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In-Network Computation in Random Wireless
Networks: A PAC Approach to Constant
Refresh Rates with Lower Energy Costs
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Abstract—We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a
refresh rate of ©(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is
©(y/n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains ©(1) time units per
sample, the delay increases to ©(y/nlogn). The number of transmissions in both cases is ©(n) per histogram sample. The achieved
©(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of ©(1/logn) for histogram
computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for
communication build up, but the network may have more than one component. The largest component however will have an arbitrarily
large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the
supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the
construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove
useful in other communication settings on the random geometric graph.

Index Terms—Ad hoc network, wireless sensor network, function computation, PAC computation, percolation.

1 INTRODUCTION

WIRELESS sensor networks are formed from nodes that
can sense the environment, compute, and commu-
nicate wirelessly over short ranges. Such networks are
usually application specific and do not have to support
end-to-end flows. Rather, the interest is in computing
some function, say h(-), of the sensed data at each of the
nodes. The value of h(-) is desired at a special “sink”
node. Thus, there is interest in distributed computation of
functions of data distributed over a wireless network. In
many sensor networks, the node locations can be assumed
to be from a realization of a random spatial point process.
Further, every node has a fixed transmission range that is
typically significantly smaller than the geographical span
of the network. Thus, the graph, with nodes as vertices
and node pairs that can communicate directly as edges,
represents the communication network of the sensor
network. It is a realization of a random geometric graph.
Since the nodes communicate over a wireless channel,
simultaneous transmissions can potentially interfere with
each other. This imposes constraints on edges that can be
simultaneously activated. We use the protocol model to
capture the interference effects that constrain simultaneous

e S.K. Iyer is with the Department of Mathematics, Indian Institute of
Science, Bengaluru 560012, India. E-mail: skiyer@math.iisc.ernet.in.

e D. Manjunath is with the Department of Electrical Engineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400076, India.
E-mail: dmanju@ee.iitb.ac.in.

e R. Sundaresan is with the Department of Electrical Communication
Engineering, Indian Institute of Science, Bengaluru 560012, India.
E-mail: rajeshs@ece.iisc.ernet.in.

Manuscript received 5 Oct. 2009; revised 20 Jan. 2010; accepted 28 Feb. 2010;
published online 25 Aug. 2010.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2009-10-0404.
Digital Object Identifier no. 10.1109/TMC.2010.59.

1536-1233/11/$26.00 © 2011 IEEE

transmissions in the wireless network. This work is on the
design and performance analysis of algorithms for
distributed computation of functions over random geo-
metric graphs with constraints on simultaneous transmis-
sions along the edges imposed by the protocol model.

The performance of a distributed computation algorithm
on the random geometric graph depends on the scheduling
constraints and the statistical properties of the graph. The
transmission range significantly affects the statistical prop-
erties of the graph, as we will point out later. The
transmission range also determines the energy efficiency
of the protocol. In this paper, we explore the performance-
accuracy trade-offs that can be obtained by varying the
transmission range of nodes.

Let us first describe some notation and some model
assumptions. A total of n nodes of the sensor network are
deployed in the unit square C :=[0,1]°. The node i is
located at ;. The locations [; are independently and
uniformly distributed in C. The node i makes a measure-
ment of a X-valued variable z; at a sampling instant. The
set X is finite. Let x = (21, ..., ;). No assumption is made
on the statistics of x and hence our main results in this
paper are for arbitrary x. The class of symmetric functions is
of interest in most sensor network applications; f(x) is
symmetric, if it is invariant to permutation of elements of x.
The value of a symmetric function is determined by the
histogram, also called the type, of x. Thus, in this paper h(x)
is the histogram or type of x. Our analysis is similar in
flavor to those of Giridhar and Kumar [1], Khude et al. [2],
and Ying et al. [3], i.e., we obtain the following performance
measures for the computation of h(x):

1. Refresh rates at which the measurements x can be
made and the corresponding h(x) obtained at the
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designated sink node. Note that the refresh rate is
lower bounded by the reciprocal of the upper bound
on the delay; pipelined computation can help
increase this rate.

2. Energy expended in the computation; we obtain this
by counting the number of transmissions and
receptions per computation of h(x).

3. Delay between the measurement instant and the time
at which h(x) is available at the sink.

We assume a time-slotted network with the nodes
synchronized to slot boundaries. We consider the mes-
sage-passing paradigm of distributed computation in which
the nodes do not exploit what is heard on the channel to
determine when to transmit, but use a predetermined, also
called oblivious, schedule. Such a schedule is especially
important when links are noisy and can introduce errors.
The schedule will depend on the realization of node
placements and the consequent realization of the random
geometric graph with the transmission range r,. Since we
have an oblivious schedule, the nodes need not transmit
their address along with the data. A more comprehensive
discussion on the motivation for this class of problems is
provided by Giridhar and Kumar [4].

We now provide a brief overview of previous work and
delineate our work from that in the literature.

