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Guessing Revisited: A Large Deviations Approach
Manjesh Kumar Hanawal and Rajesh Sundaresan, Senior Member, IEEE

Abstract—The problem of guessing a random string is revisited.
A close relation between guessing and compression is first estab-
lished. Then it is shown that if the sequence of distributions of the
information spectrum satisfies the large deviation property with
a certain rate function, then the limiting guessing exponent exists
and is a scalar multiple of the Legendre-Fenchel dual of the rate
function. Other sufficient conditions related to certain continuity
properties of the information spectrum are briefly discussed. This
approach highlights the importance of the information spectrum
in determining the limiting guessing exponent. All known prior re-
sults are then re-derived as example applications of our unifying
approach.

Index Terms—Guessing, information spectrum, large deviations,
length function, source coding.

I. INTRODUCTION

L ET denote letters of a process
where each letter is drawn from a finite set with joint

probability mass function (pmf) . Let
be a realization and suppose that we wish to guess this real-
ization by asking questions of the form “Is ?”, step-
ping through the elements of until the answer is “Yes.” We
wish to do this using the minimum expected number of guesses.
There are several applications that motivate this problem. Con-
sider cipher systems employed in digital television or DVDs to
block unauthorized access to special features. The ciphers used
are amenable to such exhaustive guessing attacks and it is of in-
terest to quantify the effort needed by an attacker (Merhav and
Arikan [1]).

Massey [2] observed that the expected number of guesses is
minimized by guessing in the decreasing order of -probabil-
ities. Define the guessing function
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to be one such optimal guessing order1. implies
that is the th guess. Arikan [3] considered the growth of

as a function of for an independent and identi-
cally distributed (i.i.d.) source with marginal pmf and .
He showed that the growth is exponential in ; the limiting ex-
ponent

(1)

exists and equals with , where
is the Rényi entropy of order for the pmf , given by

(2)

Malone and Sullivan [4] showed that the limiting exponent
of an irreducible Markov chain exists and equals the log-

arithm of the Perron-Frobenius eigenvalue of a matrix formed
by raising each element of the transition probability matrix to
the power . From their proof, one obtains the more general
result that the limiting exponent exists for any source if the
Rényi entropy rate of order

(3)

exists for . Pfister and Sullivan [5] showed the
existence of (1) for a class of stationary probability measures,
beyond Markov measures, that are supported on proper sub-
shifts of [5]. A particular example is that of shifts generated
by finite-state machines. For such a class, they showed that the
guessing exponent has a variational characterization [see (25)
later]. For unifilar sources Sundaresan [6] obtained a simplifica-
tion of this variational characterization using a direct approach
and the method of types.

Merhav and Arikan remark that their proof in [7] for the lim-
iting guessing exponent is equally applicable to finding the lim-
iting exponent of the moment generating function of compres-
sion lengths. Moreover, the two exponents are the same. The
latter is a problem studied by Campbell [8].

Our contribution is to give a large deviations perspective to
these results, shed further light on the aforementioned connec-
tion between compression and guessing, and unify all prior re-
sults on existence of limiting guessing exponents. Specifically,
we show that if the sequence of distributions of the informa-
tion spectrum (see Han [9]) satisfies the
large deviation property, then the limiting exponent exists. This
is useful because several existing large deviations results can be

1If there are several sequences with the same probability of occurrence, they
may be guessed in any order without affecting the expected number of guesses.
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readily applied. We then show that all but one previously con-
sidered cases in the literature2 satisfy this sufficient condition.
See Examples 1–5 in Section IV.

The large deviation theoretic ideas are already present in the
works of Pfister and Sullivan [5] and the method of types ap-
proach of Arikan and Merhav [7]. Our work however brings out
the essential ingredient (the sufficient conditions on the infor-
mation spectrum), and enables us to see the previously obtained
specific results under one light.

