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The Shannon Cipher System With a Guessing
Wiretapper: General Sources
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Abstract—The Shannon cipher system is studied in the context of
general sources using a notion of computational secrecy introduced
by Merhav and Arikan. Bounds are derived on limiting exponents
of guessing moments for general sources. The bounds are shown
to be tight for i.i.d., Markov, and unifilar sources, thus recovering
some known results. A close relationship between error exponents
and correct decoding exponents for fixed rate source compression
on the one hand and exponents for guessing moments on the other
hand is established.

Index Terms—Cipher systems, correct decoding exponent,
error exponent, fixed-rate source coding, information spectrum,
key rate, large deviations, length function, secrecy, sources with
memory.

I. INTRODUCTION

W E consider the classical cipher system of Shannon [1].
Let be a message where each

letter takes values on a finite set . This message should be
communicated securely from a transmitter to a receiver, both
of which have access to a common secure key of purely
random bits independent of . The transmitter computes the
cryptogram and sends it to the receiver over a
public channel. The cryptogram may be of variable length. The
encryption function is invertible for any fixed . The re-
ceiver, knowing and , computes . The
functions and are published. A wiretapping attacker has
access to the cryptogram , knows and , and attempts
to identify without knowledge of . The attacker can use
knowledge of the statistics of . We assume that the attacker
has a test mechanism that tells him whether a guess is cor-
rect or not. For example, the attacker may wish to attack an en-
crypted password or personal information to gain access to, say,
a computer account, or a bank account via internet, or a clas-
sified database [2]. In these situations, successful entry into the
system provides the natural test mechanism. We assume that the
attacker is allowed an unlimited number of guesses. The key rate
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for the cipher system is nats1 of secrecy per mes-
sage (or source) letter.

Merhav and Arikan [2] studied discrete memoryless sources
(DMS) in the above setting and characterized the best attainable
moments of the number of guesses required by an attacker. In
particular, they showed that for a DMS with the governing single
letter PMF on , the value of the optimal exponent for the th
moment is given by

(1)

The maximization is over all PMFs on is the Shannon
entropy of , and is the Kullback-Leibler divergence
between and . They also showed that increases lin-
early in for , continues to increase in a concave
fashion for , where is a threshold, and is con-
stant for . Unlike the classical equivocation rate analysis,
atypical sequences do affect the behavior of for

and perfect secrecy is obtained, i.e., cryptogram is
uncorrelated with the message, only for .
Merhav and Arikan also determined the best achievable perfor-
mance based on the probability of a large deviation in the number
of guesses, and showed that it equals the Legendre-Fenchel trans-
form of as a function of . Sundaresan [3], [17] extended
the above results to unifilar sources. Hayashi and Yamamoto [4]
proved coding theorems for the Shannon cipher system with cor-
related outputs where the wiretapper is interested in

while the receiver in .
In this paper, we extend Merhav and Arikan’s notion of

computational secrecy [2] to general sources. One motivation is
that secret messages typically come from the natural languages
which are modeled well as sources with memory, for e.g., a
Markov source of appropriate order. Another motivation is that
the study of general sources clearly brings out the connection
between guessing and compression, as discussed next.

As with other studies of general sources, information spectrum
plays crucial role in this paper. We show that is closely
related to (a) the error exponent of a rate- source code, and (b)
the correct decoding exponent of a rate- source code, when
exponentiated probabilities are considered (see Section III.B.2).
In particular, the exponents in (a) and (b) appear in the first and
second terms below when we rewrite for a DMS as

1We shall mostly use nat as the unit of information in this paper by taking
natural logarithms. ���� ���� nats per input symbol is the same as ��� bits per
input symbol.
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This brings out the fundamental connection between source
coding exponents and key-rate constrained guessing exponents.
Further, unlike the case for the probability of a large deviation in
the number of guesses [2, Sec. V], both the error exponent and
the correct decoding exponent determine . We extend
the above result to general sources by getting upper and lower
bounds on . We then show that these are tight for DMS,
Markov and unifilar sources. The bounds may be of interest even
if they are not tight because the upper bound specifies the amount
of effort need by an attacker and the lower bound specifies the
secrecy strength of the cryptosystem to a designer.