1.1 Previous Work

Early work on computation of functions of binary data
over wireless networks considered noisy, time-slotted,
broadcast (also called single-hop or collocated) networks;
see Gallager [6], Kushilevitz and Mansour [7], Feige and
Kilian [8], and Newman [9]. In wireless sensor networks,
where the number of nodes and the geographic area of
deployment are expected to be large, a node’s commu-
nication range is limited, and therefore, we can exploit
spatial reuse for increased performance. Much of recent
research concentrated on just that—"in-network” computa-
tion over multihop wireless networks; see Giridhar and
Kumar [1], Khude et al. [2], Kanoria and Manjunath [10],
Kamath and Manjunath [11]. Work on in-network compu-
tation on multihop networks began by assuming effectively
noise-free links. A function h(x) is divisible if h(x) =
P(h(x1),...,h(xk)) for some function 1, where xi, ..
is a partition of the elements of x. Giridhar and Kumar [1]
analyzed the computation of divisible functions and
obtained many of the first results. They showed that the
histogram can be computed with the refresh rate of
Q(1/logn). Furthermore, they showed that every strategy
that computes the histogram has a refresh rate of
O(1/logn); thus, their scheme is order optimal. They also
considered computation of two categories of symmetric
and divisible functions. Type-sensitive functions are maxi-
mally hard to transport; their maximum refresh rate is
O(1/logn). Type-threshold functions are comparatively easy
with a refresh rate of ©(1/loglogn). The objective in all the
above is accurate computation, ie. all elements of x
influence the final value of h(x). This requires that the
network be connected with high probability and hence the
transmission range of the nodes should be scaled such that
the network is connected with probability tending to 1 as

5 XK

n — oo. Hence, the network would be operating in the
connectivity regime with r,, = ©(y/logn/n). With this choice
of the transmission range, it can be shown that the degree
of almost all nodes in the graph is ©(logn). Since the
degree of the nodes determines the number of simulta-
neous transmissions, this in turn determines the refresh
rate and the delay. Of course, 7, also determines the
energy per transmission and hence 7, determines the
performance. Khude et al. [2], Ying et al. [3], Kanoria and
Manjunath [10], and Kamath and Manjunath [11] also
consider the connectivity regime for randomly deployed
networks. (Focusing more on connectivity properties, Ta et
al. [12] study the rapidity of the change from disconnect-
edness to connectedness as a function of r, for finite n.
Diaz et al. [5] study connectivity on mobile random
geometric graphs.)

Subramanian et al. [13] consider arbitrary graphs, rather
than random geometric graphs, in which the transmission
schedules are constrained by wireless network considera-
tions. If the node degrees are finite, they showed that type-
threshold functions are easier to compute on such graphs
than on random geometric graphs in the connectivity
regime, i.e., they showed a strategy that could provide a
refresh rate of ()(1). They also showed that even on such
graphs, while there are type-sensitive functions for which
the refresh rate is O(1/logn), there are others that can be
computed at refresh rates of (1) if some distortion in the
value of the function is allowed. For example, the majority
function requires a refresh rate of O(1/logn), while the
sample mean to a finite precision can be computed at a
refresh rate of 2(1).

This paper is motivated by the above observation as
applied to random geometric graphs. In particular, we note
that if distortion is allowed, we could perhaps ignore data
from some of the nodes in computing the function. Thus,
the first purpose of the paper is to analyze the performance
improvement that comes from ignoring measurements
from a small fraction of nodes in noise-free networks. We
do this by operating not in the connectivity regime but in
the thermodynamic regime. In the thermodynamic regime, the
transmission range of each node is chosen such that the
expected degree of each node is a constant. If the constant is
sufficiently large, then the network enters a supercritical
regime when a phenomenon called percolation occurs where
large pathways emerge. Furthermore, a giant component
containing all but an arbitrarily small fraction of nodes can
be formed when nodes are distributed uniformly in the unit
square. However, the giant component may have nodes
with degrees growing with » in an unbounded fashion. We
show that this giant component can be pruned to obtain a
subgraph with (1 — ¢§)n nodes and whose maximum degree
is bounded by a constant. This is a crucial step that ensures
that there are no hot-spots or bottlenecks in the network. The
distributed computation algorithm is then described on this
pruned giant component to obtain an O(1) refresh rate and
an arbitrarily small distortion in the value of the function.
In addition to improved refresh rate, an added benefit of
operating in the percolation regime is that the radius for
communication is smaller than that in the connectivity
regime, resulting in smaller transmission or reception
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energy. Note that we do not consider aggregation costs, a
topic studied by Luo et al. [14].

The same idea—operation in the supercritical thermo-
dynamic regime and on a giant component with almost all
nodes—was used by Dousse et al. [15] to solve another
problem: demonstration of O(1) data rate for a single flow
between an arbitrary pair of nodes in the giant component.
For another problem of n simultaneous flows, if no node
can be discarded and each node is the source for a flow,
Gupta and Kumar [16] show that the rate per flow is at most
O(1/+/n). Franceschetti et al. [17] show that Q(1/y/n) is
indeed achievable by operating mostly in the supercritical
thermodynamic regime; however, a nontrivial fraction of
nodes do transmit their data over the much larger distance
of O(logn/+/n) units.

In this paper, we also consider links with errors, i.e.,
noisy networks. The previous literature on computing in
noisy networks [3], [10], [18] built on the works of Gallager
[6] and Newman [9]. Ying et al. [3] described a protocol to
compute the histogram in multihop networks with noisy
links. This protocol requires O(nloglogn)-bit transmissions
to obtain the correct histogram at the sink with probability
tending to 1 as n increases. Kanoria and Manjunath [10]
described a protocol to calculate the MAX in a multihop
network with noisy links in O(n) transmissions with
probability tending to 1. Using the results of Goyal et al.
[19], Dutta et al. [18] showed that the protocol of Ying et al.
[3] is order optimal over all possible protocols. The second
purpose of this paper is to characterize the performance for
noisy networks in the percolation regime.