The quest for a general sufficient condition under which the
information spectrum satisfies a large deviation property is a
natural line of inquiry, and one of independent interest, in view
of the Shannon-McMillan-Breiman theorem which asserts that
the information spectrum of a stationary and ergodic source con-
verges to the Shannon entropy almost surely and in , for all

; see for example [11]. In particular, the large deviation
property implies exponentially fast convergence to entropy. In
the several specific examples we consider, the information spec-
trum does satisfy the large deviation property. One sufficient
condition for the weaker property of exponentially fast con-
vergence to entropy is the so-called blowing up property. (See
Marton and Shields [12, Th. 2], or the survey article by Shields
[13]). One family of sources, that includes most of the sources
we consider in this paper and goes beyond, is that of finitary en-
codings of memoryless processes, also called finitary processes.
These are known to have the blowing-up property, and there-
fore exponentially fast convergence to entropy (see Marton and
Shields [12, Th. 3]). It is an interesting open question to see if
finitary processes, or what other sources with the blowing up
property, satisfy the large deviation property.

The rest of the paper is organized as follows. Section II studies
the tight relationship between guessing and compression. Sec-
tion III states the relevant large deviations results and the main
sufficiency results. Section IV rederives prior results by showing
that in each case the information spectrum satisfies the LDP.
Section V contains proofs and Section VI contains some con-
cluding remarks.

II. GUESSING AND COMPRESSION

In this section we relate the problem of guessing to one of
source compression. An interesting conclusion is that robust
source compression strategies lead to robust guessing strategies.

For ease of exposition, let us assume that the message space is
simply . The extension to strings of length is straightforward
and will be returned to shortly. A guessing function

is a bijection that denotes the order in which the elements of
are guessed. If , then the th guess is . Let denote
the set of natural numbers. A length function

2These are cases without side information and key-rate constraints. The one
exception is an example of Arikan and Merhav [7, Sec. VI-B] for which one
can show the existence of Rényi entropy rate rather directly via a subadditivity
argument. See our technical report [10].

is one that satisfies Kraft’s inequality

(4)

where we have used the notation . To
each guessing function , we associate a PMF on and a
length function as follows.

Definition 1: Given a guessing function , we say de-
fined by

(5)

is the PMF on associated with . The quantity in (5) is the
normalization constant. We say defined by

(6)

is the length function associated with .
Observe that

(7)

and therefore the PMF in (5) is well-defined. We record the in-
timate relationship between these associated quantities in the
following result. (This is also available in the proof of [14, Th.
1, p. 382].)

Proposition 1: Given a guessing function , the associated
quantities satisfy

(8)

(9)

Proof: The first equality in (8) follows from the definition
in (5), and the second inequality from the fact that .

The upper bound in (9) follows from the upper bound in (8)
and from (6). The lower bound in (9) follows from

We now associate a guessing function to each length func-
tion .

Definition 2: Given a length function , we define the as-
sociated guessing function to be the one that guesses in the
increasing order of -lengths. Messages with the same -length
are ordered using an arbitrary fixed rule, say the lexicographical
order on . We also define the associated PMF on to be

(10)
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Proposition 2: For a length function , the associated PMF
and the guessing function satisfy the following:

1) guesses messages in the decreasing order of -prob-
abilities;

2)
(11)

Proof: The first statement is clear from the definition of
and from (10).

Letting denote the indicator function of an event , we
have as a consequence of statement 1) that

(12)

which proves the left inequality in (11). This inequality was
known to Wyner [15].

The last inequality in (11) follows from (10) and Kraft’s in-
equality (4) as follows:

Let denote the set . We
then have the following easy to verify corollary to Propositions
1 and 2.

Corollary 3: For a given , its associated length function ,
and any , we have

(13)

Analogously, for a given , its associated guessing function
, and any , we have

(14)

The inequalities between the associates in (9) and (11) indicate
the direct relationship between guessing moments and Camp-
bell’s coding problem [8], and that the Rényi entropies are the
optimal growth exponents for guessing moments, as highlighted
in the following Proposition.

Proposition 4: Let be any length function on ,
the guessing function associated with , a PMF on

, , the length function that minimizes
, where the expectation is with respect to

, the guessing function that proceeds in the decreasing
order of -probabilities and therefore the one that minimizes

, and as in (7). Then

(15)

Analogously, let be any guessing function, and its asso-
ciated length function. Then

(16)
Also

(17)
Proof: Observe that

(18)

(19)

(20)

where (18) follows from (11), and (19) from the left inequality in
(9). The result in (15) immediately follows. A similar argument
shows (16). Finally, (17) follows from the inequalities leading
to (20) by setting .