The limiting case as in (b) yields classical framework
for probability of correct decoding. This special case is related
to the work of Han [5] and Iriyama [6] who studied the dual
problem of rates required to meet a specified error exponent or
a specified correct decoding exponent.

The paper is organized as follows. Section II relates our
problem to a modification of Campbell’s compression problem
[7]. Section III gives bounds on the limits of exponential rate of
guessing moments, in terms of information spectrum quantities.
Section IV evaluates the bounds for some specific examples.
Section V concludes the paper with additional remarks. Proofs
are given in the Appendices.

II. GUESSING WITH KEY-RATE CONSTRAINTS AND

SOURCE COMPRESSION

In this section, we make a precise statement of our problem,
and establish a connection between guessing and source com-
pression subject to a new cost criterion.

Let denote the set of messages and the set of
PMFs on . By a source, we mean a sequence of PMFs

, where2 . Let denote a message put
out by the source and the secure key of purely random
bits independent of . Recall that the transmitter computes
the cryptogram and sends it to the receiver
over a public channel.

For a given cryptogram , define a guessing strategy

as a bijection that denotes the order in which elements of
are guessed. indicates that is the th

guess, when the cryptogram is . With knowledge of , the
encryption function , and the cryptogram , the attacker
can exhaustively calculate the posterior probabilities of all
plaintexts given the cryptogram. The attacker’s
optimal guessing strategy is then to guess in the decreasing
order of these posterior probabilities . Let us de-
note this optimal attack strategy as . The key rate for the
system is nats of secrecy per source letter. Let

denote the sequence of encryption functions,
where denotes the set of natural numbers. This sequence is
known to the attacker. We assume that the attacker employs the
aforementioned optimal guessing strategy.

2Sometimes we use � in place of � when we refer to the distribution of
the random vector � .

For a given , key rate , define the normalized
guessing exponent

The supremum is taken over all encryption functions. Further
define performance limits of guessing moments as in [2]

(2)

(3)

We next define the related compression quantities. A length
function is a mapping that satisfies Kraft’s in-
equality:

where the code alphabet is taken to be binary and
. (We shall use to denote the inverse of the natural loga-

rithm ). Every length function yields an attack strategy with a
performance characterized as follows.

Proposition 1: Let be any length function on . There
is a guessing list such that for any encryption function ,
we have3

Proof: We use a technique of Merhav and Arikan [2]. Let
denote the guessing function that ignores the cryptogram

and proceeds in the increasing order of lengths. Suppose
proceeds in the order . By [8, Prop. 2], [18],

we need at most guesses to identify (This
is a simple consequence of the fact that there are at most

strings of length less than or equal to ).
As an alternative attack, consider the exhaustive key-search
attack defined by the following guessing list:

where is an arbitrary ordering of the keys. This
strategy identifies in at most
guesses. Finally, let be the list that alternates between
the two lists, skipping those already guessed, i.e., the one that
proceeds in the order

(4)

Clearly, for every , we need at most twice the minimum over
the two individual lists.

We now look at a weak converse in the expected sense to the
above. We first state without proof the following lemma which
associates a length function to any guessing function.

Lemma 2: Given a guessing function , there exists a length
function satisfying

(5)

3We reiterate that � is measured in nats.
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where

For a proof, we refer the reader to [8, Prop. 1], [18]. We then
have the following proposition.

Proposition 3: Fix . There is an encryption
function and a length function such that every guessing
strategy (and in particular ) satisfies

Proof: See Appendix A. The proof is an extension of
Merhav and Arikan’s proof of [2, Th.1] to sources with
memory. The idea is to identify an encryption mechanism that
maps messages of roughly equal probability to each other.
Our proof also suggests an asymptotically optimal encryption
strategy for sources with memory.

Remark 1: Note that , so that

(6)

a fact that will be put to good use in the sequel.
Propositions 1 and 3 naturally suggest the following coding

problem: identify

(7)

The minimum is taken over all possible length functions.
We may interpret the cost of using length as being

, i.e., the cost is exponential in ,
but saturates at and so all lengths larger than nats
(i.e., bits) enjoy the saturated cost. Then
is the minimum normalized exponent of the th moment of this
new compression cost. In analogy with (2) and (3), we define

The following is a corollary to Propositions 1 and 3, and relates
and .

