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Abstract—We consider the asymptotics of the invariant mea-
sure for the process of spatial distribution of N coupled Markov
chains in the limit of a large number of chains. Each chain reflects
the stochastic evolution of one particle. The chains are coupled
through the dependence of transition rates on the spatial distri-
bution of particles in the various states. Our model is a caricature
for medium access interactions in wireless local area networks.
Our model is also applicable in the study of spread of epidemics in
a network. The limiting process satisfies a deterministic ordinary
differential equation called the McKean-Vlasov equation. When
this differential equation has a unique globally asymptotically
stable equilibrium, the spatial distribution converges weakly to
this equilibrium. Using a control-theoretic approach, we examine
the question of a large deviation from this equilibrium.

Index Terms—decoupling approximation, fluid limit, invariant
measure, McKean-Vlasov equation, mean field limit, small noise
limit, stationary measure, stochastic Liouville equation

I. THE MODEL

This paper expands on the talk given at the 2011 Allerton
Conference on Communications, Control and Computing. The
presentation here will be somewhat expository and informal.
Readers are referred to [9] for a more formal and detailed
presentation of the results.

We begin with a description of the system under study.

System Description: There are N particles (nodes) in our
caricature of a wireless local area network (WLAN). At each
instant of time, a particle’s state is a particular value taken
from a finite state space, say Z = {0,1,---,r — 1}. This
state represents the number of failed attempts at transmission
of the head-of-the-line packet at that particle’s queue. When a
particle is in state ¢, a successful transmission gets the packet
out of the system, and the particle moves to state O to service
the next packet. A failed transmission moves the particle to
state 4+ 1 (mod r). In the case when ¢ was initially r — 1, i.e.,
r — 1 unsuccessful transmission attempts were already made,
another failed attempt results in the discarding of the packet.
The particle then moves to state 0 with the next packet readied
for transmission. We may interpret r as the maximum number
of transmission attempts. The transition rate for a particle from
state ¢ to state j is governed by mean field dynamics, i.e., the
transition rate is A; ;(un(t)) where pun(t) is the empirical
distribution of the states of particles at time ¢. If X,(IN)(t) is
the state of the nth particle at time ¢, then one may write
un(t) as

N
1
:u‘N(t) = N Z 6{X7(1N)(f)}
n=1
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The particles interact only through the dependence of their
transition rates on the current empirical measure iy (¢).

It must be noted that the above system model does not
perfectly capture all aspects in a WLAN. In particular, in-
teractions and changes of states occur in discrete-time units
of slots, and multiple nodes may transit in one slot. Multiple
transitions never occur, almost surely, in our continuous-time
model. Nevertheless, the discrete-time model’s transition rates
and the slot sizes are appropriately scaled down as N grows so
that the transition rates approach constants, and our continuous
time model provides accurate predictions of behavior on the
discrete-time model. See [6] for a similar continuous-time
model.

The transitions allowed in the above model are 7 to either
i+ 1 (mod r) or 0. Let us say that £ denotes the set of pairs
of allowed transitions. In the above model,

5:{(Z7Z+1)72 =0,1,--- 7T71}U{(i70)7i =0,1,-- 77”71}

where the addition is taken modulo 7.

The process X (M) () = {XfLN)(-)7 1 <n < N} is clearly
a Markov process. But one difficulty needs to be surmounted
in analyzing this system: the size of the state space grows
exponentially in the number of particles. As a step towards
addressing this difficulty, we first consider a mean field limit
as the number of particles grows to infinity.

II. THE MEAN FIELD LIMIT

Let us denote by M, (---), the space of probability mea-
sures on - - - with an associated o-algebra that will usually be
clear from the context. A moment’s thought suggests that the
empirical process py () is Markov, and that its infinitesimal
generator is

ONa(¢)
= lim By (t+ 1) - B (1) | px(6) =
= X N |2 (s e - yer) - 20)
(4,9):37#1

where ® : M;(Z) — R is any bounded continuous function.
Let us take ®(&) = £(k), run k through the elements in Z, and
we will be able to verify the following ordinary differential
equation: the expected drift in pn(¢) satisfies

1}1&1 %E [un(t+h) —un(t) | pun(t) =€ = Ag€
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where A¢ is the usual rate matrix describing the transitions
for a tagged particle, i.e.,

