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The Shannon Cipher System With a Guessing
Wiretapper: General Sources
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Abstract—The Shannon cipher system is studied in the context of
general sources using a notion of computational secrecy introduced
by Merhav and Arikan. Bounds are derived on limiting exponents
of guessing moments for general sources. The bounds are shown
to be tight for i.i.d., Markov, and unifilar sources, thus recovering
some known results. A close relationship between error exponents
and correct decoding exponents for fixed rate source compression
on the one hand and exponents for guessing moments on the other
hand is established.

Index Terms—Cipher systems, correct decoding exponent,
error exponent, fixed-rate source coding, information spectrum,
key rate, large deviations, length function, secrecy, sources with
memory.

I. INTRODUCTION

E consider the classical cipher system of Shannon [1].
W Let X" = (Xy,...,X,) be a message where each
letter takes values on a finite set X. This message should be
communicated securely from a transmitter to a receiver, both
of which have access to a common secure key U* of k purely
random bits independent of X ™. The transmitter computes the
cryptogram Y = £, (X™, U*) and sends it to the receiver over a
public channel. The cryptogram may be of variable length. The
encryption function f,, is invertible for any fixed U*. The re-
ceiver, knowing Y and U*, computes X" = f71(Y,U*). The
functions f,, and f;! are published. A wiretapping attacker has
access to the cryptogram Y, knows f,, and f; !, and attempts
to identify X" without knowledge of U*. The attacker can use
knowledge of the statistics of X™. We assume that the attacker
has a test mechanism that tells him whether a guess X" is cor-
rect or not. For example, the attacker may wish to attack an en-
crypted password or personal information to gain access to, say,
a computer account, or a bank account via internet, or a clas-
sified database [2]. In these situations, successful entry into the
system provides the natural test mechanism. We assume that the
attacker is allowed an unlimited number of guesses. The key rate
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for the cipher system is R = k(In 2)/n nats! of secrecy per mes-
sage (or source) letter.

Merhav and Arikan [2] studied discrete memoryless sources
(DMS) in the above setting and characterized the best attainable
moments of the number of guesses required by an attacker. In
particular, they showed that for a DMS with the governing single
letter PMF P on X, the value of the optimal exponent for the pth
moment (p > 0) is given by

E(R, p) = max{pmin{H(Q), B} — D@ [| P)}. (1)

The maximizationis over all PMFs Q on X, H () is the Shannon
entropy of @, and D(Q || P) is the Kullback-Leibler divergence
between Q) and P. They also showed that E(R, p) increases lin-
early in R for R < H(P), continues to increase in a concave
fashion for R € [H(P), H ], where H "is a threshold, and is con-
stantfor R > H . Unlike the classical equivocation rate analysis,
atypical sequences do affect the behavior of E(R, p) for R €
[H(P), H'] and perfect secrecy is obtained, i.e., cryptogram is
uncorrelated with the message, only for R > H > H(P).
Merhav and Arikan also determined the best achievable perfor-
mance based on the probability of a large deviation in the number
of guesses, and showed that it equals the Legendre-Fenchel trans-
formof (R, p) as a function of p. Sundaresan [3], [17] extended
the above results to unifilar sources. Hayashi and Yamamoto [4]
proved coding theorems for the Shannon cipher system with cor-
related outputs (X™, Z™) where the wiretapper is interested in
X™ while the receiver in Z™.

In this paper, we extend Merhav and Arikan’s notion of
computational secrecy [2] to general sources. One motivation is
that secret messages typically come from the natural languages
which are modeled well as sources with memory, for e.g., a
Markov source of appropriate order. Another motivation is that
the study of general sources clearly brings out the connection
between guessing and compression, as discussed next.

As with other studies of general sources, information spectrum
plays crucial role in this paper. We show that E(R, p) is closely
related to (a) the error exponent of a rate- R source code, and (b)
the correct decoding exponent of a rate-R source code, when
exponentiated probabilities are considered (see Section I11.B.2).
In particular, the exponents in (a) and (b) appear in the first and
second terms below when we rewrite E(R, p) for a DMS as

E(R, p) = max {pR - Q:}}r(lg%RD(Q I P),
Qi Q) - D@ P .

I'We shall mostly use nat as the unit of information in this paper by taking
natural logarithms. k(1n 2)/n nats per input symbol is the same as & /n bits per
input symbol.
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This brings out the fundamental connection between source
coding exponents and key-rate constrained guessing exponents.
Further, unlike the case for the probability of a large deviation in
the number of guesses [2, Sec. V], both the error exponent and
the correct decoding exponent determine E(R, p). We extend
the above result to general sources by getting upper and lower
bounds on F(R, p). We then show that these are tight for DMS,
Markov and unifilar sources. The bounds may be of interest even
if they are not tight because the upper bound specifies the amount
of effort need by an attacker and the lower bound specifies the
secrecy strength of the cryptosystem to a designer.

The limiting case as p | 0 in (b) yields classical framework
for probability of correct decoding. This special case is related
to the work of Han [5] and Iriyama [6] who studied the dual
problem of rates required to meet a specified error exponent or
a specified correct decoding exponent.

The paper is organized as follows. Section II relates our
problem to a modification of Campbell’s compression problem
[7]. Section III gives bounds on the limits of exponential rate of
guessing moments, in terms of information spectrum quantities.
Section IV evaluates the bounds for some specific examples.
Section V concludes the paper with additional remarks. Proofs
are given in the Appendices.

II. GUESSING WITH KEY-RATE CONSTRAINTS AND
SOURCE COMPRESSION

In this section, we make a precise statement of our problem,
and establish a connection between guessing and source com-
pression subject to a new cost criterion.

Let X™ denote the set of messages and M(X™) the set of
PMFs on X". By a source, we mean a sequence of PMFs (P, :
n € N), where? P, € M(X™). Let X" denote a message put
out by the source and U* the secure key of & purely random
bits independent of X". Recall that the transmitter computes
the cryptogram Y = f,(X™, U*) and sends it to the receiver
over a public channel.

For a given cryptogram Y = y, define a guessing strategy

Gn(-ly) : X™ = {1,2,...,[X|"}

as a bijection that denotes the order in which elements of
X™ are guessed. G,,(z"|y) = [ indicates that =™ is the [th
guess, when the cryptogram is y. With knowledge of P,, the
encryption function f,, and the cryptogram Y, the attacker
can exhaustively calculate the posterior probabilities of all
plaintexts Pxn|y(-|y) given the cryptogram. The attacker’s
optimal guessing strategy is then to guess in the decreasing
order of these posterior probabilities Pxn |y (-|y). Let us de-
note this optimal attack strategy as G's, . The key rate for the
system is R = k(In 2)/n nats of secrecy per source letter. Let
(fn : n € N) denote the sequence of encryption functions,
where N denotes the set of natural numbers. This sequence is
known to the attacker. We assume that the attacker employs the
aforementioned optimal guessing strategy.