Corollary 4: For a given , we have

(8)

Proof: Let be the length function that achieves
. Using Proposition 1, and after taking expectation,

we have the guessing strategy that satisfies

Take logarithms, normalize by , use and to get
(8).

We now state the equivalence between compression and
guessing.

Theorem 5 (Guessing-Compression Equivalence): For any
and , we have and

.
Proof: From Corollary 4 and (6), magnitude of the differ-

ence between and decays as
and vanishes as .

Thus, the problem of finding the optimal guessing exponent
is the same as that of finding the optimal exponent for the
coding problem in (7). When , the coding problem
in (7) reduces to the one considered by Campbell in [7]; this
is a case where perfect secrecy is obtained and is studied in
[8], [18]. Proposition 1 shows that the optimal length function
attaining the minimum in (7) yields an asymptotically optimal
attack strategy on the cipher system. Moreover, the encryption
strategy in the proof of Proposition 3 (see Appendix A) is
asymptotically optimal, from the designer’s point of view.

In the rest of the paper we focus on the equivalent compres-
sion problem and find bounds on and .

III. GROWTH EXPONENT FOR THE MODIFIED

COMPRESSION PROBLEM

We begin with some words on notation. Recall that
denotes the set of PMFs on . The Shannon entropy for a

is

and the Rényi entropy of order is

(9)

The Kullback-Leibler divergence or relative entropy between
two PMFs and is

where means is absolutely continuous with re-
spect to . We shall use to denote a sequence of
random variables on , with corresponding sequence of prob-
ability measures denoted by . Thus, is
a source and its -letter message output. Abusing notation,
we let denote the set of all sequences

of probability measures, and for each
, we define
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In the rest of this section is a fixed source. For any
and , define

We next state a large deviation result that plays a key role in
the derivation of bounds on and .

Proposition 6: For all and ,
we have

(10)

(11)

The maximum-achieving distribution in (10) and (11) is the
source given by

(12)

Proof: See Appendix B.

Remark 2: This proposition is a generalization of Iriyama’s
[6, Prop. 1], which is obtained by setting .

A. Upper Bound on

We first obtain an upper bound on . We use to de-
note the expectation with respect to distribution .

Proposition 7 (Upper Bound): Let and . Then

Proof: We first recall the useful variational formula [9,
Prop. 1.4.2]

(13)

for any , where denotes set of real numbers. For
notational convenience, let . Observe
that

(14)

(15)

(16)

(17)

In the above sequence of inequalities, (14) follows from the vari-
ational formula (13) with

Inequality (15) follows from Jensen’s inequality because
is concave for a fixed . Equality (16) follows

from the identity

Equality (17) follows because the term within braces is linear
in for a fixed , concave in for a fixed , and the
sets and are compact and convex; these permit
an interchange of sup and inf, thanks to a minmax theorem [10,
Cor. 2, p. 53]. Taking over , and interchanging the
over and the over , we get

(18)

(19)

(20)

Equality (18) follows because the function inside the inner
braces is concave in , asymptotically linear in (see
proof of [8, Prop. 6], [18]), and is compact; this allows
us to interchange and . Inequality (19) follows because

of expected compression lengths over all prefix codes is
within nats (1 bit) of entropy. The last equality follows
from the well-known variational characterization of Rényi
entropy

(21)
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a fact that can also be gleaned from the variational formula (13).
Divide both sides of (20) by and take limit supremum as

to get

where the last inequality follows from Proposition 6 and the
formula for Rényi entropy. This completes the proof.

From the above proof, it is clear that the upper bound holds
with equality, when Jensen’s inequality holds with equality in
(15), i.e., the random variable
tends asymptotically to a constant. This would happen, for
example, when normalized encoded lengths concentrate around
the entropy rate of the source.

B. Lower Bound on

We now derive a lower bound on . For a given distri-
bution arrange the elements of set in the decreasing
order of their -probabilities as done in Sundaresan [3, Sec.
IV], [3]. Enumerate the sequences from 1 to . Henceforth
refer to a message by its index. Let denote the first

elements in the list. We denote the proba-
bility of this set by , i.e.,

and the probability of the complement of this set by
. Let the restriction of to this set be .