Aij(6) ifi#j
(Ag)ij =1 — Z Aijr(§) if i =
J’g’ #i

The initial condition is taken to be pux(0). The lack of
dependence N on the right-hand side above is due to the linear
nature of the chosen ®. If there were no dependence on N
for all bounded continuous ®, then the evolution would be
deterministic. For general ®, a Taylor’s series expansion of ®
near £ indicates that the dependence on N is from the second
order onwards. This suggests a first order approximation: just
ignore the randomness and set its evolution to be that of its
mean, the deterministic u(t), which is the solution to the
ordinary differential equation (ODE)

f1(t) = Ay n(t)

with an initial condition (0) = pn(0). This ODE is called
the McKean-Viasov equation. One also anticipates that this
approximation is good in the large number of particles limit,
ie., limy 400 N (t) = p(t), where the limit is interpreted in
an appropriate sense, with 1(0) = limy_ 4o v (0). See the
third remark following Theorem IV.1.

The question of existence and uniqueness of the Markov
process defined by the generator above is answered by assum-
ing that the rates are bounded from above. The question of
well-posedness of the ODE above, i.e., does the solution to
the ODE exist for any initial condition and is it unique, is
answered by assuming that the function A; ;(-) is Lipschitz.
In addition, we make a uniform lower bound assumption on
the rates of allowed transmissions. Let us summarize these
assumptions as

(A) There exist positive constants ¢ > 0 and C' < +0o such
that, for every (i,j) € &, the bounds ¢ < A ;(-) < C
hold, and moreover, the mapping p — A; j(p) is Lips-
chitz continuous over M; (Z).

III. PROPAGATION OF CHAOS AND THE DECOUPLING
APPROXIMATION

The mean field approximation helps address the state-space
explosion issue alluded to above. Let us focus attention on
a finite number of tagged particles. If the initial conditions
{X,(LN)(O),n = 1,---,N} are independent and identically
distributed across particles, and remain so for the tagged
particles in the limit as N — 400, a condition that we shall
call chaotic, then the evolution of the k tagged particles (in the
infinite particle limit, over any fixed and finite time duration)
is independent and identically distributed. Further, the tagged
particles’ evolutions are characterized by the transition rates
Aij(p(t)), where p(-) is the solution to the ODE over the
finite duration of interest, the McKean-Vlasov limit. The initial
chaos thus propagates. The effect of all the other particles is
to create the mean field. This idea was introduced Kac [20]
as a simple model in kinetic theory and was later studied by

McKean and others [22], with further developments in [29]
and [19].

Under some conditions, even though the initial condition
may not be chaotic, the system ends up being chaotic in the
large time limit, so that the particles’ evolutions are asymptot-
ically independent, in a manner of speaking. The order of the
limits ¢ — 400 and N — 400 will be made precise in Section
V. In the communication networks literature, this is termed as
the decoupling approximation and was recently popularized by
Bianchi [4]; some early precursors in this direction were [1],
[2], [28]. See [8], [7], [3], and [23] for further justifications
and reinterpretations of the decoupling approximation.

As remarked in [15], experimental evidence for CSMA
protocols indicates that the model and the decoupling approx-
imation are surprisingly accurate even for small populations.
Indeed, this is one of the main reasons for the model’s
enormous popularity. One can explain this good fit, to some
extent, if there is exponentially fast convergence to the mean
field. Let us probe this notion a little further via the theory of
large deviations.

IV. LARGE DEVIATIONS FROM THE MCKEAN-VLASOV
LIMIT FOR FINITE TIME DURATIONS

Large deviation principles for interacting diffusions and
interacting jump Markov processes have been well-studied by
several authors, e.g., [11] for diffusions, [21], [14], [17], and
[10] for processes with jumps. The initial condition is either a
particular fixed state for each particle or is a chaotic measure
(independent and identically distributed across particles) in
[21], [17], and [10]. The initial conditions are more relaxed
in [11] (for diffusions) and [14] (for a restricted class of
jump processes that does not include our set up): they only
need limy_ 400 pn(0) = p(0) = v, say. The large deviation
principle is quantified by a rate function Sjo7)(p|v) that
measures the difficulty of passage of the empirical process
(un(t),t € [0,T)) for some T € (0,+00)) in the neighbor-
hood of a path y : [0,7] — M;(Z) having initial condition
1(0) = v.

