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Guessing Revisited: A Large Deviations Approach

Manjesh Kumar Hanawal and Rajesh Sundaresan, Senior Member, IEEE

Abstract—The problem of guessing a random string is revisited.
A close relation between guessing and compression is first estab-
lished. Then it is shown that if the sequence of distributions of the
information spectrum satisfies the large deviation property with
a certain rate function, then the limiting guessing exponent exists
and is a scalar multiple of the Legendre-Fenchel dual of the rate
function. Other sufficient conditions related to certain continuity
properties of the information spectrum are briefly discussed. This
approach highlights the importance of the information spectrum
in determining the limiting guessing exponent. All known prior re-
sults are then re-derived as example applications of our unifying
approach.

Index Terms—Guessing, information spectrum, large deviations,
length function, source coding.

1. INTRODUCTION

ET X" = (X31,...,X,) denote n letters of a process
L where each letter is drawn from a finite set X with joint
probability mass function (pmf) (P, (z") : ™ € X™). Let 2"
be a realization and suppose that we wish to guess this real-
ization by asking questions of the form “Is X™ = z"7”, step-
ping through the elements of X" until the answer is “Yes.” We
wish to do this using the minimum expected number of guesses.
There are several applications that motivate this problem. Con-
sider cipher systems employed in digital television or DVDs to
block unauthorized access to special features. The ciphers used
are amenable to such exhaustive guessing attacks and it is of in-
terest to quantify the effort needed by an attacker (Merhav and
Arikan [1]).
Massey [2] observed that the expected number of guesses is
minimized by guessing in the decreasing order of P,,-probabil-
ities. Define the guessing function

Gr:X"—1{1,2,...,

’ ’

X"}
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to be one such optimal guessing order!. G} (z™) = g implies
that ™ is the gth guess. Arikan [3] considered the growth of
E [G%(X™)”] as a function of n for an independent and identi-
cally distributed (i.i.d.) source with marginal pmf P; and p>0.
He showed that the growth is exponential in 7n; the limiting ex-
ponent

E(p)i= lim ~InE[G" (X")]

n—oo n,

ey

exists and equals pH, (P1) with & = 1/(1 + p), where H,(P,,)
is the Rényi entropy of order « for the pmf P, given by

LI Z P, (z"™)" )

-« rneXn

Malone and Sullivan [4] showed that the limiting exponent
E(p) of an irreducible Markov chain exists and equals the log-
arithm of the Perron-Frobenius eigenvalue of a matrix formed
by raising each element of the transition probability matrix to
the power «. From their proof, one obtains the more general
result that the limiting exponent exists for any source if the
Rényi entropy rate of order o

lim n_lH(,(Pn)

n—oo

3)

exists for « = 1/(1 + p). Pfister and Sullivan [5] showed the
existence of (1) for a class of stationary probability measures,
beyond Markov measures, that are supported on proper sub-
shifts of XY [5]. A particular example is that of shifts generated
by finite-state machines. For such a class, they showed that the
guessing exponent has a variational characterization [see (25)
later]. For unifilar sources Sundaresan [6] obtained a simplifica-
tion of this variational characterization using a direct approach
and the method of types.

Merhav and Arikan remark that their proof in [7] for the lim-
iting guessing exponent is equally applicable to finding the lim-
iting exponent of the moment generating function of compres-
sion lengths. Moreover, the two exponents are the same. The
latter is a problem studied by Campbell [8].

Our contribution is to give a large deviations perspective to
these results, shed further light on the aforementioned connec-
tion between compression and guessing, and unify all prior re-
sults on existence of limiting guessing exponents. Specifically,
we show that if the sequence of distributions of the informa-
tion spectrum (1/n)1n (1/P,(X™)) (see Han [9]) satisfies the
large deviation property, then the limiting exponent exists. This
is useful because several existing large deviations results can be

ITf there are several sequences with the same probability of occurrence, they
may be guessed in any order without affecting the expected number of guesses.
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readily applied. We then show that all but one previously con-
sidered cases in the literature? satisfy this sufficient condition.
See Examples 1-5 in Section IV.

The large deviation theoretic ideas are already present in the
works of Pfister and Sullivan [5] and the method of types ap-
proach of Arikan and Merhav [7]. Our work however brings out
the essential ingredient (the sufficient conditions on the infor-
mation spectrum), and enables us to see the previously obtained
specific results under one light.