Let denote the length function that attains in (7).
As the length functions are uniquely decipherable we have

.

Proposition 8 (Lower Bound): For a given and rate
, we have

(22)

Remark 3: The first term contains limit infimum of the error
exponent for a rate- source code. The second exponent is the
correct decoding exponent for a rate- code when .

Proof: The variational formula (13) applied to the function
gives

(23)

where the interchange of inf and sup yields the lower bound in
(23). Fix a distribution and consider the first term in (23).
Using the enumeration indicated above, we may write

(24)

(25)

(26)

where in (26), is the conditional distribution of given
. Inequality (24) follows because

with the guessing strategy that guesses in decreasing order
of probabilities. in (25) denotes the length function
given by Lemma 2. Inequality (26) follows from the source
coding theorem’s lower bound. Substitute (26) in (23), nor-
malize by , and take limit infimum to get

may be thought of as a triplet made of and the
restriction of to . We now perform the optimization

(27)

in four steps.
Step 1: We first optimize over permutations of probabilities over
strings. , and remain unchanged
over these permutations. Observe that

and so the maximum for is attained when the permuta-
tion that orders in decreasing order also orders
in decreasing order. In particular, equals .
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Step 2: We now optimize over restriction of to .
For a fixed , the log-sum inequality yields

with equality if and only if for all
.

Step 3: To optimize over , rewrite (27) as

(28)

(29)

(30)

Equality (28) is obtained by substituting the attained lower
bound in Step 2. In (29), and denote conditional
distributions of and given and ,
respectively, where as argued in Step
1. denotes the divergence between binary
random variables whose probabilities are
and respectively. Finally we used variational
characterization of Rényi entropy given in (21) to arrive at (30).
Step 4: We now optimize over . Let be a binary
random variable defined as

By we mean the expectation of with respect to the
above distribution. Since is a positive random variable, the
variational formula yields

Continuing with the chain of equalities from (30), we get

(31)

Finally, normalize both sides of (31) by , take limit infimum,
and apply [11, Lemma 1.2.15], which states that the exponential
rate of a sum is governed by the maximum of the individual
terms’ exponential rates, to get the desired result.

In the subsequent subsections we further lower bound each of
the two terms under max on the right-hand side of (22). For an
arbitrary source, we first recall the source coding error exponent.
We also identify the growth rate of sum of exponentiated prob-
abilities of the correct decoding set. We then relate these to the
terms in the lower bound obtained in (22). We largely follow the
approach and notation of Iriyama [6], which we now describe.

Given and ,
we define the upper divergence and lower divergence

by

For a , denote the spectral sup-entropy-rate
[5, Sec. II], [12] as

and the spectral inf-entropy-rate as

Also define, as in [6, Sec. II], the following quantity which de-
termines the performance under mismatched compression

1) Decoding Error Exponent: In this subsection, we recall
the decoding error exponent for fixed-rate encoding of an arbi-
trary source. We identify the first term in (22) as composed of
the exponent of minimum probability of decoding error, and ob-
tain a lower bound for it, or alternatively an upper bound on the
error exponent. This is made precise in the following definitions.

By an -code we mean an encoding mapping

and a decoding mapping
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with probability of error .
is -achievable if for all there exists a sequence of

-codes such that

(32)

(33)

The infimum fixed-length coding rate for exponent is

–

On the other hand, the supremum fixed-length coding exponent
for rate is

–

See Iriyama [6] and Han [12, Sec. 1.9] for a pessimistic defi-
nition for fixed rate source coding, i.e., the liminf in place of
limsup in (32). See also Iriyama and Ihara [13] for both the
pessimistic and optimistic definitions. These works obtained
bounds on the infimum coding rate. In particular, Iriyama [6, eq.
(13)], Iriyama and Ihara [13, eq. (12)] obtained lower bounds on
the infimum coding rate under the optimistic definition,
the definition of interest to us. We however work with the error
exponent, and obtain an upper bound on supremum coding ex-
ponent. This suffices to lower bound the first term in (22).

Clearly, satisfies (33), and with

is -achievable. It follows from the definition of
that

so that

The following proposition upper bounds the supremum coding
exponent.