Note that in the connectivity regime, an error in the
computed function occurs only when the network is
disconnected, and this event has a vanishingly small
probability. In the percolation regime, the error is due to a
fraction of the nodes not being connected to the giant
component. The fraction can be made arbitrarily small, but
is nonvanishing. Moreover, the size of the coverage hole,
i.e., the area not covered by these sensors in the dense
network, arising as a consequence of the dropping of nodes
can also be made arbitrarily small.

The rest of the paper is organized as follows: in Section 2,
we describe the model. Using results from percolation
theory and the theory of random geometric graphs, we
obtain the properties of the largest component in the
network when operating in the percolation regime. In
Section 3, we show how to identify a bounded degree
subgraph with (1 — ¢)n nodes, for any ¢ > 0. In Section 4,
we derive the performance of distributed computation over
the obtained bounded degree subgraph when the links are
noise free and when they are noisy. We end the paper with
some concluding remarks in Section 5.

2 LARGEST COMPONENT AND NODES WITH
BOUNDED DEGREE

In this section, we use percolation theory to obtain two
concentration results—the fraction of nodes in the largest
connected component of a random geometric graph and the
fraction of nodes with degree at most a given number. Many
of the results in this section rely on the results of Penrose [20]
and familiarity with that material will be useful here.

JANUARY 2011

We begin with some notation. A sequence of random
variables {X,},., converges to a constant a in the sense of
complete converge%ce, denoted X,, — ainc.c., if forevery 6 > 0
we have > Pr{|X, —a| > 6} < co. The Borel-Cantelli
lemma then shows that if X,, — ain c.c., then X,, — a almost
surely. Thus, convergence in c.c. is stronger than almost sure
convergence. Wesay X,, < ainc.c.if > o2, Pr{X, > a} < oc;
similarly, define X, > a in c.c.

Let G(£,;r,) denote the random geometric graph with
points denoted as £,, = {l1,1s,...,1,}, distributed indepen-
dently and uniformly on C, and communication range .
The vertex set is {1,2,...,n}, and the edge set is made of
pairs of vertices that are within r,, of each other in euclidean
distance. We will operate in the thermodynamic regime and
choose the transmission range such that the average
number of neighbors of each node is 7, i.e., the transmis-
sion range is a function of n and of A and is denoted by
rn(A). Clearly, 7, () should satisfy

nri(\) =X, Vo (1)

Let L ,(\) be the size of the largest component in G(L; 7).
Define Zj,()) to be the number of nodes in G(L,;r,(\))
whose degrees strictly exceed k. The main result of this
section is as follows:

Theorem 1. For every 6, > 0, there exists a sufficiently large
(but finite) X\ and sufficiently large (but finite) k such that the
sequence of graphs G(L,;r,()\)) (indexed by n) satisfies the
following:

1. The fraction of nodes in the largest component is at
least 1 — 6, ie., n™ Ly, (\) > (1 —§6), in cc.

2. The fraction of nodes with degree upper bounded by k
is at least 1 —¢, i.e., n ' Z;,,(\) <e¢, in c.c.

Theorem 1 above is not new. As we will see below, it is a
consequence of some results proved in [20]. But Theorem 1
provides a precise summary of what we need. The way to
its proof sheds light on an issue related to maximum node
degrees and the occurrence of hot-spots, which we resolve
in the next section.

To prove Theorem 1, we use the standard two-step
technique from percolation theory: first, prove the result for
a related graph where the nodes are placed according to a
Poisson point process on IR? with intensity \. Next, this is
related to the corresponding result on the random geo-
metric graph where the points are distributed uniformly on
C using a scaling and a de-Poissonization argument.

Consider the Poisson point process H, on IR? with
intensity A > 0 and add the origin to it to get the process
H) 0. The random geometric graph G(Hy ;1) is defined by a
vertex set whose points are those in H), and an edge set
consisting of the pairs of vertices that are at most a unit
distance apart. For k € IN, let pi(\) denote the probability
that the component containing the origin has exactly k£ nodes.
Let p.(A) denote the (continuum) percolation probability
that the origin lies in an infinite component of G(H,; 1), i.e.,
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The critical value of A for percolation in G(Hyp;1) is
denoted by . and is defined by

Ae = 1nf{A > 0| poo () > 0}.

A fundamental result of continuum percolation theory is
that 0 < A, < co for the two-dimensional set-up under
consideration (and for higher dimensions). Furthermore,
we also have the following lemma, a restatement of [20,
Proposition 9.21]:

Lemma 1. ([20, Proposition 9.21]) The percolation probability
satisfies

Alim Poo(A) = 1.

The next lemma relates the percolation probability p.())
on G(Hyp;1) to the size of connected components of
G(Ln;rn(N)).