The quest for a general sufficient condition under which the
information spectrum satisfies a large deviation property is a
natural line of inquiry, and one of independent interest, in view
of the Shannon-McMillan-Breiman theorem which asserts that
the information spectrum of a stationary and ergodic source con-
verges to the Shannon entropy almost surely and in L, for all
q > 1; see for example [11]. In particular, the large deviation
property implies exponentially fast convergence to entropy. In
the several specific examples we consider, the information spec-
trum does satisfy the large deviation property. One sufficient
condition for the weaker property of exponentially fast con-
vergence to entropy is the so-called blowing up property. (See
Marton and Shields [12, Th. 2], or the survey article by Shields
[13]). One family of sources, that includes most of the sources
we consider in this paper and goes beyond, is that of finitary en-
codings of memoryless processes, also called finitary processes.
These are known to have the blowing-up property, and there-
fore exponentially fast convergence to entropy (see Marton and
Shields [12, Th. 3]). It is an interesting open question to see if
finitary processes, or what other sources with the blowing up
property, satisfy the large deviation property.

The rest of the paper is organized as follows. Section II studies
the tight relationship between guessing and compression. Sec-
tion III states the relevant large deviations results and the main
sufficiency results. Section IV rederives prior results by showing
that in each case the information spectrum satisfies the LDP.
Section V contains proofs and Section VI contains some con-
cluding remarks.

II. GUESSING AND COMPRESSION

In this section we relate the problem of guessing to one of
source compression. An interesting conclusion is that robust
source compression strategies lead to robust guessing strategies.

For ease of exposition, let us assume that the message space is
simply X. The extension to strings of length n is straightforward
and will be returned to shortly. A guessing function

G:X—={1,2,...,|X|}
is a bijection that denotes the order in which the elements of X

are guessed. If G(z) = g, then the gth guess is x. Let N denote
the set of natural numbers. A length function

L:X—N

2These are cases without side information and key-rate constraints. The one
exception is an example of Arikan and Merhav [7, Sec. VI-B] for which one
can show the existence of Rényi entropy rate rather directly via a subadditivity
argument. See our technical report [10].
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is one that satisfies Kraft’s inequality

Y expy{-L(z)} <1 “@

reX

where we have used the notation exp,{—L(z)} = 2-5®)_ To
each guessing function GG, we associate a PMF Q¢ on X and a
length function Lg as follows.

Definition 1: Given a guessing function G, we say Q¢ de-
fined by

Qalz)=c'-G(z)™", Ve X ®)

is the PMF on X associated with G. The quantity c in (5) is the
normalization constant. We say L defined by

Lg(7) = [=logy Qa(z)], Vo € X (6)

is the length function associated with G.
Observe that

1

X
c:ZG(a)*:Zl§1+1n|X| %)
i=1

and therefore the PMF in (5) is well-defined. We record the in-
timate relationship between these associated quantities in the
following result. (This is also available in the proof of [14, Th.
1, p. 382].)

Proposition 1: Given a guessing function G, the associated
quantities satisfy

™ Qa(2)™ =G(w) < Qa(x) ™, ®)
Lg(z) — 1 —logy ¢ < logy G(z) < Lg(x). ©)

Proof: The first equality in (8) follows from the definition
in (5), and the second inequality from the fact that ¢ > 1.
The upper bound in (9) follows from the upper bound in (8)
and from (6). The lower bound in (9) follows from

log, G(z) = logy(c¢™" - Qg (x) ™)

—log, Qa(w) —logy ¢

> ([—1log; Qe ()] — 1) —logy ¢
=Lg(z) — 1 —log,c.

We now associate a guessing function GG, to each length func-
tion L.

Definition 2: Given a length function L, we define the as-
sociated guessing function G, to be the one that guesses in the
increasing order of L-lengths. Messages with the same L-length
are ordered using an arbitrary fixed rule, say the lexicographical
order on X. We also define the associated PMF ()1, on X to be

e L)}
Q@) = S~ py (= L(@)}

aeX

(10)
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Proposition 2: For a length function L, the associated PMF
and the guessing function satisfy the following:
1) G, guesses messages in the decreasing order of () 1,-prob-
abilities;
2)
logy Gr(2) < logy Qr(z)™! < L(x). (11)
Proof: The first statement is clear from the definition of
G'1, and from (10).
Letting 1{ £} denote the indicator function of an event F, we
have as a consequence of statement 1) that

Gr(zr) < Z 1{Qr(a) > Qr(z)}

aeX
Qr(a)
<2 00

=Qu(z)™"

which proves the left inequality in (11). This inequality was
known to Wyner [15].
The last inequality in (11) follows from (10) and Kraft’s in-

equality (4) as follows:
Qr(z)™! }- ) expy{—L(a
aeX

expy{L(2)}-

(12)

expo{L(z
<

Let {L(x) > B} denote the set {x € X | L(z) > B}. We
then have the following easy to verify corollary to Propositions
1 and 2.

Corollary 3: For a given G, its associated length function L¢,
and any B > 1, we have

{Lg(z) > B+1+logyc} C{G(z) >
C{La(z) >

expy{B}}
B}. (13)
Analogously, for a given L, its associated guessing function
G, and any B > 1, we have
{GL(x) > expy{B}} C {L(x) = B}.  (14)
The inequalities between the associates in (9) and (11) indicate
the direct relationship between guessing moments and Camp-
bell’s coding problem [8], and that the Rényi entropies are the
optimal growth exponents for guessing moments, as highlighted
in the following Proposition.