Thus if we have a length function whose performance is
close to optimal, then its associated guessing function is close
to guessing optimal. The converse is true as well. Moreover, the
optimal guessing exponent is within of the optimal
coding exponent for the length function.

A. Strings of Length

Let us now consider strings of length . Let denote the set
of messages and consider . Let denote the set
of pmfs on . By a source, we mean a sequence of pmfs

, where . We replace the normalization
constant in (7) by and observe that

If we normalize both sides of (17) by , the difference between
two quantities as a function of decays as , and
vanishes as tends to infinity. The following theorem follows
immediately, with a change of base to natural logarithms.

Theorem 5: Given , the limit

exists if and only if the limit

exists. Furthermore, the two limits are equal.
It is, therefore, sufficient to restrict our attention to the Camp-

bell’s coding problem [8] and study if the limit

(21)
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exists, where the infimum is taken over all length functions
and exponentiation is with respect to the base of the

natural logarithm.

B. Universality

Before we proceed to studying the limit, we make a further
remark on the connection between universal strategies for
guessing and universal strategies for compression.

Let denote a class of sources. For each source in the class,
let be its restriction to strings of length and let de-
note an optimal length function that attains the minimum value

among all length functions, the ex-
pectation being with respect to . On the other hand, let be
a sequence of length functions for the class of sources that does
not depend on the actual source within the class. Suppose fur-
ther that the length sequence is asymptotically optimal, i.e.

for every source belonging to the class. is thus “universal”
for (i.e., asymptotically optimal for all sources in) the class. An
application of (15) with in place of followed by the obser-
vation shows that the sequence of guessing
strategies is asymptotically optimal for the class, i.e.

Arikan and Merhav [7] provide a universal guessing strategy
for the class of discrete memoryless sources (DMS). For the
class of unifilar sources with a known number of states, the min-
imum description length encoding is asymptotically optimal for
Campbell’s coding length problem (see Merhav [16]). It follows
as a consequence of the above argument that guessing in the in-
creasing order of description lengths is asymptotically optimal.
The left-hand side (LHS) of (15) is the extra factor in the ex-
pected number of guesses (relative to the optimal value) due to
lack of knowledge of the specific source in class. Sundaresan
[17] characterized this loss as a function of the uncertainty class.

III. LARGE DEVIATION RESULTS

We begin with some words on notation. Recall that
denotes the set of pmfs on . The Shannon entropy for a

is

and the Rényi entropy of order is (2). The Kullback-
Leibler divergence or relative entropy between two pmfs
and is

if

otherwise

where means is absolutely continuous with re-
spect to . Recall that a source is a sequence of pmfs

where . It is usually obtained via -length

marginals of some probability measure in . Also re-
call the definitions of limiting guessing exponent in (1) and
Rényi entropy rate in (3) when the limits exist. is an optimal
guessing function for a pmf . From the results in
Section II on the equivalence between guessing and compres-
sion, it is sufficient to focus on the Campbell coding problem.

Our first contribution is a proof of the following implicit result
of Malone and Sullivan [4]. The proof is given in Section V-A.

Proposition 6: Let . For a source ,
exists if and only if the Rényi entropy rate (3) exists. Further-
more, equals the Rényi entropy rate.

The question now boils down to the existence of the limit in
the definition of Rényi entropy rate. The theory of large devia-
tions immediately yields a sufficient condition. We begin with a
definition.

Definition 3 (Large Deviation Property): [18, Def. II.3.1] A
sequence of probability measures on satisfies
the large deviation property (LDP) with rate function

if the following conditions hold:
• is lower semicontinuous on ;
• has compact level sets;
• for each

closed subset of ;
• for each open

set of .
Several commonly encountered sources satisfy the LDP with

known and well-studied rate functions. We describe some of
these in the examples treated subsequently.

Let denote the distribution of the information spectrum
given by the real-valued random variable . The
following proposition gives a sufficient condition for the exis-
tence of the limiting Rényi entropy rate (and therefore the lim-
iting guessing exponent).