Lemma 2. Let r,(\) be a sequence as in (1) with X\ > A.. For
every 6 >0, the size of the largest component L, ,(\) of
Ll,n()\)

G(Ly;rn(N)) satisfies
lim su ilo'Pr{ 71’>5} <0
gV R | P VI

Proof. This is a special case of [20, Theorem 11.9] applied to
the unit density for node deployment in C. It is also
proved in [21]. O

Thus, by choosing a suitable A > A\, we can make the
number of nodes in the largest component (that also
contains the sink node) to be arbitrarily close to np.(\)
with probability approaching 1. Since p.(A) — 1, the size
of this giant component can be made arbitrarily close to n.
However, this is not sufficient—the largest component
does not necessarily have bounded degree because, from
[20, Theorem 6.10], the maximum vertex degree of
G(Ly;mn (X)), denoted by A, ()), satisfies

lim (An()\)(log logn — log \)
logn

lim ) = 1 in probability, (2)
ie., the maximum vertex degree A, (\) ~ logn/(loglogn —
log A) and it may belong to the largest component. This may
result in routing hot-spots that can affect the refresh rate.
Fortunately, the number of nodes with degree larger than a
fixed k (independent of n) can be identified in a rather
strong sense. Recall that Z;,,, ()) is the number of nodes in
G(Ly;rn(X)) whose degrees strictly exceed k. Its limiting
value is characterized in the following lemma:

Lemma 3. Let Po(t) be a Poisson random variable with the
parameter t. Then, n~'Z.,,(\) — Pr{Po(wA) > k} in c.c.

Proof. This is a special case of [20, Theorem 4.2] applied to
the unit density for node deployment in C. ]

Thus, the limiting fraction of nodes with degree greater
than k is given by the tail distribution at k of a Poisson
random variable with mean 7. Consequently, for a fixed A,
Zy, ), decreases with k.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. 1) From Lemma 1, for any 6 > 0, we
can choose ) sufficiently large so that

Poo(N) > (1= 8)"/7. (3)

By Lemma 2, there is an « >0 such that for all
sufficiently large n, we have
Pr{n~'Li,(\) < (1 - 6)"°p

From (4) and (3), we infer that

(W)} < eV (4)

Pri{n7'Li,,(\) < (1 -6} <e V"

holds for all n sufficiently large. The upper bound is
summable in n and so the fraction of nodes in the largest
component, n~ 'L, ,()), is at least 1 — § in c.c.

2) We now use Lemma 3. Because

o0

Pr{Po(m\) > k} = e ™

k) ()

=k

can be made as small as we wish by choosing a large
enough k, in particular less than &, we can conclude that
the fraction of the nodes with degree at most & is at least
1—-eincec. O

Thus, for any 6, > 0, by choosing a suitable A we can
have at least (1 — 6)n nodes in the largest component and by
choosing a sufficiently large k, independent of n, we can
ensure that at least (1 — ¢)n nodes have degree less than or
equal to k. We cannot simply remove the nodes with degree
greater than k because that could break up the giant
component into much smaller components. We next see
how to prune the largest component to get a subgraph of
bounded degree and still have an arbitrarily large fraction
of nodes in the component.

3 BOUNDED DEGREE SUBGRAPH WITH ALMOST
ALL NODES

In this section, we describe the pruning procedure to get a
bounded degree subgraph with almost all nodes.

Let a given ¢ > 0 denote the fraction of nodes we can
neglect. Choose positive § and ¢ so that § + ¢ < §'. For this §
and ¢, let us fix A and k so that statements (1) and (2) of
Theorem 1 hold.

Consider 7,()\). Set s,(\) = [v2/r,(\)]" and fix n
sufficiently large so that the following holds:

(2/3)ra(N) < su(N) < (1/\/5)7%()‘)-

Tessellate C' into (an integral number of) small square cells
of side s,(\). As v/2s,(\) < r,()), all nodes within a cell
communicate. Also, r,(A\) < (3/2)s,()\), and thus, for a
given node in a cell, its farthest neighbor is in a cell that is at
most two layers of cells away. See Fig. 1; there are at most
25 cells that can have neighbors of a node in a given cell.

If a cell contains k+ 1 or more nodes, remove all but
knodes, i.e., “prune” these cells. If a cell contains k or fewer
nodes, leave them unchanged. The nodes that get removed
necessarily had degree k + 1 or higher in the original graph,
and therefore, the number of nodes that get removed is
upper bounded by Z,(A). Consequently, we obtain a
subgraph with at least n — Zj,,,(\) nodes.
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Fig. 1. Cells are of side s, in C. The inner and outer nearly circular
curves are the communication boundaries to nodes in the shaded cell in
center under communication radii r, and 3r,, respectively. A node in
the shaded cell cannot communicate with any node outside of the
5 x 5 cells, when the communication radius is r,. It can communicate
as indicated by the curved arrow with a node in the second shaded cell.
With the 3r, radius, any surviving node in the central cell can
communicate with any surviving node in the second shaded cell.

Next, with the same node locations for the surviving
nodes, consider a subgraph with edges arising from a
connection radius r,(9). Since 7,(9A) = 3r,(A) < 4.5s,(N),
there are at most (2[4.5] 4+ 1)* = 121 cells that contain nodes
adjacent to a node in any given cell, under the communica-
tion radius r,(9\); see Fig. 1. As a consequence of the
observation that there are at most £ nodes in each pruned
cell, the maximum degree of the new graph is upper
bounded by &' = 121k.

