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Abstract—We consider the asymptotics of the invariant mea-
sure for the process of spatial distribution of N coupled Markov
chains in the limit of a large number of chains. Each chain reflects
the stochastic evolution of one particle. The chains are coupled
through the dependence of transition rates on the spatial distri-
bution of particles in the various states. Our model is a caricature
for medium access interactions in wireless local area networks.
Our model is also applicable in the study of spread of epidemics in
a network. The limiting process satisfies a deterministic ordinary
differential equation called the McKean-Vlasov equation. When
this differential equation has a unique globally asymptotically
stable equilibrium, the spatial distribution converges weakly to
this equilibrium. Using a control-theoretic approach, we examine
the question of a large deviation from this equilibrium.

Index Terms—decoupling approximation, fluid limit, invariant
measure, McKean-Vlasov equation, mean field limit, small noise
limit, stationary measure, stochastic Liouville equation

I. THE MODEL

This paper expands on the talk given at the 2011 Allerton

Conference on Communications, Control and Computing. The

presentation here will be somewhat expository and informal.

Readers are referred to [9] for a more formal and detailed

presentation of the results.

We begin with a description of the system under study.

System Description: There are N particles (nodes) in our

caricature of a wireless local area network (WLAN). At each

instant of time, a particle’s state is a particular value taken

from a finite state space, say Z = {0, 1, · · · , r − 1}. This

state represents the number of failed attempts at transmission

of the head-of-the-line packet at that particle’s queue. When a

particle is in state i, a successful transmission gets the packet

out of the system, and the particle moves to state 0 to service

the next packet. A failed transmission moves the particle to

state i+1 (mod r). In the case when i was initially r−1, i.e.,

r − 1 unsuccessful transmission attempts were already made,

another failed attempt results in the discarding of the packet.

The particle then moves to state 0 with the next packet readied

for transmission. We may interpret r as the maximum number

of transmission attempts. The transition rate for a particle from

state i to state j is governed by mean field dynamics, i.e., the

transition rate is λi,j(µN (t)) where µN (t) is the empirical

distribution of the states of particles at time t. If X
(N)
n (t) is

the state of the nth particle at time t, then one may write

µN (t) as

µN (t) =
1

N

N
∑

n=1

δ
{X

(N)
n (t)}

.

The particles interact only through the dependence of their

transition rates on the current empirical measure µN (t).
It must be noted that the above system model does not

perfectly capture all aspects in a WLAN. In particular, in-

teractions and changes of states occur in discrete-time units

of slots, and multiple nodes may transit in one slot. Multiple

transitions never occur, almost surely, in our continuous-time

model. Nevertheless, the discrete-time model’s transition rates

and the slot sizes are appropriately scaled down as N grows so

that the transition rates approach constants, and our continuous

time model provides accurate predictions of behavior on the

discrete-time model. See [6] for a similar continuous-time

model.

The transitions allowed in the above model are i to either

i+ 1 (mod r) or 0. Let us say that E denotes the set of pairs

of allowed transitions. In the above model,

E={(i, i+1), i = 0, 1, · · · , r−1}∪{(i, 0), i = 0, 1, · · · , r−1}

where the addition is taken modulo r.

The process X(N)(·) = {X
(N)
n (·), 1 ≤ n ≤ N} is clearly

a Markov process. But one difficulty needs to be surmounted

in analyzing this system: the size of the state space grows

exponentially in the number of particles. As a step towards

addressing this difficulty, we first consider a mean field limit

as the number of particles grows to infinity.

II. THE MEAN FIELD LIMIT

Let us denote by M1(· · · ), the space of probability mea-

sures on · · · with an associated σ-algebra that will usually be

clear from the context. A moment’s thought suggests that the

empirical process µN (·) is Markov, and that its infinitesimal

generator is

Ω(N)Φ(ξ)

= lim
h↓0

1

h
E [Φ(µN (t+ h))− Φ(µN (t)) | µN (t) = ξ]

=
∑

(i,j):j 6=i

Nξ(i)λi,j(ξ)

[

Φ

(

ξ +
1

N
ej −

1

N
ei

)

− Φ(ξ)

]

where Φ : M1(Z) → R is any bounded continuous function.