2Sometimes we use Pxn in place of P,, when we refer to the distribution of
the random vector X ™.
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For a given p > 0, key rate R > 0, define the normalized
guessing exponent

1
EY(R, p) = sup ~ InE[Gy, (X"[Y )]
n

The supremum is taken over all encryption functions. Further
define performance limits of guessing moments as in [2]

E4(R, p) :=limsup Ef (R, p) )
EJ(R,p) :=liminf EJ(R, p). 3)

We next define the related compression quantities. A length
function L,, : X" — N is a mapping that satisfies Kraft’s in-
equality:

D expo{-La(a™} < 1,

xm Gxn

where the code alphabet is taken to be binary and exp,{a} =
2%. (We shall use exp to denote the inverse of the natural loga-
rithm In). Every length function yields an attack strategy with a
performance characterized as follows.

Proposition 1: Let L, be any length function on X". There
is a guessing list G, such that for any encryption function f,,,
we have3

Gn(2"|y) < 2expy{min{L,(2"),nR/(In2)}}
= 2exp{min{L,(z")In2,nR}}.

Proof: We use a technique of Merhav and Arikan [2]. Let
G, denote the guessing function that ignores the cryptogram
and proceeds in the increasing order of L,, lengths. Suppose
G, proceeds in the order z7,z%,.... By [8, Prop. 2], [18],
we need at most expy{L,(z™)} guesses to identify z™ (This
is a simple consequence of the fact that there are at most
expo{ Ly, (xz™)} strings of length less than or equal to L,,(z™)).
As an alternative attack, consider the exhaustive key-search
attack defined by the following guessing list:

Fot (oud) £ (yous)
k

where u¥, u%, ... is an arbitrary ordering of the keys. This
strategy identifies 2™ in at most exp{nR} = exp,{nR/(In2)}
guesses. Finally, let G,,(+|y) be the list that alternates between
the two lists, skipping those already guessed, i.e., the one that
proceeds in the order

o 7 (woud) 2y £ (yous) “)

Clearly, for every 2™, we need at most twice the minimum over
the two individual lists. |
We now look at a weak converse in the expected sense to the
above. We first state without proof the following lemma which
associates a length function to any guessing function.

Lemma 2: Given a guessing function G, there exists a length
function Lq,, satisfying

Lg, (™) — 1 —logy ¢, <logy Gr(z™) < Lg, (™)  (5)

3We reiterate that R is measured in nats.
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where

For a proof, we refer the reader to [8, Prop. 1], [18]. We then
have the following proposition.

Proposition 3: Fix n € N, p > 0. There is an encryption
function f,, and a length function L,, such that every guessing
strategy (i, (and in particular G’z ) satisfies

E[G, (X" [Y)"]

1

> mﬂz[exp{p min{L,(X")In2,nR}}].

Proof: See Appendix A. The proof is an extension of
Merhav and Arikan’s proof of [2, Th.1] to sources with
memory. The idea is to identify an encryption mechanism that
maps messages of roughly equal probability to each other.
Our proof also suggests an asymptotically optimal encryption
strategy for sources with memory. [ |

Remark 1: Note that ¢,, < 14 nln |X], so that

log, cn, _o <log2n> — o(1) ©)

n n

a fact that will be put to good use in the sequel. O
Propositions 1 and 3 naturally suggest the following coding
problem: identify
1
E?(R,p) := min —
n (L, p) = min —
x InE[exp{pmin{L,(X")In2,nR}}]. (7)

The minimum is taken over all possible length functions.
We may interpret the cost of using length L, (z") as being
exp{min{L, (z")In2,nR}},i.e., the costis exponential in L,,
but saturates at exp{nR} and so all lengths larger than n R nats
(i.e., nR/(In 2) bits) enjoy the saturated cost. Then E£(R, p)
is the minimum normalized exponent of the pth moment of this
new compression cost. In analogy with (2) and (3), we define

E;(R, p) = limsup E; (R, p)

n—oo

E}(R,p) = liminf E; (R, p).
The following is a corollary to Propositions 1 and 3, and relates
E4(R. p) and E3(R, p).
Corollary 4: For a given R, p > 0, we have

B3 (R )~ B3R, ) < MV CHD) g,

Proof: Let L} be the length function that achieves
E3 (R, p). Using Proposition 1, and after taking expectation,
we have the guessing strategy GG, that satisfies

Elexp{pmin{L; (X")In2,nR}}]
1
> sup —E[G,(X"|Y)”]
fo 20

LE(Gy, (X))

> sup
fn 2P
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1
> -
= ey @ +0)
for some f, and L,,, given by Proposition 3,

Elexp{p min{L}(X")In2,nR}}].

Elexp{p min{L,(X")In2,nR}}]

> 1
~ (4en)? (24 p)

Take logarithms, normalize by n, use ¢,, > 1 and p > 0 to get
(8). [ |

We now state the equivalence between compression and
guessing.

Theorem 5 (Guessing-Compression Equivalence): For any
p > 0and R > 0, we have Ei(R,p) = FJ4(R,p) and
Ep (R, p) = E{ (R, p).

Proof: From Corollary 4 and (6), magnitude of the differ-
ence between E4(R, p) and EZ(R, p) decays as O((lnn)/n)
and vanishes as n — oo. [ |

Thus, the problem of finding the optimal guessing exponent
is the same as that of finding the optimal exponent for the
coding problem in (7). When R > In |X], the coding problem
in (7) reduces to the one considered by Campbell in [7]; this
is a case where perfect secrecy is obtained and is studied in
[8], [18]. Proposition 1 shows that the optimal length function
attaining the minimum in (7) yields an asymptotically optimal
attack strategy on the cipher system. Moreover, the encryption
strategy in the proof of Proposition 3 (see Appendix A) is
asymptotically optimal, from the designer’s point of view.

In the rest of the paper we focus on the equivalent compres-
sion problem and find bounds on E;, and ;.

III. GROWTH EXPONENT FOR THE MODIFIED
COMPRESSION PROBLEM

We begin with some words on notation. Recall that M (X™)
denotes the set of PMFs on X™. The Shannon entropy fora P,, €
M(X™) is

H(P,)=- Y Pu(z")InP,(s")
zneXn

and the Rényi entropy of order « # 1 is

1
——In < Z Pn(w")a> ) 9)
rneXn

The Kullback-Leibler divergence or relative entropy between
two PMFs @), and P, is

Ha(Pn) =

% Qn(@™) 0 =
00,

D(Qn || Pn) = if Qn < Py,

otherwise

where ),, < P,, means @), is absolutely continuous with re-
spect to P,,. We shall use (X : n € N) to denote a sequence of
random variables on X", with corresponding sequence of prob-
ability measures denoted by X := (Pxn : n € N). Thus, X is
a source and X" its n-letter message output. Abusing notation,
we let M (XN) denote the set of all sequences Y = (Py« :n €
N) of probability measures, and for each B := (B, C X" :
n € N), we define

M(B) = {Y e M(XNY: lim Py.(B,) = 1}.

n— o0
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In the rest of this section X is a fixed source. For any Y €
M(B) and p > 0, define

1
E.(Y,X,p):=limsup —{pH(Py~)
n

n—oo

— D(Py» || Px»)}
and
1
E(Y,X,p):=liminf —{pH(Py~)
n—oo M
— D(Pyn || Pxn)}.