We next claim that the largest component in the resulting
graph (with communication radius r,(9A)) has at least
L1, (X) — Zi,,(X) nodes. To see this, mark those cells in the
tessellation that contain at least one node belonging to the
largest component, under the communication radius r,(A).
The number of nodes in this component is L, ()). Clearly,
either all nodes in a marked cell belong to this component, or
none of them belong to it. The pruning procedure removes
at most Zj,,(A) nodes, and therefore, the marked cells have a
total of at least Ly ,,(A\) — Zi,(A) nodes with each marked cell
containing at least one node. While the surviving nodes in
the marked cells may not form a connected component
under r,, () due to the possibility of removal of some crucial
connecting nodes, a communication range of 7, (9\) restores
communication across such marked and communicating
cells. This is because if two nodes communicated in the
original graph (see the smaller of the curved arrows between
the shaded cells in Fig. 1), two surviving nodes from the
respective cells communicate under the larger communica-
tion range because r,(9)\) > 31/2s,()\) (see the larger of the
curved arrows in Fig. 1). Consequently, the surviving nodes
in the marked cells now belong to a connected component in
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the new graph; this component, therefore, has at least
L1 n(N) — Zin(N). From Theorem 1,

nil(Ll,n()‘) - Z/c7rl(/\)) >1-— b—e>1— &

in the c.c. sense. We, thus, have the following theorem:

Theorem 2. For every & > 0, there exist sufficiently large but
finite X' and k' such that every graph in the sequence of
random Qeometric graphs G(L,;r, (X)) contains a subgraph
G(Va; (X)), where V,, C L, with the following properties:

1. the subgraph is connected,

2. the maximum degree of the subgraph is upper bounded
by ¥,

3. |Vul/m>1-6incec.

Remarks.

1. Note that after the above pruning, as many as
&'n nodes may not be in V;,. So, a nonvanishing
fraction of nodes are left out. But we can make
this fraction arbitrarily close to 0.

2. An immediate consequence of the Borel-Cantelli
lemma is that, with probability 1, the bounded
degree subgraphs satisfy |V,|/n>1—¢" for all
sufficiently large n.

4 COMPUTATION OF SYMMETRIC FUNCTIONS ON
THE BOUNDED DEGREE GRAPH

We now demonstrate the usefulness of the above-constructed
bounded degree subgraph. We focus on the computation of
the histogram of observations made by nodes. Instead of
requiring exact computation of the histogram, we allow a
probably approximately correct (PAC) computation. We first
consider the case of a network without communication
errors, and then move on to the case with errors.

Let the n nodes be located at Iy, 1y, ..., [,. Recall that X is
the alphabet of observations with |X|=M < oc0. If x =
(1, 22,...,x,) are the observations at the n nodes with
z; € X, the histogram is given by

h(m;x) :=n"" Z Hz; =m}, meX.
=1

If a protocol computes this as h(;x), the error in the
histogram is

en(x) := max |h(m; x) — h(m;x)|.
meX

Typical results in the literature for function computation
operate on connected networks. The radius of communica-
tion is chosen to be in the connectivity regime. Computation
is done on the largest component without error. The
probability that the network does not form a single
connected component may be positive for each finite n,
but vanishes as n — oo, so that Pr{e, > 0} — 0. Our PAC
relaxation allows Pr{e, > 6§} < ¢ for all sufficiently large n
for any given § € (0,1) and ¢ € (0,1).

4.1 Error-Free Networks

We first consider error-free networks where any transmitter
i can successfully communicate W > 0 bits per slot to a
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receiver j if ||l; — ;]| <7, and ||l; — I;]] > (1 + A)r,,, where
k#1i is the node nearest to j that is simultaneously
transmitting and A > 0 is a specified constant.'

Theorem 3. For error-free networks, for any 6 € (0,1) and
e € (0,1), there is a protocol that computes the histogram with
the following performances:

1. Pr{e, > 6} < € for all sufficiently large n.
The refresh rate is ©(1) per histogram sample.

3. The maximum transmission range is O(1/+/n). The
number of transmissions and receptions are both ©(n)
per histogram sample.

4.  The delay is ©(y/n) per histogram sample.

Remark.

1. Ying et al. [3] assume the following energy
consumption model: each transmission results in
an expenditure of ©(r¢) energy units, where d > 2
is the path loss exponent” As the maximum
communication range is r, = O(1/y/n), the total
energy consumed by the network is O(n) x
o((1/vn)") = O(n'~2).

Proof of Theorem 3. Let |X|=M. Let § =6/2 and
¢ =¢e/M. By Theorem 2, there is a finite X' such that,
with probability 1, there exists a connected subgraph of
bounded degree G(V,;r,(\)) having |[V,|=n">(1-
8")n nodes, for all sufficiently large n. Next, we compute
the histogram over G(V,,;r,(\)).

Histogram on G(V,,; (X)) and to a finite precision (to
within §") can be computed using the algorithm MEAN (see
the Appendix). Indeed, compute the histogram A (-;x) in
M rounds numbered 1,2, ..., M and using the algorithm
MEAN in each round, as follows: in round m, compute an
estimate a,, of the sample mean a,, := (1/n') 3y, yi(m),
where y;(m) = (14 1{x; = m}) € {1,2} is binary valued,
and m=1,2,..., M. Note that the true sample mean
am, € [1,2]. Then set

h(m;x) == (n'/n)(@m — 1), 1<m < M.

Observe that the error in the output of the algorithm
MEAN is given by

. 1
am - y1(m)
i€V,
R 1
=~ (4 L = m))
i€V,
—_ A 1 p—
—am—l—ﬁgl{x, =m}
N 1
J— ! —
= (n/n")h(m;x) HZ Hz; =m}

1. This is the protocol model of Gupta and Kumar [16].

2. This is valid under the far-field assumption. In the physical model of
Gupta and Kumar [16] with d > 2, and under the far-field assumption, each
receiver sees a signal-to-interference-and-noise ratio lower bounded by a
strictly positive constant, yielding a nonzero transmission rate from
Shannon’s single link capacity formula for an additive noise channel. See
Section 5 for remarks on the far-field assumption and on the validity of our
results for extended networks.