Let us take Φ(ξ) = ξ(k), run k through the elements in Z , and

we will be able to verify the following ordinary differential

equation: the expected drift in µN (t) satisfies

lim
h↓0

1

h
E [µN (t+ h)− µN (t) | µN (t) = ξ] = A∗

ξξ
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where Aξ is the usual rate matrix describing the transitions

for a tagged particle, i.e.,

(Aξ)i,j =







λi,j(ξ) if i 6= j

−
∑

j′:j′ 6=i

λi,j′ (ξ) if i = j.

The initial condition is taken to be µN (0). The lack of

dependence N on the right-hand side above is due to the linear

nature of the chosen Φ. If there were no dependence on N

for all bounded continuous Φ, then the evolution would be

deterministic. For general Φ, a Taylor’s series expansion of Φ
near ξ indicates that the dependence on N is from the second

order onwards. This suggests a first order approximation: just

ignore the randomness and set its evolution to be that of its

mean, the deterministic µ(t), which is the solution to the

ordinary differential equation (ODE)

µ̇(t) = A∗
µ(t)µ(t)

with an initial condition µ(0) = µN (0). This ODE is called

the McKean-Vlasov equation. One also anticipates that this

approximation is good in the large number of particles limit,

i.e., limN→+∞ µN (t) = µ(t), where the limit is interpreted in

an appropriate sense, with µ(0) = limN→+∞ µN (0). See the

third remark following Theorem IV.1.

The question of existence and uniqueness of the Markov

process defined by the generator above is answered by assum-

ing that the rates are bounded from above. The question of

well-posedness of the ODE above, i.e., does the solution to

the ODE exist for any initial condition and is it unique, is

answered by assuming that the function λi,j(·) is Lipschitz.

In addition, we make a uniform lower bound assumption on

the rates of allowed transmissions. Let us summarize these

assumptions as

(A) There exist positive constants c > 0 and C < +∞ such

that, for every (i, j) ∈ E , the bounds c ≤ λi,j(·) ≤ C

hold, and moreover, the mapping µ 7→ λi,j(µ) is Lips-

chitz continuous over M1(Z).

III. PROPAGATION OF CHAOS AND THE DECOUPLING

APPROXIMATION

The mean field approximation helps address the state-space

explosion issue alluded to above. Let us focus attention on

a finite number of tagged particles. If the initial conditions

{X
(N)
n (0), n = 1, · · · , N} are independent and identically

distributed across particles, and remain so for the tagged

particles in the limit as N → +∞, a condition that we shall

call chaotic, then the evolution of the k tagged particles (in the

infinite particle limit, over any fixed and finite time duration)

is independent and identically distributed. Further, the tagged

particles’ evolutions are characterized by the transition rates

λi,j(µ(t)), where µ(·) is the solution to the ODE over the

finite duration of interest, the McKean-Vlasov limit. The initial

chaos thus propagates. The effect of all the other particles is

to create the mean field. This idea was introduced Kac [20]

as a simple model in kinetic theory and was later studied by

McKean and others [22], with further developments in [29]

and [19].

Under some conditions, even though the initial condition

may not be chaotic, the system ends up being chaotic in the

large time limit, so that the particles’ evolutions are asymptot-

ically independent, in a manner of speaking. The order of the

limits t → +∞ and N → +∞ will be made precise in Section

V. In the communication networks literature, this is termed as

the decoupling approximation and was recently popularized by

Bianchi [4]; some early precursors in this direction were [1],

[2], [28]. See [8], [7], [3], and [23] for further justifications

and reinterpretations of the decoupling approximation.

As remarked in [15], experimental evidence for CSMA

protocols indicates that the model and the decoupling approx-

imation are surprisingly accurate even for small populations.

Indeed, this is one of the main reasons for the model’s

enormous popularity. One can explain this good fit, to some

extent, if there is exponentially fast convergence to the mean

field. Let us probe this notion a little further via the theory of

large deviations.