Proposition 4: Let L be any length function on X, G
the guessing function associated with L, P a PMF on
X, p € (0,00), L* the length function that minimizes
E [exp,{pL*(X)}], where the expectation is with respect to
P, G* the guessing function that proceeds in the decreasing
order of P-probabilities and therefore the one that minimizes

E[G*(X)*], and c as in (7). Then
E[GL(X )p] Elexpy{pL(X)}]
E[G*(X)r] — E[GXI);{pL*( Sl expo{p(1 +log, c)}.

15)
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Analogously, let G be any guessing function, and L¢ its asso-
ciated length function. Then

EIGO) BN ot gy
EIG(X)7] = Eloxpylplr(X))] P2imrl+los: gf’é)
Also
oz, EIG™(X)'] = - log, Elexpa{o " (X)}] < 1+1og,
(17)
Proof: Observe that
E [expa {pL(X)}]
>[E[GL( )] (18)
E (G (X))
> E [expy {pLa- (X)) expy{—p(1 + logy )} (19)
> E[expy{pL*(X)} expy{—p(1 +logy c)}  (20)

where (18) follows from (11), and (19) from the left inequality in
(9). The result in (15) immediately follows. A similar argument
shows (16). Finally, (17) follows from the inequalities leading
to (20) by setting L = L*. [ |

Thus if we have a length function whose performance is
close to optimal, then its associated guessing function is close
to guessing optimal. The converse is true as well. Moreover, the
optimal guessing exponent is within 1 + log, ¢ of the optimal
coding exponent for the length function.

A. Strings of Length n

Let us now consider strings of length n. Let X" denote the set
of messages and consider n — oo. Let M (X™) denote the set
of pmfs on X". By a source, we mean a sequence of pmfs (P, :
n € N), where P,, € M(X"). We replace the normalization
constant ¢ in (7) by ¢, and observe that

en <1+ nln|X|.

If we normalize both sides of (17) by n, the difference between
two quantities as a function of n decays as O((log, n)/n), and
vanishes as 7 tends to infinity. The following theorem follows
immediately, with a change of base to natural logarithms.

Theorem 5: Given p > 0, the limit

lim n 1InE [G}(X™)]

n—oo

exists if and only if the limit

L InE [exp, {pL, (X

lim infn
n—oo

")}

n

exists. Furthermore, the two limits are equal.
It is, therefore, sufficient to restrict our attention to the Camp-
bell’s coding problem [8] and study if the limit

lim inf —
n=oo L, n

lnlE[eXp{(pln 2)L,(X™)}] 21



HANAWAL AND SUNDARESAN: GUESSING REVISITED

exists, where the infimum is taken over all length functions L,, :
X" — N and exponentiation is with respect to the base of the
natural logarithm.

B. Universality

Before we proceed to studying the limit, we make a further
remark on the connection between universal strategies for
guessing and universal strategies for compression.

Let T denote a class of sources. For each source in the class,
let P, be its restriction to strings of length n and let L7 de-
note an optimal length function that attains the minimum value
E [exp {(pIn2)L}(X™)}] among all length functions, the ex-
pectation being with respect to P,. On the other hand, let L,, be
a sequence of length functions for the class of sources that does
not depend on the actual source within the class. Suppose fur-
ther that the length sequence L,, is asymptotically optimal, i.e.

n(X™)}]

= lim —lnlE[eXp{(phlz)L*(Xn)}]

n—oo NP

lim — ln Elexp{(pIn2)L

n—oo N

for every source belonging to the class. L,, is thus “universal”
for (i.e., asymptotically optimal for all sources in) the class. An
application of (15) with ¢, in place of ¢ followed by the obser-
vation (1+log, ¢, ) /n — 0 shows that the sequence of guessing
strategies G, is asymptotically optimal for the class, i.e.
nh_)ngo n_ InE[Gr, (X™)] = nll)ngo n_ InE [G*(X™)"].
Arikan and Merhav [7] provide a universal guessing strategy
for the class of discrete memoryless sources (DMS). For the
class of unifilar sources with a known number of states, the min-
imum description length encoding is asymptotically optimal for
Campbell’s coding length problem (see Merhav [16]). It follows
as a consequence of the above argument that guessing in the in-
creasing order of description lengths is asymptotically optimal.
The left-hand side (LHS) of (15) is the extra factor in the ex-
pected number of guesses (relative to the optimal value) due to
lack of knowledge of the specific source in class. Sundaresan
[17] characterized this loss as a function of the uncertainty class.