Proposition 9: For any rate

(34)

Proof: See Appendix C.

Remark 4: When , the probability of decoding
error , so that . The right-hand side is an
infimum over an empty set and is by convention, and the
proposition holds for such as well.

One can also show the alternative bound

(35)

See the end of Appendix C on how to prove this. This result
would be the functional inverse of Iriyama’s [6, eq. (13)], while
Proposition 9 is the functional inverse of Iriyama & Ihara’s [13,
eq. (12)]. Proposition 9, as we will soon see, provides a more
natural extension of Arikan & Merhav’s expression for
to general sources.

2) Correct Decoding Exponent: We now study a generaliza-
tion of the exponential rate for probability of correct decoding.

For a given -code, let

denote the set of correctly decoded sequences. For a given
is -admissible if for every there exists a se-

quence of -codes such that

(36)

(37)

Unlike the exponent for the probability of error, here can be
positive or negative. The infimum fixed-length admissible rate
for a given and is

–

It is easy to see that the set – is
closed and so is -admissible.
The supremum fixed-length coding exponent for a given and

is

–

Remark 5: The choice of limit infimum in (36) makes the
definition of admissibility pessimistic. For , the above def-
initions reduce to the special case of exponential rate for prob-
ability of correct decoding (see [12, Sec. 1.10]).

Clearly, should be to maximize the left-hand side
of (36), and hence

The following proposition gives an expression for
and generalizes [6, Thm. 4] to any arbitrary . En route to
its derivation, we find the expression for .

Proposition 10: For any , we have

(38)

(39)

Proof: See Appendix D.
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C. Summary of Bounds on and

We now combine Propositions 7–10 of the previous subsec-
tions to obtain the main result of the paper.

Theorem 11: For a given and

(40)

Proof: The last inequality was proved in Proposition 8.
Proposition 7 indicates that

(41)

(42)

where (41) follows from the lower bound on and the
definition of , and (42) from Propositions 9 and 10.

IV. EXAMPLES

In this section, we evaluate the bounds for some examples
where they are tight, and recover some known results.

Example 1 (Perfect Secrecy): First consider the perfect se-
crecy case, for example, . Because of Remark 4 and
because we may take in the upper bound in (40), the lim-
iting exponential rate of guessing moments simplifies to

On account of (11) in Proposition 6, sup in the left-most term
is achieved. From Proposition 6, upper and lower bounds are
times the liminf and limsup Rényi entropy rates of order . In
a related work, we proved in [8, Prop. 7], [18] that whenever the

information spectrum of the source satisfies the large deviation
property with rate function , the Rényi entropy rate converges
and limiting guessing exponent equals the Legendre-Fenchel
dual of the scaled rate function , i.e.,

In the next examples, we consider the case .

Example 2 (An iid Source): This example was first studied
by Merhav and Arikan [2]. Recall that an iid source is one for
which , where denotes the marginal
of . We will now evaluate each term in (40).

We first argue that

(43)

To prove that the left-hand side in (43) is less than or equal to
the right-hand side, let be such that .
Construct an iid source such that

for all . The i.i.d. property easily implies that

and the law of large numbers for i.i.d. random variables yields

(44)

From (44), we have that the infimum on the left-hand side of
(43) is over a larger set. We can therefore conclude that “ ”
holds in (43).

To prove “ ” in (43) we use the result (see [12, Th. 1.7.2])

to get that the infimum over a larger set is smaller, i.e.,

(45)

Because of (45), it is sufficient to prove

(46)

Let be such that . Construct a source such
that, for and are indepen-
dent. Let be another source such that is an iid
sequence with distribution
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As the marginals of and with independent components
are the same, it easily follows from the formula for Kullback-
Leibler divergence that

(47)

where (47) follows from the convexity of divergence. From the
concavity of Shannon entropy, we also have

(48)

Normalize by take limsup in (47) and liminf in (48) to get
and for a that

is a limit point of the sequence . From
these, we conclude that (46) holds. This proves (43).