We next state a large deviation result that plays a key role in
the derivation of bounds on £}, and Ej.

Proposition 6: Forall p > 0and B = (B,, C X" :n € N),
we have
1 o
(1+ p)limsup —In Z Pgle (z™)
n—oo s eB,

= FE.(Y, X,
Ygljgt)((B) ( "0)

1 1
(14 p) liminf —In > P (a)
‘,l:n,eB”7

= (Y., X, p).
L (Y, X, p)

(10)

(1)

The maximum-achieving distribution in (10) and (11) is the
source X* = (P%. : n € N) given by

_1
Pt ()
1
> oymen, P’ (y™)

Proof: See Appendix B. ]

Pi(-) =

(12)

Remark 2: This proposition is a generalization of Iriyama’s
[6, Prop. 1], which is obtained by setting p = 0. O

A. Upper Bound on E

We first obtain an upper bound on E%. We use E x~[] to de-
note the expectation with respect to distribution Pxx.

Proposition 7 (Upper Bound): Let R > 0 and p > 0. Then

Ei(R,p) < min

< min (p—0)R+ max

E.(Y,X,0)|.
YeM(XN)

Proof: We first recall the useful variational formula [9,
Prop. 1.4.2]
In Ex« [exp{U(X")}]

= sup{Ey [U(Y")] = D(Pyo | Px)}

(13)

forany U : X" — R, where R denotes set of real numbers. For
notational convenience, let d(Y™) := D(Py~ || Px» ). Observe
that

In E xn[exp{pmin{L,(X")In2,nR}}]
= sup[pEy» [min{L,(Y")In2,nR}]

Pyn

—d(Y™)] (14
< sup[pmin{Ey»[L,(Y")In2],nR}

Pyn

—d(Y")] (15)
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= sup { min [(p — 0)nR

Pyn L0<0<p

+0Ey[Ln(Y™)In2] — d(Y”)} (16)
= Orgngigp sup {(p—0)nR

HOEy[Ln(Y™)In2] — d(Y™)} (17)
= Orgr%igp {(,0 —0)nR

+ sup{bEy-[L,(Y™")In2] —d(Y™)} } .
Pyn
In the above sequence of inequalities, (14) follows from the vari-
ational formula (13) with

U(z") = pmin{L,(z")1n2,nR}.

Inequality (15) follows from Jensen’s inequality because
min{-,nR} is concave for a fixed nR. Equality (16) follows
from the identity

pmin{a,b} = Or<nei£1p{9a + (p— 0)b}.

Equality (17) follows because the term within braces is linear
in @ for a fixed Py, concave in Py~ for a fixed 6, and the
sets [0, p] and M(X™) are compact and convex; these permit
an interchange of sup and inf, thanks to a minmax theorem [10,
Cor. 2, p. 53]. Taking inf over L,,, and interchanging the inf
over L,, and the min over #, we get

iglf InEx»[exp{pmin{L,(Y")In2,nR}}]

{(p — )nR

< min
0<6<p

+ inf sup{6Ey~[L,(Y"™)In2] — d(Y")}}

n Pyn

= min
0<6<p

{(p — )R

+ sup {6 iLnf Eyn[Ln(Y"™)In2]

Pyn
—d(Y")} + 0(1)} (18)
+sup{0H(Pyn) — d(Y"™)} + 0(1)} (19)

Py

= min {(p —0)nR +0H 1 (Px) + 0(1)} . (20)

Equality (18) follows because the function inside the inner
braces is concave in Py~, asymptotically linear in L, (see
proof of [8, Prop. 6], [18]), and M (X™) is compact; this allows
us to interchange inf and sup. Inequality (19) follows because
inf of expected compression lengths over all prefix codes is
within In 2 nats (1 bit) of entropy. The last equality follows
from the well-known variational characterization of Rényi
entropy

Sup{gH(P)’n) - D(Py'ﬂ || PXH)} == HH 1 (PXH)

Pyn 1+9

ey
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a fact that can also be gleaned from the variational formula (13).
Divide both sides of (20) by n and take limit supremum as n —
oo to get

EL(R, p)
6
< — n
hﬂsip oZin {( )R+ —H 1 (Px )}
. 1
< o?olgp {( -0)R + ghfl—?o%p Hﬁ (Pxn )}
= min {( —-9)R+ max FE,(Y,X, 9)}
0<6<p YeM(XN)

where the last inequality follows from Proposition 6 and the
formula for Rényi entropy. This completes the proof. [ |

From the above proof, it is clear that the upper bound holds
with equality, when Jensen’s inequality holds with equality in
(15), i.e., the random variable (1/n)min{L,(X™)In2,nR}
tends asymptotically to a constant. This would happen, for
example, when normalized encoded lengths concentrate around
the entropy rate of the source.

B. Lower Bound on E}

We now derive a lower bound on FEj. For a given distri-
bution Py~ arrange the elements of set X" in the decreasing
order of their Py~ -probabilities as done in Sundaresan [3, Sec.
IV], [3]. Enumerate the sequences from 1 to |X|™. Henceforth
refer to a message by its index. Let Tr(Y™) denote the first
M = |exp{nR}]| elements in the list. We denote the proba-
bility of this set by Fy, i.e.,

> Pye(a™)

aneTR(Y™)

Fyn =

and the probability of the complement of this set T (Y ™) by
F%... Let the restriction of Py~ to this set Tr(Y™) be P{-..
Let L¥ denote the length function that attains E2 (R, p) in (7).
As the length functions are uniquely decipherable we have

expy{Ly, (i)} = .

Proposition 8 (Lower Bound): For a given p > 0 and rate
R > 0, we have

1
pR+ liminf —In F.,.,

n—oo 1,

E}(R,p) > max

1 e
(14 p)liminf = In P (™)

n— o0

(22)

>

zneTR(X™)

Remark 3: The first term contains limit infimum of the error
exponent for a rate-R source code. The second exponent is the
correct decoding exponent for a rate-R code whenp | 0. [

Proof: The variational formula (13) applied to the function
U(z™) = pmin{L, (z")In2,nR} gives
inf InE x«[exp{pmin{L,(X")In2,nR}}]
1nf sup{p[Ey [min{L,(Y")In2,nR}] —d(Y")}

Py n

2507
> sup {p inf Ey« [min{L,(X")In2,nR}]
Py n L”
—d(Y”)} (23)

where the interchange of inf and sup yields the lower bound in
(23). Fix a distribution Py~ and consider the first term in (23).
Using the enumeration indicated above, we may write

iLnf Ey»[min{L,(Y")In2,nR}]

x|

_ Z Py (i
= ZPY

(1) min{L} (i) In2,nR}

Ymin{L} (i) In2,nR}

X"
+ Z P)’n (z)nR
i=M+41
> Zpyn (i) In G% (i) + nRF. (24)
Py (i) .