III. LARGE DEVIATION RESULTS

We begin with some words on notation. Recall that M (X™)
denotes the set of pmfs on X™. The Shannon entropy fora P,, €

M(X™) is
- > Pl
nexn
and the Rényi entropy of order a # 1 is (2). The Kullback-

Leibler divergence or relative entropy between two pmfs ),
and P, is

"YIn P, (z™)

n) Qn(T )
np (zm)

D(Q, || P.) = {r%( Qnl(z

o0

if Qn < Py,

otherwise

)

where ), < P, means @, is absolutely continuous with re-
spect to P,,. Recall that a source is a sequence of pmfs (P, : n €
N) where P, € M(X™). It is usually obtained via n-length
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marginals of some probability measure in M (XV). Also re-
call the definitions of limiting guessing exponent in (1) and
Rényi entropy rate in (3) when the limits exist. G}, is an optimal
guessing function for a pmf P,, € M(X™). From the results in
Section II on the equivalence between guessing and compres-
sion, it is sufficient to focus on the Campbell coding problem.
Our first contribution is a proof of the following implicit result
of Malone and Sullivan [4]. The proof is given in Section V-A.

Proposition 6: Let p>0. For a source (P, : n € N), E(p)
exists if and only if the Rényi entropy rate (3) exists. Further-
more, E(p)/p equals the Rényi entropy rate.

The question now boils down to the existence of the limit in
the definition of Rényi entropy rate. The theory of large devia-
tions immediately yields a sufficient condition. We begin with a
definition.

Definition 3 (Large Deviation Property): [18, Def. 11.3.1] A
sequence (v, : n € N) of probability measures on R satisfies
the large deviation property (LDP) with rate function [ : R —
[0, o] if the following conditions hold:

e [ is lower semicontinuous on R;

* [ has compact level sets;

e limsup, , . n"tlny,{K} <

closed subset K of R;
e liminf, oo n 'Inv,{G} > —infyeq I(t) for each open
set G of R.

Several commonly encountered sources satisfy the LDP with
known and well-studied rate functions. We describe some of
these in the examples treated subsequently.

Let v, denote the distribution of the information spectrum
given by the real-valued random variable —n =" In P,,(X™). The
following proposition gives a sufficient condition for the exis-
tence of the limiting Rényi entropy rate (and therefore the lim-
iting guessing exponent).

—infie g I(t) for each

Proposition 7: Let the sequence of distributions (v, : n € N)
of the information spectrum satisfy the LDP with rate function
I. Then the limiting Rényi entropy rate of order 1/(1+ p) exists
for all p > 0 and equals

A~ sup {pt — I(t)}
teR

where 8 = p/(1 + p). Consequently, the limiting guessing ex-
ponent exists and equals

(1+p) Sup {Bt—1(t)}.

The function I*(3) := sup,cr {6t — I(t)} is the Legendre-
Fenchel dual of the rate function I. Proposition 7 says that,
under the sufficient condition, the limiting guessing exponent
equals (14 p)I*(p/(1 + p)), and is thus directly related to the
large deviations rate function for information spectrum. This
is however different from Merhav and Arikan’s [7, Th. 2] for
memoryless sources which states that the limiting guessing ex-
ponent is the Legendre-Fenchel dual of the source coding error
exponent function. We refer the reader to Merhav and Arikan
[7, Sec. IV] for further interesting connections between source
coding error exponent, guessing exponent, and two other expo-
nents related to lossy source coding.
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Let us briefly discuss another approach to verify the existence
of Rényi entropy rate (see Proposition 6). With & = 1/(1 + p),
we can rewrite 1 — « times the Rényi entropy rate in (3) as

(1—a) lim n=*H,(P,)

= lim n tIn Z exp {—naF,(z")} U, (z™) (22)
e znexn
where
F,(z"):= (—n_l In P, (z") — (In |X|)/a)

and U is the i.i.d. process on X" with uniform marginal on X.
One can then view « € (0, 1) as the inverse temperature (when
p > 0) of a statistical mechanical system, F),(z™) as the energy
of the configuration 2", and the right side of (22) as a scaled
version of (i.e.,  times) the specific Gibbs free energy of the
corresponding statistical mechanical system, if the limit exists.
This view point is particularly useful because the i.i.d. process
U satisfies a sample path large deviation property. If the infor-
mation spectrum sequence satisfies the continuity conditions in
Varadhan [19, Th. 3.4], then the limiting specific Gibbs free en-
ergy exists, and so does the Rényi entropy rate. Our technical
report [10] treats an example via this more general approach.

A. Additional Results From Large Deviations Theory

In order to study the examples in Section IV, we state some
additional results on LDP of transformed variables. (See [20,
Sec. 4.2]), [21, Th. 6.12 and 6.14]).

