.645

Fig. 1. α-Utility at α = 0 (sum rate) for different algorithms. Ns =
all users

Stolyar-Viswanathan algorithm retains another advantage of
being able to schedule to any mobile among those associated
with a base station. In Figure 3, our algorithms can schedule
to any user, while in Figures 6, 7, and 8 our algorithms can
schedule a subcarrier to one among a subset of size Ns = 10,
5, and 1 users, respectively.

We make the following observations:

• When we compare utilities, our algorithms fare better,
except for the case when Ns = 1, among the cases
considered. This suggests that it is sufficient to indicate a
maximum of 5 users to each base station (per subcarrier)
for scheduling in-between the RNC power updates.

• When we compare rates, Stolyar-Viswanathan fares bet-
ter, then comes the plain gradient based algorithms, and
then the CCP-based algorithms. This is expected because
fairness is exactly in the reverse order, as evidenced in
the CDF plots.



Fig. 2. α-Utility at α = 0.5 for different algorithms. Ns = all users.
Top: Achieved sum utility for α = 0.5. Middle: Corresponding sum
rate obtained. Bottom : CDF of rates obtained by a user. The dashed
lines correspond to the TopTwo variants with the same colour coding.

Fig. 3. α-Utility at α = 1.0 for different algorithms. Ns = all users.
Top: Achieved sum utility for α = 1.0. Middle: Corresponding sum
rate obtained. Bottom : CDF of rates obtained by a user. The dashed
lines correspond to the TopTwo variants with the same colour coding.

VI. CONCLUSION

We accomplished the following in this paper.

• Based on the idea of gradient scheduling, the system util-
ity maximisation problem was broken down into weighted
sum-rate maximisation problems at each time step, with
the weights evolving with time.

Fig. 4. α-Utility at α = 2.0 for different algorithms. Ns = all users.
Top: Achieved sum utility for α = 2.0. Middle: Corresponding sum
rate obtained. Bottom : CDF of rates obtained by a user. The dashed
lines correspond to the TopTwo variants with the same colour coding.

Fig. 5. α-Utility at α = 4.0 for different algorithms. Ns = all users.
Top: Achieved sum utility for α = 4.0. Middle: Corresponding sum
rate obtained. Bottom : CDF of rates obtained by a user. The dashed
lines correspond to the TopTwo variants with the same colour coding.

• We considered the iterative scheduling and power alloca-
tion procedure (ISPA) to address the weighted sum-rate
maximisation problem.

• We formulated the power control problem as a nonconvex
optimisation problem. We implemented two algorithms,
ISPA GD, ISPA CC GD which can be used as possible
solution methods for Problem 3.1.



Fig. 6. α-Utility at α = 1 for different algorithms. Ns = 10 users.
Top: Achieved sum utility for α = 1.0. Middle: Corresponding sum
rate obtained. Bottom: CDF of rates obtained by a user. The dashed
lines correspond to the TopTwo variants with the same colour coding.

Fig. 7. α-Utility at α = 1 for different algorithms. Ns = 5 users. Top:
Achieved sum utility for α = 1.0. Middle: Corresponding sum rate
obtained. Bottom : CDF of rates obtained by a user. The dashed lines
correspond to the TopTwo variants with the same colour coding.

• We proposed the use of plain gradient descent method
over CCP based algorithms because it yielded nearly the
same performance and was also faster in computation.

• For the joint scheduling and power allocation algorithm,
we established the superiority of the proposed iterative
scheduling and power allocation (ISPA) algorithm over
equal power allocation and over that proposed by Stolyar

Fig. 8. α-Utility at α = 1 for different algorithms. Ns = 1 users. Top:
Achieved sum utility for α = 1.0. Middle: Corresponding sum rate
obtained. Bottom: CDF of rates obtained by a user. The dashed lines
correspond to the TopTwo variants with the same colour coding.

& Viswanathan for the joint scheduling and power allo-
cation problem. (Note that the better performance of the
Stolyar & Viswanathan algorithm in α = 1 case is with
the advantage of power and scheduling adaptation at the
faster rate of 500Hz(once every 2ms)).

• We studied the top-two interferers algorithm, where for
each user we consider only the top two interfering base
stations. We showed that such an approximation does not
affect the system performance adversely. We chose the
top two interferers keeping the geometry of the hexagonal
lattice in mind.

• We studied the two time-scale scheduling and power
allocation algorithm. Using simulation data we showed
that the system performance is not adversely affected by
the simplification.

• We studied scheduling from only a subset of users instead
of considering the entire set of users within a BS during
an RNC scheduling and power allocation interval. We
showed that a subset of five users (Ns = 5) achieves
system performance very close to the case where all users
are eligible for scheduling.
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