Z FYn Zz:; WLGT’ ('L) In2

—In2—1In(1+nlIn|X|) + nRFy. (25)
> FPy.H(Py.) —1n2

—In(1+nln|X]|) + nREY. (26)

where in (26), P, is the conditional distribution of Py~ given
Tr(Y™). Inequality (24) follows because

LY (1) In2 > Ini = In G (i)

with G the guessing strategy that guesses in decreasing order
of Py~ probabilities. Lg: in (25) denotes the length function
given by Lemma 2. Inequality (26) follows from the source
coding theorem’s lower bound. Substitute (26) in (23), nor-
malize by 7, and take limit infimum to get

(Pyn)

+FS. pnR — d(Y™)}.

1
E}(R,p) > liminf — sup {pFy~ H
n—oo n,

Yy n

Py may be thought of as a triplet made of P, Fy, and the
restriction of Py to T (Y ™). We now perform the optimization

sup {pFy~H(Py-.) + FywpnR — d(Y™)}

'y

27)

in four steps.

Step 1: We first optimize over permutations of probabilities over

strings. Fy, F{., H(Py~), and H(Py..) remain unchanged

over these permutations. Observe that
—d(Y") = H(Py)+ 3 Pya(y")In Pxo(y"),

yn

and so the maximum for —d(Y™) is attained when the permuta-
tion that orders Px= ( - ) in decreasing order also orders Py ( - )
in decreasing order. In particular, Tr(Y™) equals Tr(X").
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Step 2: We now optimize over restriction of Py to T5(Y™).
For a fixed Fy~, the log-sum inequality yields

Pyn (iﬂn)

Fe
> Fo,ln 2
Pxn(ill'n) =1

C

Z Py (z™) 1n

xn ETIC%(X”)

c
FSon

i for all

with equality if and only if Py»(z™) = Pxn»(z™)
Step 3: To optimize over P, , rewrite (27) as

sup {pF wH(Pyn) + FynpnR

Py
M .
P)’n (Z)
— Py (7)1In -
2O p
IX|" .
. Py (2
_ Z Pyn(l) In P) E;
i=M+1 Xt
= sup {prnH(P{,,,) + Fy.pnR
P)’,H,Fyn
M .
. Py'n ('L) F)C/n
— Py (1) In -~ — ¢, In (28)
D R
= sup {pFy-H(P{.)+ FupnR
P, ,Fyn
—Fy 2 D(Pyu || Pyn) = D(Fyn||[Fxn)}  (29)
= sup {prn Hﬁ(P)'() + Fy.pnR
_D(Fyn FXH)} . (30)

Equality (28) is obtained by substituting the attained lower
bound in Step 2. In (29), P{-. and P%. denote conditional
distributions of Py~ and Px» given Tr(Y™) and Tr(X™),
respectively, where Tr(Y™) = Tgr(X™) as argued in Step
. D(Fy«|Fx~) denotes the divergence between binary
random variables whose probabilities are {Fyn~,1 — Fyn}
and {Fx»,1 — Fx~} respectively. Finally we used variational
characterization of Rényi entropy given in (21) to arrive at (30).
Step 4: We now optimize over Fy~ € [0, 1]. Let Z be a binary
random variable defined as

1
1+

g pH_1 (P%.) with probability Fyn
| pnR with probability 1 — Fy-»

By E .. [Z] we mean the expectation of Z with respect to the
above distribution. Since Z is a positive random variable, the
variational formula yields

sup {Ep,... [Z] — D(Fyn
Fyn

Fx»)} =InEp,., [exp{Z}].
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Continuing with the chain of equalities from (30), we get

sup {FYW pH_L(Pks) + FyupnR — D(Fy || Fx. )}

M 1+p
_ c ) I T (s
In ¢ F%. exp{nRp} + Fxn Z Py 77 (4)

i=1

M I+p
1
=In{ F5nexp{nRp} + (Z Py (z)) . (3D

i=1

Finally, normalize both sides of (31) by n, take limit infimum,
and apply [11, Lemma 1.2.15], which states that the exponential
rate of a sum is governed by the maximum of the individual
terms’ exponential rates, to get the desired result. |

In the subsequent subsections we further lower bound each of
the two terms under max on the right-hand side of (22). For an
arbitrary source, we first recall the source coding error exponent.
We also identify the growth rate of sum of exponentiated prob-
abilities of the correct decoding set. We then relate these to the
terms in the lower bound obtained in (22). We largely follow the
approach and notation of Iriyama [6], which we now describe.

Given X = (Px» :n € NJandY = (Py» : n € N),
we define the upper divergence D, (- || -) and lower divergence
D(- | ) by

1
D, (Y || X) := limsup —D(Py=
n

n—oo

Pxn)
1

Di(Y || X) := liminf —D(Py= || Px»).
n—oo N

ForaY = (Py~ : n € N), denote the spectral sup-entropy-rate
[5, Sec. IT], [12] as

H(Y) = inf{6 : nli_)n;OPr{%ln% > 6} = 0}

and the spectral inf-entropy-rate as

1 1
lim Prqi—In ———<<607,=0,.
n {n "R < } }
Also define, as in [6, Sec. II], the following quantity which de-
termines the performance under mismatched compression

H(Y) := sup {9 :

R(Y,X) :=sup {9 :

) 1 1

nILIEOPr{n In P (V) < 9} = 0} .
1) Decoding Error Exponent: In this subsection, we recall
the decoding error exponent for fixed-rate encoding of an arbi-
trary source. We identify the first term in (22) as composed of
the exponent of minimum probability of decoding error, and ob-
tain a lower bound for it, or alternatively an upper bound on the
error exponent. This is made precise in the following definitions.

By an (n, M,,, €, )-code we mean an encoding mapping

G X" = {1,2,...,M,}
and a decoding mapping

1/}n{1,27,Mn}_>Xn
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with probability of error €, = Pr{¢n(éd.(X™)) # X"}
R is r-achievable if for all n > 0 there exists a sequence of
(n, My, €,)-codes such that

i 1.1
limsup—In— >r

(32)
n—oo N €n
1
limsup—InM, < R+ . (33)
n—oo N

The infimum fixed-length coding rate for exponent r is

R(r|X) = inf{R : R is r-achievable}.
On the other hand, the supremum fixed-length coding exponent
for rate R is

E(R|X) = sup{r : R is r—achievable}.