Proposition 7: Let the sequence of distributions
of the information spectrum satisfy the LDP with rate function

. Then the limiting Rényi entropy rate of order exists
for all and equals

where . Consequently, the limiting guessing ex-
ponent exists and equals

The function is the Legendre-
Fenchel dual of the rate function . Proposition 7 says that,
under the sufficient condition, the limiting guessing exponent
equals , and is thus directly related to the
large deviations rate function for information spectrum. This
is however different from Merhav and Arikan’s [7, Th. 2] for
memoryless sources which states that the limiting guessing ex-
ponent is the Legendre-Fenchel dual of the source coding error
exponent function. We refer the reader to Merhav and Arikan
[7, Sec. IV] for further interesting connections between source
coding error exponent, guessing exponent, and two other expo-
nents related to lossy source coding.
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Let us briefly discuss another approach to verify the existence
of Rényi entropy rate (see Proposition 6). With ,
we can rewrite times the Rényi entropy rate in (3) as

(22)

where

and is the i.i.d. process on with uniform marginal on .
One can then view as the inverse temperature (when

) of a statistical mechanical system, as the energy
of the configuration , and the right side of (22) as a scaled
version of (i.e., times) the specific Gibbs free energy of the
corresponding statistical mechanical system, if the limit exists.
This view point is particularly useful because the i.i.d. process

satisfies a sample path large deviation property. If the infor-
mation spectrum sequence satisfies the continuity conditions in
Varadhan [19, Th. 3.4], then the limiting specific Gibbs free en-
ergy exists, and so does the Rényi entropy rate. Our technical
report [10] treats an example via this more general approach.

A. Additional Results From Large Deviations Theory

In order to study the examples in Section IV, we state some
additional results on LDP of transformed variables. (See [20,
Sec. 4.2]), [21, Th. 6.12 and 6.14]).

Proposition 8 (Contraction Principle): Let
denote a sequence of -valued random variables where is a
complete separable metric space (Polish space). Let denote
the distribution of for , and let the sequence of distri-
butions on satisfy the LDP with rate function

. Let be a continuous function. The
sequence of distributions of on also satisfies
the LDP with rate function given by

Proposition 9 (Exponential Approximation): Suppose that
the sequence of distributions of satisfies the LDP
with rate function on . Assume also that the sequence of
random variables is superexponentially close to

in the following sense: for each

(23)

Then the sequence of distributions of also satisfies
the LDP on with the same rate function . The condition in
(23) is satisfied if

(24)

where is the underlying sample space.

IV. EXAMPLES

We are now ready to apply Proposition 7 and related tech-
niques to various examples. In first five examples that follow,
our goal is to show that the sufficient condition for the existence
of the limiting guessing exponent holds, i.e., that the sequence
of distributions of the information spectrum satisfies the LDP.

A. LDP for Information Spectrum

Example 1 (An i.i.d. Source): This example was first studied
by Arikan [3]. Recall that an i.i.d. source is one for which

, where is the marginal of . It
is then clear that the information spectrum can be written as a
sample mean of i.i.d. random variables

It is well known that the sequence of distributions
of this sample mean satisfies the LDP with rate function given
by the Legendre-Fenchel dual of the cumulant of the random
variable (see, for example, [18, Th. II.4.1] or [9,
eq. (1.9.66-67)])

The Legendre-Fenchel dual of the rate function is therefore the
cumulant itself ([18, Th. VI.4.1.e]). An application of Proposi-
tion 7 yields that times this cumulant, given by ,
is the guessing exponent. We thus recover Arikan’s result [3].

The rate function can also be obtained using the contrac-
tion principle (Proposition 8) as follows. This method will pro-
vide a recipe to obtain the limiting guessing exponent in subse-
quent examples. Consider a mapping that takes to its em-
pirical pmf in . Empirical pmf is then a random vari-
able. The distribution of induces a pmf on . It is
well known that the sequence of distributions of these empirical
pmfs, indexed by , satisfies the level-2 LDP3 with rate func-
tion . See for example [18, Th. II.4.3]. Ob-
serve that the mapping from the empirical pmf to the informa-
tion spectrum random variable is continuous. We can therefore
use the contraction principle to get a formula for in terms of

as follows [18, Th. II.5.1]. For any in , let

i.e.

Then

3Level-1 refers to sequence of distributions (indexed by �) of sample means,
level-2 refers to sample histograms, and level-3 to sample paths.
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Using this, we can write

thus yielding

(25)

This formula extends to more general sources, as is seen in the
next few examples.