Proposition 8 (Contraction Principle): Let (¢, : n € N)
denote a sequence of X'-valued random variables where X’ is a
complete separable metric space (Polish space). Let v,, denote
the distribution of &,, for n € N, and let the sequence of distri-
butions (v, : n € N) on X satisfy the LDP with rate function
I:X —[0,00].Let ¢ : X — R be a continuous function. The
sequence of distributions of (¢(&,,) : n € N) on R also satisfies
the LDP with rate function J : R — [0, co] given by

J(y) = inf{I(z) : x € R, ¢(x) = y}.

Proposition 9 (Exponential Approximation): Suppose that
the sequence of distributions of (&, : n € N) satisfies the LDP
with rate function I on R. Assume also that the sequence of
random variables ((,, : n € N) is superexponentially close to

(&n : m € N) in the following sense: for each § > 0
hmsup InPr{|& — G| > 6} = - (23)

Then the sequence of distributions of ({, : n € N) also satisfies
the LDP on R with the same rate function I. The condition in
(23) is satisfied if

(W) =0 (24)

lim sup |{p(w) —

n—0o0 ,c0

where (2 is the underlying sample space.
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IV. EXAMPLES

We are now ready to apply Proposition 7 and related tech-
niques to various examples. In first five examples that follow,
our goal is to show that the sufficient condition for the existence
of the limiting guessing exponent holds, i.e., that the sequence
of distributions of the information spectrum satisfies the LDP.

A. LDP for Information Spectrum

Example 1 (An i.i.d. Source): This example was first studied
by Arikan [3]. Recall that an i.i.d. source is one for which
P,(z™) = [Ii=, Pi(x;), where P; is the marginal of X;. It
is then clear that the information spectrum can be written as a
sample mean of i.i.d. random variables

1ZIHP1

It is well known that the sequence (v, : n € N) of distributions
of this sample mean satisfies the LDP with rate function given
by the Legendre-Fenchel dual of the cumulant of the random
variable —In Py (X1) (see, for example, [18, Th. I1.4.1] or [9,
eq. (1.9.66-67)])
InEfexp{f(—In P1(X1))}] = In (Z Pl(a:)"‘>
reX

=(1—a)Ha(Py).

n~tn P, (X"™) =

The Legendre-Fenchel dual of the rate function is therefore the
cumulant itself ([18, Th. VI.4.1.e]). An application of Proposi-
tion 7 yields that (14 p) times this cuamulant, given by pH,, (P;),
is the guessing exponent. We thus recover Arikan’s result [3].

The rate function I can also be obtained using the contrac-
tion principle (Proposition 8) as follows. This method will pro-
vide a recipe to obtain the limiting guessing exponent in subse-
quent examples. Consider a mapping that takes =" to its em-
pirical pmf in M(X). Empirical pmf is then a random vari-
able. The distribution of X" induces a pmf on M(X). It is
well known that the sequence of distributions of these empirical
pmfs, indexed by n, satisfies the level-2 LDP3 with rate func-
tion 1(2)( ) = D(- || P1). See for example [18, Th. I1.4.3]. Ob-
serve that the mapping from the empirical pmf to the informa-
tion spectrum random variable is continuous. We can therefore
use the contraction principle to get a formula for / in terms of
Ig)() as follows [18, Th. I1.5.1]. For any ¢ in R, let

X 0w =]

H(Q)+ D(@Q || ) =t}

0(t):= {QeM

0(t) = {Q € M(X):
Then

1(t) = inf {I(@) : Q € 6(1) }.

3Level-1 refers to sequence of distributions (indexed by n) of sample means,
level-2 refers to sample histograms, and level-3 to sample paths.
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Using this, we can write

ro) =sw{p- iut D@ P

teR
= sup sup {ﬂt— Q1 P1)}
teR Qeb(t)
= sup {ﬂ( Q)+ D(Q | P1) - D@ 1)}
QEM(X)
=(1+p)" sup {pH( )= D(Q || 1)}
QEM(X)
thus yielding
E(p)= sup {pH(Q)—D(Q | )} (25)

QEM(X)

This formula extends to more general sources, as is seen in the
next few examples.

Example 2 (Markov Source): This example was studied by
Malone and Sullivan [4]. Consider an irreducible Markov chain
taking values on X with transition probability matrix . Our goal
is to verify that the sufficient condition holds and to calculate
E(p) defined by (1) for this source.

Let M (X?) denote the set of stationary pmfs defined by

ZQzch

r1EX

= Z Qz,z2)Vz € X}.

xo€X

M (X2) = {QeM

Denote the common marginal by ¢ and let

_Q(z1,-)/q(x1) ifg(z1) #0,
wlm= { 1/1X], ' otzerwise.