Theorem 5 of the Appendix ensures that for each m,
the event

<4

(/Y %) — - > 1 = m}

i€V,

occurs with probability of at least 1 —¢’, and therefore,
the event

~ 1
h(m;x) — EZ H{x; = m}‘
i€V,

(6)

!

<¢

(n/n' ) (m; x) — %Z Vai = m)

i€V,

occurs with probability of at least 1 — ¢’. By the triangle
inequality, the fact that (1 —n’/n) < &, and (6), we have
that the event

[h(m;x) — h(m;x)| <

h(m;x) —%Z Wz = m}‘

i€V,
~ 1
+ |h(m;x) —fz Wz = m}‘
"iev,
o
< n-n_ o
<8 +¢
=0

occurs with probability of at least 1 —¢’. Accumulating
the probabilities of the undesirable events, we deduce
that all components of the histogram are within ¢ of the
true value on G(L,;r,()")), with probability exceeding
1 — Mée' =1 — e. This proves the first statement.

The observations in the Appendix on the algorithm
MEAN imply that a (1) refresh rate is achieved. We
summarize the main reasons here. Each node in any cell
of the tessellation makes a O(1) number of transmissions
per histogram sample. The computation is via local
computation of the minimum function, and thus, the
locally computed value that a relay node passes on to a
relay parent in the neighboring cell closer to the sink
does not grow in size. The waiting time for a node to
communicate to the relay node in its cell is O(1) because
G(Vy;mn(XN)) is of bounded degree. Cells operate in
parallel with interfering cells taking turns in a time-
multiplexed fashion. Intercell transmissions of the locally
computed minima take place in a pipelined fashion
toward the destination. All of these imply the (1)
refresh rate and the second statement follows.

By our construction of G(V,;r,())), each node
communicates with a node at most O(1/,/n) away. For
each histogram sample, the number of transmissions per
node is O(1). The number of receptions per node is also
O(1). Since n' >n(l1—¢) nodes participate in the
computations, the total number of transmissions and
receptions per histogram sample are both ©(n). The third
statement of the theorem follows.

Transmission from a node to the relay node in its cell
requires O(1) time. Once in the pipeline, the commu-
nication from a relay node to its parent moves the data
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one hop and ©(1/4/n) distance units closer to the sink in
O(1) time. Hence, the total end-to-end delay is the
inverse of the number of hops, ©(y/n). O

4.2 Networks with Noisy Links

Our model of a noisy network is as follows: receiver j’'s
output of a transmitted symbol from the transmitter i is an
erasure with probability 1 if either 1) ||l; — | > r, or
2) there is another transmitter k # ¢ within distance (1 +
A)r, of the receiver j. Otherwise, receiver j’'s output is
taken to be the output of a discrete memoryless channel
with strictly positive capacity. The latter discrete memory-
less channels across receivers and time instants are taken to
be independent and statistically identical. They model the
receivers’ residual noise. (The overall channel model across
receivers is clearly not independent.) If several receivers are
within range to be able to receive a broadcast symbol, and
an erasure of the type described above does not occur, the
output symbols at the receivers are taken to be statistically
independent, given the input.

Theorem 4. For the network with errors, given any 6 € (0,1)
and €€ (0,1), there is a protocol that computes the
histogram with the following performances:

1. Pr{e, > 6} < ¢ for all sufficiently large n.

2. The refresh rate is ©(1) slots per histogram sample.

3. The maximum transmission range is O(1/+/n). The
number of transmissions and receptions are both ©(n)
per histogram sample.

4. The delay is ©(y/nlogn) per histogram sample.

Remarks.

1. The only difference with Theorem 3 is the
increase in delay by a factor logn. This is due to
the use of block computing to combat link errors.
It would be interesting to characterize the trade-
off between delay, transmission energy, and
refresh rate.

2. The total energy consumed by the network is

O(n) x O((1/vn)") = O(n'~%/?)

as against the larger O(n'~%/2(logn)”?) for the
block-based approach in [3, Theorem 8]; this
provides a factor of (log n)d/ 2 improvement under
the energy consumption model of Ying et al. [3]
for dense networks.

Proof of Theorem 4. Let |X| =M. Let & =§/2 and
¢ =¢/(M+1). As in the proof of Theorem 3, the PAC
histogram is computed on the connected bounded degree
subgraph having at least 1 — ¢’ fraction of the nodes. This
event occurs for all sufficiently large n, with probability 1.
Yet again, an average computation via computation of
several minima (as in the proof of Theorem 4) is used.
However, these are done for a block of length [logn|
input samples.

The procedure to compute the [log n] histograms will
generate several bits of data that need to be sent to the sink
node. In the presence of transmission errors, but by using
block codes, we claim that all these bits can arrive without
error at the destination, with probability of at least 1 —¢’.
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Assume that the claim holds. Then, for a particular
histogram sample, there are a total of M + 1 undesirable
events. Either the bits arrive in error, which has the
probability at most €’ on account of the claim, or (6) does
not hold for one of the M components of the histogram in
the randomized procedure MEAN of the Appendix,
conditioned on the event that the bits were received
correctly at the sink. Each of the latter events is also upper
bounded by ¢’ and there are at most M components for the
particular histogram sample. Accumulating the probabil-
ities of the undesirable events, and as in Theorem 3, we see
that all the components of the computed histogram are
within 2¢' = 6 of the true histogram, with probability
exceeding 1 — (M + 1) =1—e.