IV. LARGE DEVIATIONS FROM THE MCKEAN-VLASOV

LIMIT FOR FINITE TIME DURATIONS

Large deviation principles for interacting diffusions and

interacting jump Markov processes have been well-studied by

several authors, e.g., [11] for diffusions, [21], [14], [17], and

[10] for processes with jumps. The initial condition is either a

particular fixed state for each particle or is a chaotic measure

(independent and identically distributed across particles) in

[21], [17], and [10]. The initial conditions are more relaxed

in [11] (for diffusions) and [14] (for a restricted class of

jump processes that does not include our set up): they only

need limN→+∞ µN (0) = µ(0) = ν, say. The large deviation

principle is quantified by a rate function S[0,T ](µ|ν) that

measures the difficulty of passage of the empirical process

(µN(t), t ∈ [0, T ]) for some T ∈ (0,+∞)) in the neighbor-

hood of a path µ : [0, T ] → M1(Z) having initial condition

µ(0) = ν.

Some preliminaries on the large deviation principle are in

order. Let us denote by νN the initial empirical measure, i.e.,

the initial value µN(0) = νN . Let p
(N)
νN denote the law of

the Markov empirical process µN : [0, T ] → M1(Z) (whose

generator we wrote earlier as Ω(N)) under the initial condition

νN . Let us equip the space D([0, T ],M1(Z)), the space of

cadlag functions on [0, T ] taking values in M1(Z), with the

metric

ρT (ξ, ξ
′) = sup

t∈[0,T ]

ρ0(ξ(t), ξ
′(t))

where ρ0 may be taken as the metric that metrizes the topology

of weak convergence on M1(Z). Two observations are that

this topology is finer than the usual Skorohod topology (with

the complete metric) and that the resulting topological space

under the metric ρT is not separable.

Let (p(N), N ≥ 1) be a sequence of probability measures.

We say that (p(N), N ≥ 1) satisfies the large deviation
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principle with speed N and a good rate function S[0,T ](µ)
if the following hold.

(i) For each open set G of the topological space

D([0, T ],M1(Z)), we have

lim inf
N→+∞

N−1 log p(N)(G) ≥ − inf
µ∈G

S[0,T ](µ).

(ii) For each closed set F of the topological space

D([0, T ],M1(Z)), we have

lim inf
N→+∞

N−1 log p(N)(F ) ≤ − inf
µ∈F

S[0,T ](µ).

(iii) For each a ∈ [0,+∞), the level sets

{µ ∈ D([0, T ],M1(Z)) | S[0,T ](µ) ≤ a}

are compact.

Our interest is in the large deviation principle for a sequence

(p
(N)
νN , N ≥ 1) whose initial conditions νN → ν weakly, and

the rate functions will depend on the limiting initial condition

ν. To highlight this dependence, we denote the rate function as

S[0,T ](µ|ν). Note that µ is a measure-valued (M1(Z)-valued)

path on [0, T ] while ν ∈ M1(Z) is simply a measure that

denotes the initial condition for the path.

We shall now identify the rate function S[0,T ](µ|ν) for

this sequence of empirical processes. Let ξ ∈ M1(Z) and

let f : Z → R. The Hamiltonian H (N) associated to the

infinitesimal generator Ω(N) is defined as

H
(N)(ξ, f) = e−〈ξ,f〉Ω(N)e〈ξ,f〉

= N
∑

i,j:j 6=i

ξ(i)λi,j(ξ)
[

e(f(j)−f(i))/N − 1
]

.

where 〈ξ, f〉 :=
∑

i ξ(i)f(i). The scaled Hamiltonian is

H (ξ, f) = lim
N→+∞

1

N
H

(N)(µ,Nf)

=
∑

i,j:j 6=i

ξ(i)λi,j(ξ)
[

e(f(j)−f(i)) − 1
]

.

For a θ : Z → R, define the Legendre transform of the scaled

Hamiltonian in the usual way as

L (ξ, θ) = sup
f :Z→R

{〈θ, f〉 − H (ξ, f)} .

We will also need the subset A ⊂ D([0, T ],M1(Z)) of

absolutely continuous measure-valued functions on [0, T ]. We

refer the reader to [21, Defn. 3.1] for a precise definition of A
and some consequences. We state two consequences that give

an idea of the regularity of paths in A. First, if µ ∈ A, then

for any f : Z → R, the function 〈f, µ(·)〉 is an absolutely

continuous real-valued function. Second, if µ ∈ A then the

time derivative µ̇ exists for almost all t ∈ [0, T ].
Finally, let us define

τ∗(u) =







(u+ 1) log(u+ 1)− u if u > −1
1 if u = −1
+∞ if u < −1.