We may then denote () = ¢ X 7, where ¢ is the distribution
of X and 7 the conditional distribution of X5 given Xj. It is
once again well known that the empirical pmf random variable
satisfies the level-2 LDP with rate function L@(Q), given by
[22]

Q) =D |~ |q)
=Y q(z)D(n(- | z1) | w(- | 21)).
r1EX

As in Example 1, the contraction principle then yields that the
sequence of distributions of information spectrum satisfies the
LDP with rate function / given by

1ty =inf {19(Q): Q e 6(t)}

where for ¢ in R, 6(t) C M(X?) is defined by

1
Z Q 117:1:2 (x2|x1) — f} -

Z1,T2

o(t) = {QGM

By Proposition 6, the limiting guessing exponent exists. Perron-
Frobenius theory (Seneta [23, Ch. 1], see also [24, pp. 60-61])
yields the cumulant directly as In A(/3), where A(f3) is unique
largest eigenvalue (Perron-Frobenius eigenvalue) of a matrix
formed by raising each element of 7 to the power «. (Recall
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that « = 1/(1 + p) and 8 = p/(1 + p)). Thus E(p) =
(1 + p)In A(B), and we recover the result of Malone and Sul-
livan [4]. It is useful to note that the steps that led to (25) hold
in the Markov case (with appropriate changes to entropy and di-
vergence terms) and we may write

{pH (n4q)

E(p)=sup

QEM(X?)

-Dnllrla)} @6

where H (7 | q) is the conditional entropy of X» given X; under
the joint distribution @, i.e.

> al@)Hn(- | ).

zeX

H(nlq)=—

Example 3 (Unifilar Source): This example was studied by
Sundaresan in [6]. A unifilar source is a generalization of the
Markov source in Example 2. Let X denote the alphabet set as
before. In addition, let S denote a set of finite states. Fix an initial

state sg and let the joint probability of observing (z", s™) be
P, (2", s") = Hw(xi,si | si—1)
=1
where m(x;, s; | si—1) is the joint probability of (z;, s;) given

the previous state s;_;. The dependence of P, on sg is under-
stood. Furthermore, assume that m(z;, s; | s;—1) is such that
s;i = ¢(si—1,xi), where ¢ is a deterministic function that is
one-to-one for each fixed s;_1. Such a source is called a unifilar
source.

Pg x(si—1,2;) and ¢ completely specify the process: the ini-
tial state Sy is random with distribution that of marginal of .S in
Ps x, the rest being specified by Px|s(w; | s;-1) and ¢. Ex-
ample 2 is a unifilar source with S = X, ¢(s;_1,2;) = z;,
and Ps x = q x 7 where ¢ is the stationary distribution of the
Markov chain.

Let M (S x X) denote the set of joint measures on the indi-
cated space so that the resulting process (S,, : n > 0) is a sta-
tionary and irreducible Markov chain. Let a Q € M(S x X)
be written as () = ¢ x 7. For any ¢ in R, let

1

olt)= @)

Q € M4(S x X) Zst
(s,2)

Then the sequence of distributions of information spectrum
—n~1In P,(X™) satisfies the LDP ([9, eq. (1.9.30)]) with rate
function given (once again via contraction principle) by

1(t)

The limiting exponent therefore exists. Following the same pro-
cedure that led to (25) in the i.i.d. case and (26) for a Markov
source, we get

=inf{D(n || [q):Q € b()}

E(p) = {PH(U|Q)_D(77 IIWIq)}

sup
QEM,(SXX)

27)

where H(7 | ¢) and D(n || 7 | q) are analogously defined, and
the result of Sundaresan [6] is recovered.
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Example 4 (A Class of Stationary Sources): Pfister and Sul-
livan [5] considered a class of stationary sources with distribu-
tion P € M (XN) that satisfies two hypotheses H1 and H2 of
[5, Sec. II-B], which we will now describe.

Let MT(XN) denote the set of sources that satisfy Q,, < P,
for alln € N, where P,, and Q),, are restrictions of P and Q) ton
letters. Note that it may be possible that a Q € M (XN) is not
absolutely continuous with respect to P. Also, let MZ(XN) ¢
MPE(XN) denote the subset of stationary sources with respect
to the shift operator 7 : X — XN defined by

(r(2)); = ®iz1,VieN.

Hypothesis H1 of Pfister and Sullivan [5] assumes that for any
neighborhood of a stationary source Q € MF(XN)andany e >
0, there exists an ergodic @’ € M (X"V) in that neighborhood
such that H(Q') > H(Q) — ¢, where H(Q) is the Shannon
entropy rate of source (). Their hypothesis H2 is given by (30).

Under these hypotheses, Pfister and Sullivan [5] proved that
E(p) exists, and provided a variational characterization analo-
gous to (27), i.e.