Example 2 (Markov Source): This example was studied by
Malone and Sullivan [4]. Consider an irreducible Markov chain
taking values on with transition probability matrix . Our goal
is to verify that the sufficient condition holds and to calculate

defined by (1) for this source.
Let denote the set of stationary pmfs defined by

Denote the common marginal by and let

if ,
otherwise.

We may then denote , where is the distribution
of and the conditional distribution of given . It is
once again well known that the empirical pmf random variable
satisfies the level-2 LDP with rate function , given by
[22]

As in Example 1, the contraction principle then yields that the
sequence of distributions of information spectrum satisfies the
LDP with rate function given by

where for in , is defined by

By Proposition 6, the limiting guessing exponent exists. Perron-
Frobenius theory (Seneta [23, Ch. 1], see also [24, pp. 60–61])
yields the cumulant directly as , where is unique
largest eigenvalue (Perron-Frobenius eigenvalue) of a matrix
formed by raising each element of to the power . (Recall

that and ). Thus
, and we recover the result of Malone and Sul-

livan [4]. It is useful to note that the steps that led to (25) hold
in the Markov case (with appropriate changes to entropy and di-
vergence terms) and we may write

(26)

where is the conditional entropy of given under
the joint distribution , i.e.

Example 3 (Unifilar Source): This example was studied by
Sundaresan in [6]. A unifilar source is a generalization of the
Markov source in Example 2. Let denote the alphabet set as
before. In addition, let denote a set of finite states. Fix an initial
state and let the joint probability of observing be

where is the joint probability of given
the previous state . The dependence of on is under-
stood. Furthermore, assume that is such that

, where is a deterministic function that is
one-to-one for each fixed . Such a source is called a unifilar
source.

and completely specify the process: the ini-
tial state is random with distribution that of marginal of in

, the rest being specified by and . Ex-
ample 2 is a unifilar source with , ,
and where is the stationary distribution of the
Markov chain.

Let denote the set of joint measures on the indi-
cated space so that the resulting process is a sta-
tionary and irreducible Markov chain. Let a
be written as . For any in , let

Then the sequence of distributions of information spectrum
satisfies the LDP ([9, eq. (1.9.30)]) with rate

function given (once again via contraction principle) by

The limiting exponent therefore exists. Following the same pro-
cedure that led to (25) in the i.i.d. case and (26) for a Markov
source, we get

(27)

where and are analogously defined, and
the result of Sundaresan [6] is recovered.
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Example 4 (A Class of Stationary Sources): Pfister and Sul-
livan [5] considered a class of stationary sources with distribu-
tion that satisfies two hypotheses H1 and H2 of
[5, Sec. II-B], which we will now describe.

Let denote the set of sources that satisfy
for all , where and are restrictions of and to
letters. Note that it may be possible that a is not
absolutely continuous with respect to . Also, let

denote the subset of stationary sources with respect
to the shift operator defined by

Hypothesis H1 of Pfister and Sullivan [5] assumes that for any
neighborhood of a stationary source and any

, there exists an ergodic in that neighborhood
such that , where is the Shannon
entropy rate of source . Their hypothesis H2 is given by (30).

Under these hypotheses, Pfister and Sullivan [5] proved that
exists, and provided a variational characterization analo-

gous to (27), i.e.

(28)

where

En route to this result, Pfister and Sullivan [5] showed that the
sequence of distributions of the empirical process satisfies the
level-3 LDP for sample paths. We first state this precisely, and
then use this as the starting point to show the sufficient condition
that the information spectrum satisfies the LDP.

For an given by , we define
as the first components of in the

usual way. Consider a stationary source whose letters are
. Define the empirical process of measures

This is a measure on that puts mass on the fol-
lowing strings: . Pfister and
Sullivan showed that the distributions of the -valued
process satisfies the level-3 LDP with rate function

under hypotheses H1 and H2 of their paper
([5, Prop. 2.2-2.3]). Furthermore

(29)

so that we may restrict to . We next use this
to show that the information spectrum satisfies the LDP.

Hypothesis H2 of Pfister and Sullivan assumes the existence
of a continuous mapping satisfying

(30)

where .