This is the Legendre dual of the function τ(u) = eu − u− 1.

With these elaborate preliminaries, the following result can be

shown.

Theorem IV.1. Let Assumption (A) hold. Suppose that the

initial conditions νN → ν weakly. Then the sequence

(p
(N)
νN , N ≥ 1) satisfies the large deviation principle in the

space D([0, T ],M1(Z)) (under the topology induced by the

metric ρT ) with speed N and good rate function S[0,T ](µ|ν)
given by

S[0,T ](µ|ν) =

{
∫

[0,T ]
L (µ(t), µ̇(t)) dt if µ ∈ A

+∞ otherwise.

If a path µ ∈ D([0, T ],M1(Z)) has S[0,T ](µ|ν) < +∞,

then µ ∈ A and there exist rates (li,j(t), t ∈ [0, T ], (i, j) ∈ E)
such that

• µ̇(t) = L(t)∗µ(t) where L(t) is the rate matrix associ-

ated with the time-varying rates (li,j(t), (i, j) ∈ E) and

L(t)∗ is its adjoint;

• the good rate function S[0,T ](µ|ν) is given by

S[0,T ](µ|ν)

=

∫

[0,T ]

[

∑

(i,j)∈E

(µ(t)(i))λi,j(µ(t))τ
∗

(

li,j(t)

λi,j(µ(t))
− 1

)

]

dt.

(1)

Remarks: 1. This result is a mild generalization of [21, Th.

3.1], and of the results in [10], [17], and [13] that assume

chaotic initial conditions. We allow any arbitrary sequence of

initial conditions νN so long as νN → ν weakly.

2. For any initial measure ν, it can be shown that the

cost S[0,T ](µ|ν) of the limiting McKean-Vlasov path with the

initial condition ν is 0. This is the path µ : [0, T ] → M1(Z)
that satisfies the ODE

µ̇(t) = A∗
µ(t)µ(t)

with initial condition µ(0) = ν.

3. Since τ∗(u) = 0 if and only if u = 0, we can conclude

from (1) that if the rate function S[0,T ](µ|ν) = 0, then µ

must be the unique solution to the McKean-Vlasov equation

µ̇(t) = A∗
µ(t)µ(t) with initial condition µ(0) = ν. (That

the solution is unique follows from Lipschitz assumption

in Assumption (A) which implies the well-posedness of the

ODE). The limit law p
(N)
νN → δµ(·) in the topology of weak

convergence automatically follows.

4. When a path µ is such that S[0,T ](µ|ν) < +∞, the

first bullet in the second statement of Theorem IV.1 says that

there is a control (tilt), given by the rate matrix L(t), such

that the normal limiting trajectory under this control is µ(·).
S[0,T ](µ|ν) is then the cost of this control.

V. BEHAVIOR FOR LARGE TIME

The mean field approximation for finite durations is sum-

marized as follows. Given an initial condition, and any finite

time duration, the empirical measure follows the McKean-

Vlasov dynamics. A finite number of tagged particles evolve

approximately independently (in the large particle limit) in the

mean field environment.

What happens as t → +∞?
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Let us assume that the allowed transitions in E are such that

the directed graph with vertices Z and edges E is irreducible.

The corresponding continuous time Markov chain of empirical

measures µN (·) is then irreducible for each N ∈ N. Its state

space grows with N but has size at most (N +1)r. It follows

that for each finite N , there is a unique invariant measure, say

℘(N), to which the law of µ(N)(t) converges as t → +∞.

What can we say about limN→+∞ ℘(N)?

Let us consider the good case first. Consider the McKean-

Vlasov equation

µ̇(t) = A∗
µ(t)µ(t).

An equilibrium point is a ξ ∈ M1(Z) that satisfies A∗
ξξ = 0.

If µ(0) = ξ, then µ(t) = ξ for all t > 0. Such a point is said

to be globally asymptotically stable if the following hold:

• Regardless of the initial condition, we have

limt→+∞ µ(t) = ξ0. The singleton set {ξ0} is therefore

an attractor, and all trajectories converge to it.

• The singleton set {ξ0} is Liapunov stable, i.e., for every

ε > 0, there is a δ > 0 such that every trajectory

initiated in the δ-neighborhood of ξ0 remains in its ε-

neighborhood.