Following a similar procedure as above, we can bound the
other terms in (40) for an i.i.d. source as

(49)

(50)

Substitution of (43) and (49) in the lower bound of (40) yields

(51)

Similarly, substitution of (50) in the upper bound of (40) yields

(52)

(53)

where the interchange of sup and min in (52) holds because the
function within braces is linear in and concave in . From

(51) and (53), we recover Merhav and Arikan’s result (1) for an
i.i.d. source [2, eq. (3)].

Example 3 (Markov Source): In this example we focus on
an irreducible stationary Markov source taking values on and
having a transition probability matrix .

Let denote the set of stationary PMFs defined by

Denote the common marginal by and let

We may then denote , where is the distribution of
and the conditional distribution of given .

Following steps similar to the i.i.d. case, we have

where

is the conditional one-step entropy, and

For a unifilar source the underlying state space forms a Markov
chain and the entropy and divergence of the source equals those
of the underlying Markov state space source [14, Thm. 6.4.2].
The arguments for the Markov source are now directly appli-
cable to a unifilar source.

V. CONCLUSION

We saw the close connection between the problem of guessing
a source realization given a cryptogram and the problem of
compression with saturated exponential costs. The latter is a
modification of a problem posed by Campbell [7]. Moreover,
the exponents for both these problems coincide. This exponent
is determined by the error exponent and a generalization of
correct decoding exponent for fixed length block source codes.

We end this paper with some open questions.
• The equivalence between guessing and compression ex-

ploits the finite alphabet size assumption. Can this be
relaxed?

• How do the results of this paper extend to the case with
receiver side information? Can the result of Hayashi and
Yamamoto be extended to general sources?

• If guessing to within a distortion is allowed, can the result
of Merhav and Arikan [15] be extended to general sources?
Both cases of perfect secrecy and key-rate constrained se-
crecy remain open.
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APPENDIX A
PROOF OF PROPOSITION 3

Let be any PMF on . Enumerate the elements of
from 1 to in the decreasing order of their -probabilities.
Let denote the number of distinct key strings.
For convenience, we shall assume that is a power of 2 so that
the number of key bits is an integer. The general
case will be easily handled towards the end of this section.

If does not divide , append a few dummy messages of
zero probability to make the number of messages a multiple
of . Further, index the messages from 0 to . Henceforth,
we identify a message by its index.

Divide the messages into groups of so that message
belongs to group , where , and is the floor
function. Enumerate the key streams from 0 to , so that

. The function is now defined as follows. For
set

where is the bit-wise XOR operation. Thus messages in
group are encrypted to messages in the same group. The
index identifying the specific message in group , i.e., the
last bits of , are encrypted via bit-wise XOR
with the key stream. Given and the cryptogram, decryption is
clear—perform bit-wise XOR with on the last bits
of .

Given a cryptogram , the only information that the attacker
gleans is that the message belongs to the group determined by

. Indeed, if , then

and therefore

which decreases with for , because of our enumera-
tion in the decreasing order of probabilities, and is 0 for .
The attacker’s best strategy is therefore to restrict his
guesses to and guess in the order

. Thus, when , the optimal attack strategy
requires guesses.

We now analyze the performance of this attack strategy as
follows:

(54)

(55)

(56)

(57)

where (54) follows because the arrangement in the decreasing
order of probabilities implies that

for . Inequality (55) follows because

Inequality (56) follows because the decreasing probability ar-
rangement implies

Inequality (57) follows because we take for
all the further dummy messages with indices . Thus,
(57) implies that

(58)

Let be the guessing function that guesses in the decreasing
order of -probabilities without regard to , i.e.,

. Let be the associated length function, given in Lemma
2. Now use (58) and Lemma 2 to get

(59)

where the last inequality follows by pulling out and rec-
ognizing that . Since is the
strategy that minimizes , the proof is complete
for the cases when is an integer.
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When is not an integer, choose .
Then , and it immediately fol-
lows that inequality (59) continues to hold. This completes the
proof.

APPENDIX B
PROOF OF PROPOSITION 6

We begin with the following lemma. Recall that is the
set of all probability measures on and the subset of

with support set

Lemma 12: For any and

Remark 6: [6, Lemma 1] is the special case when .