See Iriyama [6] and Han [12, Sec. 1.9] for a pessimistic defi-
nition for fixed rate source coding, i.e., the liminf in place of
limsup in (32). See also Iriyama and Thara [13] for both the
pessimistic and optimistic definitions. These works obtained
bounds on the infimum coding rate. In particular, Iriyama [6, eq.
(13)], Iriyama and Thara [13, eq. (12)] obtained lower bounds on
the infimum coding rate 2(r|X) under the optimistic definition,
the definition of interest to us. We however work with the error
exponent, and obtain an upper bound on supremum coding ex-
ponent. This suffices to lower bound the first term in (22).

Clearly, M,, = |exp{nR}| satisfies (33), and with
=1 1 !
= lims 0
ro=limoup - og

R is ro-achievable. It follows from the definition of F(R|X)
that

1 .
lim sup — In < E(RIX)

n—oo N Xn

so that

hmlnf — ln F%. > —E(R|X).
The following proposition upper bounds the supremum coding
exponent.

Proposition 9: For any rate R > 0

E(RIX) < Dy (Y || X). (34)

inf
Y:H(Y)>R

Proof: See Appendix C. [ |

Remark 4: When R > In
error ¢, = 0, so that E(R|X) = +oc. The right-hand side is an
infimum over an empty set and is +oo by convention, and the
proposition holds for such R as well.

One can also show the alternative bound

E(RIX) < Du(Y [ X). (35)

inf
Y:R(Y, x) D.(Y||X)>R
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See the end of Appendix C on how to prove this. This result
would be the functional inverse of Iriyama’s [6, eq. (13)], while
Proposition 9 is the functional inverse of Iriyama & Ihara’s [13,
eq. (12)]. Proposition 9, as we will soon see, provides a more
natural extension of Arikan & Merhav’s expression for E(R, p)
to general sources. O

2) Correct Decoding Exponent: We now study a generaliza-
tion of the exponential rate for probability of correct decoding.
For a given (n, M, €, )-code, let
A, = {z" € X" b (Pn(z™)) = 2™}
denote the set of correctly decoded sequences. For a given p >

0, R is (r, p)-admissible if for every n > O there exists a se-
quence of (n, M,, €, )-codes such that

1+p
(1+p) héglo%f - In Z P&r (™) > (36)
€A,
1
limsup —In M,, < R+ . (37

n—oo N

Unlike the exponent for the probability of error, here r can be
positive or negative. The infimum fixed-length admissible rate
fora givenr and p > 0 is

R*(r, p|X) = inf{R : Ris (r, p) —admissible}.

It is easy to see that the set {R : R is (r, p)-admissible} is
closed and so R*(r, p|X) is (r, p)-admissible.

The supremum fixed-length coding exponent for a given R and

pis
E*(R, p|X) = sup{r: Ris (r, p)-admissible}.

Remark 5: The choice of limit infimum in (36) makes the
definition of admissibility pessimistic. For p | 0, the above def-
initions reduce to the special case of exponential rate for prob-
ability of correct decoding (see [12, Sec. 1.10]). O

Clearly, A, should be Tr(X™) to maximize the left-hand side
of (36), and hence

1
= (1+ p)liminf —In

n—oo n

E*(R, p|X)

Z P1+p( .

”GTR \n)

The following proposition gives an expression for E*(R, p|X)

and generalizes [6, Thm. 4] to any arbitrary p > 0. En route to

its derivation, we find the expression for R*(r, p|X).
Proposition 10: For any p > 0, we have

R*(r, p|X) = inf H(Y
(rplX) = b dik s, ) (38)
E*(R,p|X)= sup E(Y,X,p). (39)
Y:H(Y)<R
Proof: See Appendix D. [ |
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C. Summary of Bounds on E;, and E}

We now combine Propositions 7—-10 of the previous subsec-
tions to obtain the main result of the paper.
Theorem 11: Foragivenp > 0and R > 0

max {pR — inf  Du(Y || X),
Y:H(Y)>R
sup El(YX7p)
Y:H(Y)<R

< Ej(R,p) < Ei(R,p)

< min {(p — )R+ mngu(Y,X,H)} .

< (40)
0<6<p

Proof: The last inequality was proved in Proposition 8.
Proposition 7 indicates that

Ei (R, p)

1
> max ¢ pR + liminf —In F..,

n—oo 1,

1
(14 p)liminf —In

matln Y e
z"€Tr(X™)
> max {pR — E(R|X), E*(R, p|X)}
> max {pR — inf  D,(Y | X),
Y:H(Y)>R
sup Ey (Y, X7 p) (42)
Y:H(Y)<R

where (41) follows from the lower bound on E(R|X) and the
definition of E*(R, p|X), and (42) from Propositions 9 and 10.
|

1V. EXAMPLES

In this section, we evaluate the bounds for some examples
where they are tight, and recover some known results.

Example 1 (Perfect Secrecy): First consider the perfect se-
crecy case, for example, R > In |X|. Because of Remark 4 and
because we may take # = p in the upper bound in (40), the lim-
iting exponential rate of guessing moments simplifies to

sup E(Y,X,p) < E}(R,p)

< EN(R,p) < maXE (Y, X, p).

On account of (11) in Proposition 6, sup in the left-most term
is achieved. From Proposition 6, upper and lower bounds are p
times the liminf and limsup Rényi entropy rates of order ﬁ. In
arelated work, we proved in [8, Prop. 7], [18] that whenever the
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information spectrum of the source satisfies the large deviation
property with rate function I, the Rényi entropy rate converges
and limiting guessing exponent equals the Legendre-Fenchel
dual of the scaled rate function I1(¢t) := (1 4 p)I(t), i.e.,

E5 (R, p) = E{ (R, p) = sup{pt — I1(1)}.

teR

In the next examples, we consider the case R < In |X].

Example 2 (An iid Source): This example was first studied
by Merhav and Arikan [2]. Recall that an iid source is one for
which P, (z") =[], P1(z;), where P; denotes the marginal
of X1. We will now evaluate each term in (40).

We first argue that

inf  D,(Y | X)= inf

D(Py || P1).
Y:H(Y)>R Py:H(Py)>R

(43)

To prove that the left-hand side in (43) is less than or equal to
the right-hand side, let Py € M(X) be such that H(Py) > R.
Construct an iid source Y = (Py- : n € N) such that Py

Py forall 1 < ¢ < n. Thei.i.d. property easily implies that

Du(Y | X) = D(Py || P1)

and the law of large numbers for i.i.d. random variables yields

H(Y)=H(Py)> R. (44)

From (44), we have that the infimum on the left-hand side of
(43) is over a larger set. We can therefore conclude that “<”
holds in (43).