We now proceed to prove the claim.

Form blocks of [logn]| samples. Compute the average
via several rounds of computation of the minimum
function, as in the proof of Theorem 3, but with the
following modification. For each transmitted bit in the
error-free case, we now have a block of [logn] bits
corresponding to [logn] samples.

The following lemma then guarantees that the prob-
ability of decoding error for a block can be made small.
Thislemma is the same as [3, Lemma 1]. See [22] for a proof.

Lemma 4 (Gallager's Coding Theorem). Given any discrete
memoryless channel with capacity C >0, any positive
integer N, any positive rate R < C, there exist block codes
with 2NF codewords of length N for which the decoding error
probability of each codeword is at most 4e~NPr(F) where
E.(R) is a nonincreasing function of R.

If a code rate of R < C as per Lemma 4 is used, then
N = [logn|/R bits per block are input to the channel.
Choose R so that E.(R)/R > 1+ v for some v > 0.

We next bound the total transmissions corresponding
to these [logn] histogram samples, across the entire
network. The procedure for data flow is as follows: the
large square C is partitioned into at most n/(4\) cells
(see the discussion in the Appendix). There is a
corresponding cell graph rooted at the cell with the sink
node, as discussed in the proof of Theorem 3. Each node
in a particular cell sends its data to a designated relay
node in the cell, which then relays it to a designated relay
parent in the parent cell of the cell graph. Thus, data will
flow in a pipelined fashion toward the sink. The number
of transmissions in each cell per histogram sample is
bounded as follows:

1. Data from a relay parent in the cell should be
conveyed to the cell’s relay. Since this cell has a
bounded number of adjacent cells, say B, there are
at most B such transmissions. (Adjacency is on the
cell graph.)

2. Each node in the cell has to send its data to the relay.
But by our construction, there are only a bounded
number of nodes in a cell; call it By. So there are at
most B, such transmissions.

3. The relay will consolidate the data (by computing
the componentwise minimum) and will send the
results to its relay parent in the adjacent cell closer to
the sink. This requires one transmission.
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Thus, we have a total of (B; + By + 1) sets of transmis-
sions per cell per histogram sample. The algorithm
MEAN of the Appendix is such that each transmission set
per histogram requires O(1) bits, say Bs bits, in the
noiseless case. So the total number of bits is (B; + By +
1)Bs bits per cell per histogram sample.

Bring back coding blocks; we have a total of (B +
B, + 1)Bs blocks of size [logn] per cell. As there are at
most n/(4A) cells, the union bound yields that the overall
probability of error is upper bounded by

%(31 + By +1)Bs - 4exp{_W}
< 42 (B1 + By +1)B;3 - 4exp{—(logn)(1 + )}
= O(n_7’)
<¢

)

where the second inequality follows because E,(R)/R >
1 + . The last inequality holds for all sufficiently large 7.
This proves the claim, and the proof of the Theorem is
complete. o

Some remarks on the choice of ©([logn]) block length are
in order. Observe that the number of coding blocks received
across all cells is linear in n. To keep the overall error under
control, each coding block should have a probability of error
o(1/n) so that n-o(1/n) =o0(1). From Gallager’s coding
theorem, a block length of ([logn]) is, therefore, needed
for a faster than 1/n decay in per-block error probability.

5 CoONCLUDING REMARKS

We conclude the paper with the following remarks:

1. PAC relaxation enables a ©(1) refresh rate for the
histogram on the random geometric graph. In
contrast, exact computation where the computed
value equals the true value with probability ap-
proaching 1 as n — oo requires the graph to be
connected. This implies either node-dependent trans-
mission ranges or a uniformly larger transmission
range r, = O(y/(logn/n)), and a reduced refresh rate
©(1/logn) [1]. PAC relaxation, thus, results in a
speed-up in refresh rate by a factor of logn.

2. Our route to compute the histogram was via the
mean function and uses the algorithm MEAN of
Subramanian et al. [13]; see also the Appendix. This
was already known to give a O(1) refresh rate on
graphs with bounded degree. Our main contribution
is, thus, the construction of a bounded degree
subgraph on the random geometric graph with a
significant fraction of the nodes. We then used this
and the algorithm MEAN of Subramanian et al. to
argue that the ©(1) refresh rate is possible on a
random geometric graph, a loglogn improvement
over [13, Claim 2].

3. Given that each of the |X| components of the
histogram may be quantized to at most [1/6] levels
regardless of n, the ©(1) rate may not appear
surprising at first glance. However, the problem is
that this information is distributed (in the form of one

sample at each node), and the computation algorithm
has to aggregate this information after paying at most
a constant factor penalty. In contrast, exact histogram
has entropy (logn) when the samples are, for
example, independent and identically distributed
with a nontrivial probability mass function. (This
too would imply an O(1/logn) refresh rate on exact
histogram because the sink node has a reception
bottleneck of O(1) bits per unit time.)