A unique equilibrium that is globally asymptotically stable,

say ξ0, is a good thing to have. One anticipates in this case

that ℘(N) → δξ0 weakly.

In general, however, there can be many equilibria. Or there

could even be a unique equilibrium, but it is not stable,

and the system settles at a different limit set, say a limit

cycle. Even worse, there could be multiple limiting sets,

connected compact sets that are invariant to the McKean-

Vlasov dynamics, with different basins of attraction. Such

situations are not uncommon; see [3]. In such cases, we need

to understand where limN→+∞ ℘(N) settles.

A large deviation principle, if we can find one, settles

this question. Suppose that (℘(N), N ≥ 1) satisfies the large

deviation principle with a good rate function s : M1(Z) →
[0,+∞], then the likely set to which ℘(N) will converge is

arg min
ξ∈M1(Z)

s(ξ) = s−1{0}.

It of course tells a lot more about likelihood of deviations from

this set and difficulty of being in far off neighborhoods. We

shall however focus only on the case when there is a unique

equilibrium that is globally asympotically stable.

VI. A CONTROL THEORETIC VIEW

We now describe our approach to obtaining a large deviation

principle for (℘(N), N ≥ 1). Our work is naturally related to

small noise asymptotics of invariant measures of diffusions and

of certain jump processes, which were considered by Freidlin

and Wentzell [18] and Shwartz and Weiss [27]. For jump

processes, they provide results under rather strong assumptions

on jump rates (for e.g., logarithm of the empirical process’s

jump rates is bounded). These are not satisfied by the Markov

empirical process considered here. Since the state-space is

constrained to lie within the probability simplex, there is a

significant push inward at the boundary of the simplex, and

the logarithm of the transition rates cannot be bounded. We

therefore need to do a little more work.

Our approach for solving the large deviations of invariant

measure exploits a control-theoretic view described in [5],

which considers a class of diffusions and generalizes results

of [26] and [12] on small noise asymptotics of invariant

measures and exit probabilities in diffusions. See [25] for

small noise asymptotics of exit probabilities in processes with

jumps. The control-theoretic approach differs from those of

Freidlin and Wentzell [18] and Shwartz and Weiss [27], which

rely on a result of Khasminskii (see, e.g., [18, Ch. 6.4])

for the description of invariant measures of Markov chains.

Our control-theoretic approach works when there is a unique

globally asymptotically stable equilibrium for the McKean-

Vlasov dynamics, but appears to require the Khasminskii result

for resolution of certain boundary conditions in the case when

there is more than one equilibrium. We do not address here

the case of multiple equilibria or attractors.

1) Nonchaotic initial conditions: As in Freidlin-Wentzell

[18], we will extract a large deviation principle for the in-

variant measure from a large deviation principle over finite

time durations. Let us assume that the random variables

{X
(N)
n (0), 1 ≤ n ≤ N} that describe the state of the N

particles are exchangeable, and that µN (0) is started at its

invariant measure ℘(N), which may not be degenerate. The

initial law of particles’ states, with the invariant measure ℘(N)

for the empirical measure, may not be independent across

particles (i.e., not a product measure and so nonchaotic). To

handle this, we first establish a subsequential large deviation

result using Theorem IV.1, and then show that the rate function

is unique. It is well known in the theory of weak convergence

of probability measures that given a sequence of probability

measures (QN , N ≥ 1), if every subsequence has a further

subsequence that converges weakly to the same limit Q, then

QN converges weakly to Q. An analogous statement holds

for large deviations: if every subsequence (QNk
, k ≥ 1) has

a further subsequence (QNk
l
, l ≥ 1) that satisfies the large

deviation principle with speed Nkl
and the same rate function

s, and the sequence is exponentially tight, then the original

sequence satisfies the large deviation principle with speed N

and rate s.

2) Empirical measure at terminal times: Fix a finite duration

[0, T ]. Let us use the notation µN (0) = νN and µ(0) = ν.

Suppose that the initial conditions satisfy νN → ν weakly.

(No exchangeability assumption is made on the distribution of

the particles, and so the initial conditions need not be chaotic).