To prove “>” in (43) we use the result (see [12, Th. 1.7.2])

H(Y) < Hi(Y) := liminf ~H(Py+)

n—oo n

to get that the infimum over a larger set is smaller, i.e.,

inf D, (Y| X)> inf D,(Y]|X). 45
Y:H(Y)>R Y:H, (Y)>R
Because of (45), it is sufficient to prove

inf WY f Py || P1). (46

Y:H}?Y»R (Y I X) > . Hl(rIID\,)>R D(Py || P1). (46)

Let Y be such that H;(Y) > R. Construct a source Y such
that, P, = Py, for1 <4 < nand Y1 Y2 ..... Y are indepen-
dent. Let Z be another source such that 7, Z, ..., 7, is an iid
sequence with distribution

1=12...,n

1
:ﬁ;PYH
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As the marginals of Y™ and Y™ with independent components
are the same, it easily follows from the formula for Kullback-
Leibler divergence that

D(PYn PXn) = D(PYn P}}n)
+ D(Pf;n PXH)
> D(Py. || Px»)

= D(Py, || )
i=1

Z nD(PZ1 || Pl), (47)

where (47) follows from the convexity of divergence. From the
concavity of Shannon entropy, we also have

H(Pyn) SiH(P)Z) STLH(PZ1)

i=1

(48)

Normalize by n take limsup in (47) and liminf in (48) to get
D.(Y || X) > D(Pgz, || P1) and H(Pz,) > R for a Pz, that
is a limit point of the sequence (n=' Y1 | Py,,n € N). From
these, we conclude that (46) holds. This proves (43).

Following a similar procedure as above, we can bound the
other terms in (40) for an i.i.d. source as

sup El(Y7 X7 p)
Y:H(Y)<R
> sup  {pH(Py)-D(Py || 1)} (49)
Py:H(Py)SR
and
sup £,(Y,X,0) =sup{H(Py) — D(Py || P1)}. (50)
Y Py

Substitution of (43) and (49) in the lower bound of (40) yields

E} (R, p) > max {pR — inf D(Py || P1),

Py:H(Py)>R

sup  {pH(Py) = D(Py || Pl)}}
Py:H(Py)SR

= Slljlp{p min{H (Py), R} — D(Py || P1)}. (51)

Similarly, substitution of (50) in the upper bound of (40) yields

EL (R, p)

< min
0<6<p

~D(ry || )

{(p —0)R+ SIEP{HH(PY)

— sup {Oggp{w — )R+ 0H(Py)}

Py
_D(Py | Pl)} (52)
(53)

= Szlalp{p min{H(Py), R} — D(Py || P1)}

where the interchange of sup and min in (52) holds because the
function within braces is linear in € and concave in Py-. From
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(51) and (53), we recover Merhav and Arikan’s result (1) for an
i.i.d. source [2, eq. (3)].

Example 3 (Markov Source): In this example we focus on
an irreducible stationary Markov source taking values on X and
having a transition probability matrix 7.

Let M (X?) denote the set of stationary PMFs defined by

M (X?) = {Q € M(X?):

Z Q(zy,x) = Z Q(z,x2), Yx € X}.

z1 €X zo€X

Denote the common marginal by ¢ and let

_ ] Qz1,)/q(x1), it g(z1) #0
n(:fe1) '_{1/|X|, ! otillerwise )

We may then denote Q = g x 7, where q is the distribution of
X, and 7 the conditional distribution of X5 given X;.
Following steps similar to the i.i.d. case, we have

E,=FE/= sup {pmin{H(n|q), R} —D(n| 7|q)}

QEM,(X?)
where

H(nlg) :==_ q(x)H(n(:|z))

reX

is the conditional one-step entropy, and

D(n | wla) = Y a(z1)D(n(-ler) | w(-|z1)).

r1eX

For a unifilar source the underlying state space forms a Markov
chain and the entropy and divergence of the source equals those
of the underlying Markov state space source [14, Thm. 6.4.2].
The arguments for the Markov source are now directly appli-
cable to a unifilar source.

V. CONCLUSION

We saw the close connection between the problem of guessing
a source realization given a cryptogram and the problem of
compression with saturated exponential costs. The latter is a
modification of a problem posed by Campbell [7]. Moreover,
the exponents for both these problems coincide. This exponent
is determined by the error exponent and a generalization of
correct decoding exponent for fixed length block source codes.

We end this paper with some open questions.

* The equivalence between guessing and compression ex-
ploits the finite alphabet size assumption. Can this be
relaxed?

* How do the results of this paper extend to the case with
receiver side information? Can the result of Hayashi and
Yamamoto be extended to general sources?

* If guessing to within a distortion is allowed, can the result
of Merhav and Arikan [15] be extended to general sources?
Both cases of perfect secrecy and key-rate constrained se-
crecy remain open.
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APPENDIX A
PROOF OF PROPOSITION 3

Let P, be any PMF on X". Enumerate the elements of X"
from 1 to |X|™ in the decreasing order of their P, -probabilities.
Let M = exp{nR} denote the number of distinct key strings.
For convenience, we shall assume that M is a power of 2 so that
the number of key bits k = nR/(1n 2) is an integer. The general
case will be easily handled towards the end of this section.

If M does not divide |X|™, append a few dummy messages of
zero probability to make the number of messages N a multiple
of M. Further, index the messages from O to N — 1. Henceforth,
we identify a message ™ by its index.

Divide the messages into groups of M so that message m
belongs to group T}, where j = |m/M|, and |-] is the floor
function. Enumerate the key streams from 0 to M — 1, so that
0 < u < M — 1. The function f;, is now defined as follows. For
m = jM + i set

FuGM +i,u) 2 jM + (i @ u)

where ¢ @ u is the bit-wise XOR operation. Thus messages in
group T are encrypted to messages in the same group. The
index ¢ identifying the specific message in group 7}, i.e., the
last £ = nR/(In2) bits of m, are encrypted via bit-wise XOR
with the key stream. Given u and the cryptogram, decryption is
clear—perform bit-wise XOR with  on the last nR/(In 2) bits
of y.

Given a cryptogram g, the only information that the attacker
gleans is that the message belongs to the group determined by
y. Indeed, if y € 17, then

1
P{Y =y} = P X" €T))

and therefore

P, {X"=m} .
P {X"=m|Y =y} = { P {X"€T;}’ m/M] = j,
0, otherwise

which decreases with m for m € T}, because of our enumera-
tion in the decreasing order of probabilities, and is O for m ¢ T;.
The attacker’s best strategy Gy, (+|y) is therefore to restrict his
guesses to T; and guess in the order M, M + 1,...,5M +
M — 1. Thus, when 2" = jM + 1, the optimal attack strategy
requires ¢ + 1 guesses.