By the compactness of , is uniformly continuous.
Under the weak topology on the complete separable metric
space , the mapping

defined by is a continuous mapping. Hence by
the contraction principle, by setting we get that
the sequence of distributions of satisfies
the LDP with rate function given by

where the restriction of the infimum to follows from
(29). Furthermore, given hypothesis H2 and (30), an applica-
tion of the exponential approximation principle (Proposition 9)
indicates that the sequence of distributions of the information
spectrum too satisfies the LDP with the same rate function ,
and we have verified that the sufficient condition holds.

What remains is to calculate this rate function. For this, we
return to Pfister and Sullivan’s work and use

[5, Prop. 2.1] to write

Finally, the Legendre-Fenchel dual of the rate function is
computed as in the steps leading to (25)–(27), yielding (28).

Example 5 (Mixed Source): Consider a mixture of two i.i.d.
sources with letters from . We may write

where with , the two marginal pmfs
that define the i.i.d. components of the mixture. It is easy to
see that the guessing exponent is the maximum of the guessing
exponents for the two component sources. We next verify this
using Proposition 7.

The sequence of distributions of the information spectrum
satisfies the LDP with rate function given as follows (see Han
[9, eq. (1.9.41)]). Define

and for

The rate function (via the contraction principle) is given by
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From Proposition 7 we conclude that the limiting guessing ex-
ponent exists. is then

yielding

V. PROOFS

We now prove Propositions 6 and 7.

A. Proof of Proposition 6

From Theorem 5 it is sufficient to show that the limit in (21)
for Campbell’s coding problem exists if and only if the Rényi
entropy rate exists, with the former times the latter.

Fix . In the rest of the proof, we use the notation for
expectation with respect to distribution . The length function
can be thought of as a bounded (continuous) function from
to and therefore our interest is in the logarithm of its moment
generating function of , the cumulant. The cumulant associated
with a bounded continuous function (here ) has a variational
characterization [25, Prop. 1.4.2] as the following Legendre-
Fenchel dual of the Kullback-Leibler divergence, i.e.

(31)

Taking infimum on both sides over all length functions, we ar-
rive at the following chain of inequalities:

(32)

(33)

(34)

(35)

Equation (33) follows because: (i) the mapping

is a concave function of ; (ii) for fixed and for any two
length functions and , for any , the function

is also a length function and

(iii) is compact and convex, and therefore the infimum
and supremum may be interchanged upon an application of a
version of Ky Fan’s minimax result [26]. This yields a com-
pression problem, the infimum over of expected lengths
with respect to a distribution . The answer is the well-known
Shannon entropy to within nats, and (34) follows.
Last, (35) is a well-known identity which may also be obtained
directly by writing the supremum term in (34) as

and then applying (31) with in place
of to get the scaled Rényi entropy.

Normalize both (32) and (35) by and let to deduce
that (21) exists if and only if the limiting normalized Rényi en-
tropy rate exists. This concludes the proof.

B. Proof of Proposition 7

This is a straightforward application of Varadhan’s theorem
[19] on asymptotics of integrals. Recall that is the distri-
bution of the information spectrum . Define

. Since the sequence satisfies the LDP
with rate function , Varadhan’s theorem (see Ellis [18, Th.
II.7.1.b]) states that if

(36)

then the limit

(37)

holds. The integral on the LHS in (37) can be simplified by
defining the finite cardinality set
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and by observing that

Take logarithms, normalize by , take limits, and apply (37) to
get the desired result. It therefore remains to prove (36).

The event occurs if and only if

The integral in (36) can, therefore, be written as

The sequence in on the LHS of (36) is then

a constant sequence. Take the limit as to verify (36).
This concludes the proof.

VI. CONCLUSION

We first showed that the problem of finding the limiting
guessing exponent is equal to that of finding the limiting
compression exponent under exponential costs (Campbell’s
coding problem). We then saw that the latter limit exists if the
sequence of distributions of the information spectrum satisfies
the LDP (sufficient condition). The limiting exponent was the
Legendre-Fenchel dual of the rate function, scaled by an appro-
priate constant. It turned out to be the limit of the normalized
cumulant of the information spectrum random variable. While
some of these facts can be gleaned from the works of Pfister &
Sullivan [5] and Merhav and Arikan [7], our work sheds light
on the key role played by the information spectrum. It will be of
interest to find a rich class of sources beyond those listed in this
paper for which the information spectrum satisfies the LDP.

Results on guessing with key-rate constraints for a general
source are provided using the above information spectrum ap-
proach in [27].
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