4. Any continuous function of the histogram can be
computed in a PAC fashion at a refresh rate of O(1)
with other performances same as reported in
Theorems 3 and 4. Examples of such functions are
mean, sample variance, moments of any finite order.
However, functions of the histogram which are
discontinuous—e.g., median, mode, and parity—
may result in arbitrarily large errors if computed
using the PAC histogram.

5. Median and mode are type-sensitive functions (see
[1]). Computation of type-threshold functions (again
see [1]) may also result in arbitrarily large errors. For
example, if we are interested in the minimum
function, then a realization with a zero outside the
giant component and all 1s in the giant component’
will lead to an error of 1. While our approach to
compute the average does proceed via computation
of several minima, it is not the minimum of the
observations that matter, but minima of some
randomly generated quantities that aid in the
computation of the average.

6. Exact computation of histogram or a type-sensitive
function requires all nodes to participate. The scheme
of Franceschetti et al. [17] operates in the percolative
regime, as does ours. Nodes outside their “highway
system” also communicate, but over a larger range of
O(logn/+/n) in a dense network. A similar approach
that includes nodes outside the bounded degree
subgraph will result in higher energy consumption
and reduced refresh rate of O(1/(logn)?). The latter is
because there are likely to be &n x (logn/y/n)* =
O(logn)* nodes outside the giant component and
within the same communication area. They will
contend locally for the medium in order to drain
their data to the highway system. Each link however
is of finite capacity under the protocol model; this
gives the O(1/(logn)*) bound on the refresh rate.

7. Far-field assumption: Our analysis was done for a
dense network, n nodes in C with n — oo. The far-
field assumption is not valid for dense networks as n
increases, and so the model of ©(r?) for energy
expenditure is not entirely accurate. Theorems 3 and
4 of course hold because we did not make the far-
field assumption. Indeed, we assumed only a
constant throughput per link for distances up to 7,
and not O(—log r,) suggested by Shannon'’s capacity
formula under the far-field assumption.

8. Extended networks: It is easy to see that all our
arguments and results apply with straightforward

3. Recall that no assumption is made on the statistics of the observation.

The probabilistic nature of our PAC results arises only from requirements
on network formation and probabilistic computation.
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modifications to the extended network where
n nodes are deployed in [0,/n]° with n — occ.
Results in Theorems 3 and 4 hold with the
modification that the maximum transmission range
is O(1) (cf. O(1/4/n) for a dense network). The
energy expended in transmissions is now nO(1) =
O(n) when the path loss exponent d >2 (cf.
nO((1/y/n)") = O(n*~9/2) for a dense network).

APPENDIX

PAC AVERAGE USING SEVERAL COMPUTATIONS OF
MiNnimum FUNCTION

Here, we describe the PAC algorithm of Subramanian et al.
[13] which, in turn, relies on an algorithm of Mosk-Aoyama
and Shah [23].

For a natural number L and positive real P, let Q(-)
denote a quantization of the interval [0,£] into L intervals;
a point in any interval maps to the midpoint of the
interval. Points beyond P/n are mapped to the location
where P/n is mapped.

Algorithm MEAN

1. Each node i has value y; € {1,2}.

2. Each node ¢ generates R independent exponentially
distributed random numbers W7, Wi, ..., W}, with
parameter y; (i.e., mean 1/y;).

3. Each node ¢ quantizes the random numbers to get
Wi = Q(W!). Note that each W' is represented using
at most [log, L] bits.

4. Foreachroundr = 1,2, ..., R, the nodes communicate
over the multihop network so that the sink node
evaluates M, = min,;Wj in the rth round. As the min
function is a type-threshold divisible function, this can
be done at a refresh rate of ©(1) with ©(n) transmis-
sions over a noiseless network of bounded degree.

5. The sink node estimates the sum y:= > | y; as
g=(R'°%, M) and the mean as j/n.

An alternative to computing the minimum of the
exponentials would be to compute the maximum. The
number of quantization bits and the number of repetitions
for a specified error are available in [24].

Multihop communication in Step 4 is as in Giridhar and
Kumar [1] (see the proof of [1, Theorem 1]). A short
summary is now provided for completeness. The region C
is tessellated into cells such that nodes within a cell can
communicate. Cells sufficiently far apart will be simulta-
neously scheduled for transmission. In each cell, nodes take
turns to send their random variables (rth round) to a
nominated relay node in the cell. There is also an associated
cell tree rooted at the cell containing the sink node. Two
cells have an edge if there is a pair of nodes, one in each cell
that communicate. In each cell, in addition to a relay node,
there is also one relay parent for each neighboring cell one
level deeper from the root. To any cell, there are at most a
bounded number B; of such neighboring cells. Each relay
node collects mth round data from other relay parents in the
cell, other nodes in the cell, and computes the mth round
minimum of all nodes in the cell and of all nodes in all
descendant cells. It then transmits this to the relay parent in
the parent cell (that is one level closer to the sink). All of
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these take at most O(1) steps in the pipeline because the
graph is of bounded degree. Since the locally computed
function is the minimum function, there is no growth in the
function value as the global mth round minimum propa-
gates through the pipeline to the sink. There is of course a
delay of ©(/n) time units because each link has throughput
O(1) per time unit and transmissions are over a range

O(1//n).
The following result validates the algorithm. We refer the
reader to [13] for a proof.

Theorem 5. ([13, Claim 1]). Consider a connected graph of n
nodes. For any €,6 > 0, there exist a positive integer L and
positive reals R and P such that Pr{n=|j —y| > 6} <e.
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