We now analyze the performance of this attack strategy as
follows:

E[Gy, (X"Y)]

N/M—-1M-1
= 3 X PXT =M A4y
7=0 =0
N/M—-1pM—1
2 3 RS OM 1y
(54)
N/M-1 1+
M*iTP
> > Po{X" = (j+1)M 1} 5 (55)

=0

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 4, APRIL 2011

1 N/M—1M—1
> — PAX"=(G+1)M +i}M?
7 Z Z { )M + i}
(56)
= P X" = m}M? (57)

where (54) follows because the arrangement in the decreasing
order of probabilities implies that

Po{X"™ = jM +i} > P {X" = (j + )M — 1}

fori =0,..., M — 1. Inequality (55) follows because

M-—1

2

Inequality (56) follows because the decreasing probability ar-
rangement implies

M 1+

M?ite

(i4+1) = z”>/ 2Pdz = .
Z 14+p

P {X" =(j+1)M —1}
M-1

> — Z P X" = (j+1)M +i}.
Inequality (57) follows because we take P,(X™ = m) = 0 for

all the further dummy messages with indices m > N. Thus,
(57) implies that

N-1
> PfXT =m}
m=0

(min{m + 1, M})?

M-1
=Y PAX" =m}(m+1)
m=0
N-1
+ Y PufX" =m}M?
m=M

<E[Gr, (XMY)]
+ (1 +pE (G (X"Y)’]

= (24 pE[Gy, (X"Y)7]. (58)

Let GG be the guessing function that guesses in the decreasing
order of P, -probabilities without regard to Y, i.e., G(m) =
m+1. Let L be the associated length function, given in Lemma
2. Now use (58) and Lemma 2 to get

ElGy, (X™Y)"]

1 , . )
> 5 Ellmin{G(X"), M}y]

—1 E [(min {—eXPZ{LG(X )}
2+4p 2cn
1

2 @eyr @t 0)

v

)]

Elexp{pmin{Lg(X")In2,nR}}|

(59
where the last inequality follows by pulling out 2¢,, and rec-
ognizing that 2¢,M > M > exp{nR}. Since Gy, is the
strategy that minimizes E[G(X"|Y)?], the proof is complete
for the cases when k = nR/(In2) is an integer.
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When nR/(In 2) is not an integer, choose k = [nR/(In 2)].
Then M = expy{k} > exp{nR}, and it immediately fol-
lows that inequality (59) continues to hold. This completes the
proof. [ |

APPENDIX B
PROOF OF PROPOSITION 6

We begin with the following lemma. Recall that M (X) is the
set of all probability measures on X and M(B) the subset of
M(X) with support set B C X

M(B) = {v e M(X) : v(B) = 1}.

Lemma 12: For any p > 0,u € M(X) and B C X

(L4 p)ln Y p7 (2) = max {pH(v) - D(v || p)}.

M (B)
r€EB ve (

Remark 6: [6, Lemma 1] is the special case when p = 0. [

Proof: Let pp(z) = I’j((;)) 1{x € B}. We then have

rEB
(14 p)In Z )+ Inp(B)
€B
(1+p) max { !
veM(B) | % uB(x)

(v ] uB)} +In pu(B) (60)
—(+p) mas {ﬁ H) + D(v || 1)}

D || u)} 61)

= Vemﬂgch){pH( v) = D(v || p)} (62)

where (60) follows from the variational formula for Rényi en-
tropy of pp. The maximum achieving distribution in (62) is
w* € M(B) given by

1
T+ (x
) = =20 g, e gy
Zye B Mt y)
a fact that is easily verified via direct substitution. ]

We now prove (11); proof of (10) is similar and therefore
omitted. We begin by showing “<” in (11). Let X* = (P%. :
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n € N) € M(B) be as defined in (12). It is straightforward to
verify by direct substitution that

= pH (Pxn) = D(Px»

(14 p)In Z P1+" Pxn).

" €B,

Normalize by n and take limit infimum, and use the definition
of E;(X*,X, p) to get

(1+ p)lim 1nf =In Z P)}TJ’ ™)

n—oo N
" €B,
= Ei(X*, X, p)
< FE(Y,X 63
ymax (Y, X, p). (63)
Toprove “>"in(11),letY = (Py» : n € N) € M(B)bean

arbitrary sequence. We may assume that for all sufficiently large
n, Py» < Px» holds; otherwise F;(Y,X, p) = —oo and the
inequality “>” holds automatically. Define Y* = (P, : n €
N) e M(B)b

Py (y")

e = )

1{y"™ € B,}.

It is clear that Py, € M(B
have

) for every n. From Lemma 12, we

(14 p)In Z P1+"

" €B,
- H P n) — D P n P n
Py 71%1-/%/1)((Bn){p ( v ) ( v X )}
> pH(P}.) = D(Py. || Pxo): (64)

We now study each term on the right-hand side of (64). The
entropy term is lower bounded as follows:

pH(P;:'n)
p 1
= ———— P n :En ln—
Py« (Bn) {Ié v (") Pyn(x")}
+ pln Py« (B,,)
p 1
=————(H(Py»)— Pyn(z")In
Py (Bn) Tze:B Py (zm)
+ pln Py« (By)
p
=——" _{H(Py»)— Py~ (B¢ Py |B;,
ooy U (Pre) = P (5) H (P | B7)

+Pys (BS) In Py (BS)}
+ plnP)’n(B )
{H (Pyn)

(BS)} + pln Py (By).

>— —P’n Bc 1 X

+ Py (B;) In Py (65)
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The divergence term is upper bounded, as in the proof of
Iriyama’s [6, Prop. 1], as follows:

D(Pg. || Px»)
= —IHP) (B )
v (27)
Z Pyu(z” n4n
Pyn = P (")
1
— — I Pye(By) + ———D(Pyn || Pxn
n Py ( )+Pyn(Bn) (P )
Pyn(.’l?n)
Py (z")In 2
Pyn I’Z:BC PXn (J}n)
1
< —In Py« (B,) + ———D(Py || Px~
< —InPy( )+Pyn(Bn) (Pyn || Pxn)
Py (B¢) — Pxn (B¢
_ Py« (B) — Px» (B}) 66)
Py (B,)
1
< —1In Pyn(B,) + ————D(Pyn || Pxn
S —inbye(Bu) + 5y PO )
1
+ —. 67
Py (By) )

To get (66), we used the fact thatlnz > 1 — % for all z > 0 and
in inequality (67), we used the relation
Pyn(B;) — Px~(B;) > —1.

Substitution of (65) and (67) in (64) and the fact that
hmn_,oo P)’n (Bn) =1 yleld

(1+p)hmlnf In Z P””’ ™)

n—oo 1n
" €B,,

1
> liminf —{pH(Py~) — D(Py~
n—oo N
=E (Y, X7 p)

Pxv) = O(1)}

Since the choice of Y = (Py» : n € N) € M(B) was
arbitrary, we have proved “>” in (11).

From (63) and (11), the maximum is attained by X*, the dis-
tribution defined in (12). This completes the proof. [ |

APPENDIX C
PROOF OF PROPOSITION 9

Iriyama and Ihara showed the following lower bound on the
infimum coding rate ([13, Th.3, (12)])
H(Y) < R(r|X).

sup (68)

Y:D,(Y||X)<r

We claim that (68) is equivalent to (34). This proves the
proposition.