E(p)

{pH(Q)-D(@ I P)}  (28)

sup
QEME(XN)

where
Pp(zm)’

D] P)= lim n~" > Qu(z")In

En route to this result, Pfister and Sullivan [5] showed that the
sequence of distributions of the empirical process satisfies the
level-3 LDP for sample paths. We first state this precisely, and
then use this as the starting point to show the sufficient condition
that the information spectrum satisfies the LDP.

For an z € XM given by # = (x1,z2,...), we define
" = (21,
usual way. Consider a stationary source P whose letters are
X = (X1, Xo,...). Define the empirical process of measures

n—1
To(X, ) =071 8r00x) ()
i=0

This is a measure on XV that puts mass 1/n on the fol-
lowing strings: x,7(1),7%(x),..., 7" (x). Pfister and
Sullivan showed that the distributions of the M (X")-valued
process T, (X, -) satisfies the level-3 LDP with rate function
189(:) = D(- || P) under hypotheses H1 and H2 of their paper
([5, Prop. 2.2-2.3]). Furthermore

D(Q|I P) = +oo, Q¢ MJ(XY) (29)
so that we may restrict D(- || P) to M (XN). We next use this
to show that the information spectrum satisfies the LDP.

Hypothesis H2 of Pfister and Sullivan assumes the existence
of a continuous mapping ep : X — R satisfying

lim sup |n~tIn P, (2™) +

n—oo
zex?

/ ep dTn(a:,-)‘:0 (30)
JxN

where £ = {z € XV : P,(2™) > 0}.
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By the compactness of XN, ep is uniformly continuous.
Under the weak topology on the complete separable metric
space M(XN), the mapping

¢ MXN) =R

defined by Q — fo ep d(@ is a continuous mapping. Hence by
the contraction principle, by setting X = M(XN) we get that
the sequence of distributions of (¢(T,,(X,-) : n € N) satisfies
the LDP with rate function I given by

I(t) =inf {D(Q || P) : @ € MI(X™), §(Q) = t}

where the restriction of the infimum to MZ (XV) follows from
(29). Furthermore, given hypothesis H2 and (30), an applica-
tion of the exponential approximation principle (Proposition 9)
indicates that the sequence of distributions of the information
spectrum too satisfies the LDP with the same rate function I,
and we have verified that the sufficient condition holds.

What remains is to calculate this rate function. For this, we
return to Pfister and Sullivan’s work and use D(Q || P)
#(Q) — H(Q) [5, Prop. 2.1] to write

1= inf {DQ P): Q) +DQ] P)=1}.

QEM?

Finally, the Legendre-Fenchel dual of the rate function is
computed as in the steps leading to (25)—(27), yielding (28).

Example 5 (Mixed Source): Consider a mixture of two i.i.d.
sources with letters from X. We may write

n

NI EED

i=1

Pa(a™) = A HR(xq;) 41—

where A € (0,1) with R, S € M(X) the two marginal pmfs
that define the i.i.d. components of the mixture. It is easy to
see that the guessing exponent is the maximum of the guessing
exponents for the two component sources. We next verify this
using Proposition 7.

The sequence of distributions of the information spectrum
satisfies the LDP with rate function given as follows (see Han
[9, eq. (1.9.41)]). Define

6 ={Q € M(X): D(Q || $) - D(Q || R) > 0}

b, ={Q € M(X): D(Q || $) - D(Q || R) <0}
and fort € R

Ay =0 n{Q e M(X): H(Q) + D(Q || R) = t}

B, =80 {Q € M(X) : H(Q) + D(Q || S) = t}.

The rate function (via the contraction principle) is given by

110 = win { jnt D@Q | B, o, D@19}
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From Proposition 7 we conclude that the limiting guessing ex-
ponent exists. I*(/3) is then

sup {ﬂt —min{ inf D(Q | R). inf D(Q| S)}}

teR

= max {Sup sup {ft —D(Q | R)},

teR QeA,

sup sup {6t — D(Q | s»}

teR QEDB;

= max{ sup {BH(Q) — (1 -08)D(Q || R)} ,

QEbL

sup {fH(Q) = (1= B)D(Q || 5)}}

QEb2

= (1+ p)~" max {sgp {pH(Q) - D(Q || R)},

sup{pH(Q) - D(Q | s>}}
Q

= (14 p)~ ' max{pHa(R), pHa(S)}
yielding
E(p) = max{pHa(R), pHa(S)}.

V. PROOFS

We now prove Propositions 6 and 7.

A. Proof of Proposition 6

From Theorem 5 it is sufficient to show that the limit in (21)
for Campbell’s coding problem exists if and only if the Rényi
entropy rate exists, with the former p times the latter.

Fix n. In the rest of the proof, we use the notation Ep_[-] for
expectation with respect to distribution F,,. The length function
can be thought of as a bounded (continuous) function from X"
to R and therefore our interest is in the logarithm of its moment
generating function of p, the cuamulant. The cumulant associated
with a bounded continuous function (here I.,,) has a variational
characterization [25, Prop. 1.4.2] as the following Legendre-
Fenchel dual of the Kullback-Leibler divergence, i.e.