Proof: Let . We then have

(60)

(61)

(62)

where (60) follows from the variational formula for Rényi en-
tropy of . The maximum achieving distribution in (62) is

given by

a fact that is easily verified via direct substitution.
We now prove (11); proof of (10) is similar and therefore

omitted. We begin by showing “ ” in (11). Let

be as defined in (12). It is straightforward to
verify by direct substitution that

Normalize by and take limit infimum, and use the definition
of to get

(63)

To prove “ ” in (11), let be an
arbitrary sequence. We may assume that for all sufficiently large

holds; otherwise and the
inequality “ ” holds automatically. Define

by

It is clear that for every . From Lemma 12, we
have

(64)

We now study each term on the right-hand side of (64). The
entropy term is lower bounded as follows:

(65)
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The divergence term is upper bounded, as in the proof of
Iriyama’s [6, Prop. 1], as follows:

(66)

(67)

To get (66), we used the fact that for all and
in inequality (67), we used the relation

Substitution of (65) and (67) in (64) and the fact that
yield

Since the choice of was
arbitrary, we have proved “ ” in (11).

From (63) and (11), the maximum is attained by , the dis-
tribution defined in (12). This completes the proof.

APPENDIX C
PROOF OF PROPOSITION 9

Iriyama and Ihara showed the following lower bound on the
infimum coding rate ([13, Th.3, (12)])

(68)

We claim that (68) is equivalent to (34). This proves the
proposition.

We first show that (68) implies (34). Fix the source . Let
be a given rate. Consider an arbitrary candidate exponent and
an arbitrary source . We argue that

–

(69)

Taking the infimum on the right-hand side of (69) over with
, and then the supremum over will yield (34).

To argue (69) by contraposition, we shall show that

or equivalently, we shall show that

–

But the conditions on the left-hand side imply

which together with (68) yields , and this is the
same as saying is not -achievable. This completes the proof
of (68) (34). (This direction suffices to prove Proposition 9).
The proof of the other direction is analogous.

To prove the upper bound in (35), we begin with Iriyama’s
[6, eq. (13)], which is

instead of (68). The rest of the proof is completely analogous to
the proof of Proposition 9.

APPENDIX D
PROOF OF PROPOSITION 10

We use the following notations in this proof. For each
define

Note that . We will first prove (38).
Define a set

(70)

Then, by definition

(71)

Fix a . Proposition 6 then implies
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We can therefore conclude using (70) that the following set
equivalence holds:

(72)

From (71) and (72), we get

where last equality follows because

as proved by Han and Verdú [16]. This proves (38).
We now prove (39). We first show that if is -admis-

sible then .
Since is -admissible, the definition of and

(38) imply that

which is the same as saying the following:
(A): For all there exists a such that

and .
Lemma 13 below implies that there exists a that satisfies

and . It follows that

and the converse part is proved.
For the direct part, fix any , and set

We should show that is -admissible.
With set as above, we have
(B): For all , there exists a such that

and .

Lemma 13 below implies that there exists a that satisfies
and . It follows that

i.e., is -admissible. This completes the proof.

Lemma 13: If either (A) or (B) holds, then there is a that
satisfies and .

Proof: We will argue that condition (A) implies the exis-
tence of an appropriate . The other argument is analogous and
omitted. Our argument is similar to a diagonal argument.

Let (A) hold. Then, for each , we have a that
satisfies (a) , which is the same as saying

(73)

and (b) , which implies

(74)

Let and consider . Let us now find an subse-
quence in order to define the desired . Let .
Recursively, for each , we have the following.

i) From (73) with , we get that there is an such
that for any ,

(75)

ii) From (74) with , we get that there is an such
that for any ,

(76)

By taking an , it follows
that we can find an such that (75) and (76)
hold for all .

Define by setting

(77)

We now show that this has the required properties.
We first show . Take any arbitrary , fix

, and consider . For any , there is an
such that . Use the definition in (77) and

the fact that (75) holds for all (with ),
to get

We can thus conclude that the inequality

holds for all . Since was arbitrary, this establishes
that .

We next show . Using the definition of , it
suffices to show that for every , the following limit holds:

(78)
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Take any arbitrary , fix an , and con-
sider . There is an for which

. Use the definition in (77) and the fact that (76) holds to get

for any . Consequently (78) holds, and thence
.

We have thus shown the existence of an appropriate if (A)
holds. A similar argument holds under condition (B).
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