We first show that (68) implies (34). Fix the source X. Let R
be a given rate. Consider an arbitrary candidate exponent r and
an arbitrary source Y. We argue that

R is r—achievable and H(Y) > R = r

< Du(Y [ X). (69)
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Taking the infimum on the right-hand side of (69) over Y with
H(Y) > R, and then the supremum over r will yield (34).
To argue (69) by contraposition, we shall show that

r> D, (Y || X)
= either R is not r—achievable or H(Y) < R

or equivalently, we shall show that

r> Dy (Y || X)and H(Y) > R
—> R is not r—achievable.

But the conditions on the left-hand side imply

sup H(Y)>R

Y:D, (Y| X)<r

which together with (68) yields 2(r|X) > R, and this is the
same as saying R is not r-achievable. This completes the proof
of (68) = (34). (This direction suffices to prove Proposition 9).
The proof of the other direction is analogous. ]

To prove the upper bound in (35), we begin with Iriyama’s
[6, eq. (13)], which is

sup R(r|X)

Y:D, (Y| X)<r

instead of (68). The rest of the proof is completely analogous to
the proof of Proposition 9.

APPENDIX D
PROOF OF PROPOSITION 10

We use the following notations in this proof. For each B =

(B, : n € N) define
|B| := lim sup — ln|B |
and
S(Y) = {B . lim Pya(By) = 1}.

Note that B € S(Y) & Y € M(B). We will first prove (38).
Define a set

B(r, p|X) = {B = (Bn:meN):

(1+ p)lim 1nf =In Z P\lff

n—oo N
z"E€B,

>2r}. (70)

Then, by definition

R*(r, p|X) = inf{|B]| : B € B(r, p|X)}. (71)
Fix a B € B(r, p|X). Proposition 6 then implies
1+P
(1+p)1£1n_1)1£fnln Z Pte(z™)
rmeB,
= max_ F(Y,X,p).

Y:BeS(Y)
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We can therefore conclude using (70) that the following set
equivalence holds:

BrolX) =

E (Y., X,p)>r

S(Y). (72)

From (71) and (72), we get

R*(r,p|X)=inf{ B|:Be |

E (Y X,p)>r
— inf{[Bl: B(Y. X.p) 2 r.B € 5(Y))

H(Y)

S(Y)

= inf
Y:E (Y.X,p)>r

where last equality follows because

H(Y)=inf{|B|: B e S(Y)}
as proved by Han and Verdd [16]. This proves (38).
We now prove (39). We first show that if R is (r, p)-admis-
sible then 7 < supg(y)<p Ei(Y, X, p).
Since R is (r, p)-admissible, the definition of R*(r, p|X) and
(38) imply that
R > R (r,plX) = H(Y)

inf
Y:E (Y. X,p)>r
which is the same as saying the following:
(A): For all n= > 0 there exists a Y(n) such that
E(Y(n),X,p) >rand H(Y(n)) < R+1. R O
Lemma 13 below implies that there exists a Y that satisfies
E(Y,X,p) >rand H(Y) < R. It follows that
r<

sup El(Y7 X7p)
H(Y)<R

and the converse part is proved.
For the direct part, fix any R, p, and set

sup El(Y,X7p>
H(Y)<R

ro=

We should show that R is (r, p)-admissible.

With 7 set as above, we have

(B): For all n > 0, there exists a Y(n) such that
Ef(Y(n),X,p) >r—nand H(Y(n)) < R. O

Lemma 13 below implies that there exists a Y that satisfies
E(Y,X,p) > rand H(Y) < R. It follows that

R> inf H(Y) = R*(r. p|X
B (Ylvgl(:ﬂ)zr (Y) (r, pIX),
i.e., R is (r, p)-admissible. This completes the proof. -

Lemma 13: If either (A) or (B) holds then there is a Y that
satisfies F,(Y,X, p) > rand H(Y) < R.
Proof: 'We will argue that condition (A) implies the exis-
tence of an appropriate Y. The other argument is analogous and
omitted. Our argument is similar to a diagonal argument.
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Let (A) hold. Then, for each n > 0, we have a Y(n) that
satisfies (a) F;(Y(n), X, p) > r, which is the same as saying

115510%% (pH (Pyoiyy) = D (Prugyy I Pxn) ) = v
(73)

and (b) H(Y

lim Pr{lln+>R+n}=0. (74)
nee n Po oy (Y7 (1))

Let n = 1/m and consider m € N. Let us now find an subse-
quence {7y, }m>o0 in order to define the desired Y. Letng = 0.
Recursively, for each m > 1, we have the following.
i) From (73) with n = 1/m, we get that there is an N,,, such
that for any n > N,,,

2 (0 (Praa) = 0 (Bragay 120)) >
(75)

(n)) < R+ n, which implies

ii) From (74) with ) = 1/m, we get that there is an N/, such
that for any n > N/,

1 1 1
Pr¢{ —In SR+— % <« =
nop

v (@)

By taking an n,, > max{N,,, N}  n,_1}, it follows
that we can find an n,,, > n,,_1 such that (75) and (76)
hold for all n > n,,.

Define Y = (P, : n € N) by setting

(76)

VLY (1 /m), o1 <n < n,. (77)
We now show that this Y has the required properties.

We first show E;(Y, X, p) > r. Take any arbitrary § > 0, fix
m > 1/8, and consider n,,. For any n > n,,, there is an m’ >

m such that n,,_1 < n < n,,. Use the definition in (77) and

the fact that (75) holds for all n > n,, (with Y™ £ y7(-L)),
to get
1 1
—(pPH(Pyo) = D(Pyn || Pxn)) > 7= —5
1
> r—=—
m
> 6
We can thus conclude that the inequality
1
E(PH(PW) — D(Py,, || Px»)) >r—20

holds for all n > n,,. Since 6 > 0 was arbitrary, this establishes
that (Y, X, p) > 7.

We next show H(Y) < R. Using the definition of H(Y), it
suffices to show that for every § > 0, the following limit holds:

lim PY” <l In ﬁ >R + 5) = (78)
n—o0 n N n
Y'n
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Take any arbitrary ¢ > 0, fix an m > 1/min{e, 6}, and con-
sider n > n,,. There is an m’ > m for which n,,,,_; < n <
T . Use the definition in (77) and the fact that (76) holds to get

1 1
Pf,n —IH—A>R+6
n o (Y)
1 1 1
SP{,R ﬁln—,\n)>R+W
vy
1
S
1
S_
m

™

)

<
for any n > ny,. Consequently (78) holds, and thence

H(Y)<R. .
We have thus shown the existence of an appropriate Y if (A)
holds. A similar argument holds under condition (B). ]
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