InEp, [exp{(pIn2)L,(X")}]

= sup  {(pn2)Eq, [Ln(X™)] = D(Qn [| Pn)}. BD)

QneM(X™)
Taking infimum on both sides over all length functions, we ar-
rive at the following chain of inequalities:

iLnf InEp, [exp{(pIn2)L,(X™)}] (32)

{Eq, [(pIn2)L,(X™)] = D(Qu || Pn)}

=inf sup
L, QHGM(X")

= swp_ f{Eq, [(p2)Ly(X")] - D(@n || )}
QneM(Xr) &
+ @(1) (33)
= sup {pHn(Qn) - D(Qn || Pn)} + 9(1) (34)

QnEM(X™)
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:pH 1 (Pn)-l-@(l)

1+p

(35)
Equation (33) follows because: (i) the mapping

(Ln; @n) = Eq, [(pIn2) Ln(X™)] = D(Qn || Pn)

is a concave function of @,,; (ii) for fixed @,, and for any two
length functions LS) and Lg), for any A € [0, 1], the function

Ln= LD + (1= NP

is also a length function and

Eq,[Ln] = AEq, [L] + (1 - NEq, [L?] +6(1);

(iii) M(X™) is compact and convex, and therefore the infimum
and supremum may be interchanged upon an application of a
version of Ky Fan’s minimax result [26]. This yields a com-
pression problem, the infimum over L, of expected lengths
with respect to a distribution ),,. The answer is the well-known
Shannon entropy H(Q,,) to within In 2 nats, and (34) follows.
Last, (35) is a well-known identity which may also be obtained
directly by writing the supremum term in (34) as

(I4+p) sup

QneM(X™) {[EQ" [_ (rpp> In Pn(X")]
—D(Qn || Pn)}

and then applying (31) with —(p/(1 + p)In P,,(X™)) in place
of (pln2)L,(X™) to get the scaled Rényi entropy.

Normalize both (32) and (35) by n and let n — oo to deduce
that (21) exists if and only if the limiting normalized Rényi en-
tropy rate exists. This concludes the proof.

B. Proof of Proposition 7

This is a straightforward application of Varadhan’s theorem
[19] on asymptotics of integrals. Recall that v,, is the distri-
bution of the information spectrum n~!In P,(X™). Define
F(t) = pt. Since the (v, : n € N) sequence satisfies the LDP
with rate function I, Varadhan’s theorem (see Ellis [18, Th.
I1.7.1.b]) states that if

1
im limsup — ln/ exp{npft} dv,(t) = —co0  (36)
tg%’

|
M—oo nooo

then the limit

lim ~ln / exp{nBt} va(dt) = sup {Bt — I(1)}  (37)
R teR

n—oo 7,

holds. The integral on the LHS in (37) can be simplified by
defining the finite cardinality set

A, ={-n"'lnP,(z"):Va" € X"} CR
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and by observing that
/exp{nﬂt} v (dt)
R
Z exp{nSt}

2.

Pn($n>

tEA,, zn: P, (z™)=exp{—nt}
= Z Pn(l'n>1_ﬂ
1
=" Pu(a™) ™ = exp {BH1/40)(Pa)} -

Take logarithms, normalize by n, take limits, and apply (37) to
get the desired result. It therefore remains to prove (36).
The event {t > %} occurs if and only if

e sem {21}

The integral in (36) can, therefore, be written as

Z Z exp{npt}P,(z")

tEA,, t> % zm: P, (z™)=exp{—nt}

= 3 Po(z™) ™7

zm: P, (z7)<exp{ —2M}

B
—nM
< |IX|™ - exp {—} .
X B(1+p)
The sequence in n on the LHS of (36) is then
M
In|X| - ——
B(1+p)

a constant sequence. Take the limit as M — oo to verify (36).
This concludes the proof.

VI. CONCLUSION

We first showed that the problem of finding the limiting
guessing exponent is equal to that of finding the limiting
compression exponent under exponential costs (Campbell’s
coding problem). We then saw that the latter limit exists if the
sequence of distributions of the information spectrum satisfies
the LDP (sufficient condition). The limiting exponent was the
Legendre-Fenchel dual of the rate function, scaled by an appro-
priate constant. It turned out to be the limit of the normalized
cumulant of the information spectrum random variable. While
some of these facts can be gleaned from the works of Pfister &
Sullivan [5] and Merhav and Arikan [7], our work sheds light
on the key role played by the information spectrum. It will be of
interest to find a rich class of sources beyond those listed in this
paper for which the information spectrum satisfies the LDP.

Results on guessing with key-rate constraints for a general
source are provided using the above information spectrum ap-
proach in [27].
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