Recall that pνN (N) is the law of µN : [0, T ] → M1(Z). Let

pνN ,T (N) be the law of µN (T ). Then, since the projection

map µ 7→ µ(T ) is continuous, Theorem IV.1 and the contrac-

tion principle imply that (pνN ,T (N), N ≥ 1) satisfies the large

deviation principle with speed N and rate

ST (ξ|ν) = inf{S[0,T ](µ|ν)|µ(0) = ν, µ(T ) = ξ, µ ∈ A}.
(2)

One can also extract a minimizing path µ : [0, T ] → M1(Z)
that moves from µ(0) = ν to µ(T ) = ξ, and time varying rates
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(li,j , t ∈ [0, T ]) with an associated rate matrix L(t), such that

the minimizing path is now the normal path under control

L(t), i.e.,

µ̇(t) = L(t)∗µ(t),

and ST (ξ|ν) = S[0,T ](µ|ν).
3) Empirical measure at initial and terminal times: Suppose

that the initial empirical measure µN (0) has law ℘
(N)
0 . Let

℘
(0)
0,T denote the joint law of the pair (µN (0), µN (T )). If the

sequence of initial conditions (℘
(N)
0 , N ≥ 1) satisfies the large

deviation principle with a good rate function s, then using a

result for product distributions, see Feng and Kurtz [16, Prop.

3.25], and using some regularity properties of ST (ξ|ν), one

can establish that the sequence of joint laws (℘
(N)
0,T , N ≥ 1)

satisfies the large deviation principle with speed N and good

rate function

S0,T (ν, ξ) = s(ν) + ST (ξ|ν).

If one applies the contraction principle for the map µ 7→ µ(T ),

then the sequence of terminal measures (℘
(N)
T , N ≥ 1)

satisfies the large deviation principle with good rate function

inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}. (3)

4) Invariant measure: We saw that the Markov chain µN (·)
has a unique invariant measure ℘(N) for each N . Since

M1(Z) may be viewed as a compact subset of R
r, there

is a subsequential large deviation principle for the sequence

of invariant measures. From this and the fact that invariance

means ℘
(N)
0 = ℘

(N)
T = ℘(N), one recognizes that (3)

evaluates to s(ξ), and so this rate function for the subsequential

large deviation principle satisfies the Hamilton-Jacobi-Bellman

equation

s(ξ) = inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}. (4)

Note that the above equation says that s(ξ) has the interpre-

tation that it is a minimum over all paths that last T units of

time and end at ξ after taking into account the cost for the

initial state; see (2). We then show that this equation holds

for a countable set of time durations, say with T replaced by

mT ′ with m ≥ 1, and extract a single path of infinite duration

ending at ξ, each of whose pieces of duration mT ′ is optimal

and satisfies (4) with equality. If we view this path in reverse

time and call it µ̂(·), it starts at µ̂(0) = ξ and satisfies

˙̂µ(t) = −L̂(t)∗µ̂(t), t > 0,

for some family of rate matrices L̂(·). When there is a unique

globally asymptotically stable equilibrium ξ0, we show that

s(ξ0) = 0, and that the chosen infinite duration path must

converge to ξ0. Using (1) in reversed time, and letting Ê denote

the reversed edges of E , one then gets

s(ξ) = inf
µ̂

∫

[0,+∞)

[

∑

(i,j)∈Ê

(µ̂(t)(j))λ̂i,j(µ̂(t))

τ∗

(

li,j(t)

λ̂i,j(µ̂(t))
− 1

)

]

dt (5)

where the infimum is over all µ̂ that lie in M1(Z) and are

solutions to the dynamical system ˙̂µ(t) = −L̂(t)∗µ̂(t) for

some family of rate matrices L̂(·) = (li,j(·))i,j∈Z , with initial

condition µ̂(0) = ξ and terminal condition limt→+∞ µ̂(t) =
ξ0.

Since this does not depend on the subsequence, the sub-

sequential large deviation principle is indeed a full large

deviation principle. We now summarize the main theorem.

Theorem VI.1. Let Assumption (A) hold. Let the graph

with vertex set Z and edge set E be irreducible. Let the

McKean-Vlasov equation µ̇(t) = A∗
µ(t)µ(t) have a unique

globally asymptotically stable equilibrium ξ0. Then the se-

quence (℘(N), N ≥ 1) satisfies the large deviation principle

with speed N and good rate function s given by (5).
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