Some preliminaries on the large deviation principle are in
order. Let us denote by vy the initial empirical measure, i.e.,
the initial value un(0) = vn. Let pl(,l,\vr) denote the law of
the Markov empirical process puy : [0,7] — M1(Z) (whose
generator we wrote earlier as Q()) under the initial condition
vn. Let us equip the space D([0,T], M1(Z)), the space of
cadlag functions on [0, 7] taking values in M;(Z), with the
metric

pr(€,8") = sup po(£(t), &' (1))

t€[0,T]

where py may be taken as the metric that metrizes the topology
of weak convergence on M;(Z). Two observations are that
this topology is finer than the usual Skorohod topology (with
the complete metric) and that the resulting topological space
under the metric pp is not separable.

Let (p(N )N > 1) be a sequence of probability measures.
We say that (p(™), N > 1) satisfies the large deviation
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principle with speed N and a good rate function Sio 7j(x)
if the following hold.

(i) For each open set
D([0,T], M1(Z)), we have

. 1 (N) >
liminf N~ logp™ (@) = MHelfGS[O,T](:u)'

G of the topological space

(i) For each closed set F' of the topological space
D([0,T], M1(Z)), we have
liminf N~'logp™)(F) < — inf S0, (11)-
HeF ]

N—+oo

(iii) For each a € [0, +00), the level sets
{w € D([0,T], M1(Z2)) | Sjo,r(p) < a}

are compact.

Our interest is in the large deviation principle for a sequence
(pl(,ll\vf), N > 1) whose initial conditions vy — v weakly, and
the rate functions will depend on the limiting initial condition
v. To highlight this dependence, we denote the rate function as
Sio,71(1t|v). Note that 1 is a measure-valued (M (Z)-valued)
path on [0, 7] while v € M;(Z) is simply a measure that
denotes the initial condition for the path.

We shall now identify the rate function Sio7j(u|v) for
this sequence of empirical processes. Let £ € M;(Z) and
let f : Z — R. The Hamiltonian 5#N) associated to the
infinitesimal generator (V) is defined as

HMN(E ) = e ENQINIEN
= N D €A, {eu(j)fm))m B 1} .
Qg
where (£, f) := >, &€(¢) f(i). The scaled Hamiltonian is
1
- Z ()N ; (&) [T 1) _ 1} .

Q5174
For a 0 : Z — R, define the Legendre transform of the scaled
Hamiltonian in the usual way as

Z(&,0) = fsglgR{<9,f> - A& )}

We will also need the subset A C D([0,T], M1(Z2)) of
absolutely continuous measure-valued functions on [0, T]. We
refer the reader to [21, Defn. 3.1] for a precise definition of A
and some consequences. We state two consequences that give
an idea of the regularity of paths in A. First, if u € A, then
for any f : Z — R, the function (f, u(-)) is an absolutely
continuous real-valued function. Second, if u € A then the
time derivative /i exists for almost all ¢ € [0, T].
Finally, let us define

(u+1Dloglu+1)—u ifu>-—1
T u)=4q 1 ifu=-1
+00 if u<—1.

This is the Legendre dual of the function 7(u) = e* —u — 1.
With these elaborate preliminaries, the following result can be
shown.

Theorem IV.1. Let Assumption (A) hold. Suppose that the
initial conditions vy — v weakly. Then the sequence
(p(yjj\vf),N > 1) satisfies the large deviation principle in the
space D([0,T), M1(Z2)) (under the topology induced by the
metric pr) with speed N and good rate function Sy 1)(u|v)

given by
ifpeA

Jor £ (u(t), fu(t)) dt
S = (0,77 ’
o7 (Kl) { +00 otherwise.

If a path p € D([0,T], M1(Z)) has Sjo,1)(plv) < +o0,
then p € A and there exist rates (1; ;(t),t € [0,T), (i,j) € E)
such that

o [(t) = L(t)*u(t) where L(t) is the rate matrix associ-

ated with the time-varying rates (1; ;(t), (i,j) € &) and
L(t)* is its adjoint;
o the good rate function Sy 1)(p|v) is given by

Sio,1)(1lv)
- /[O,T] [ @) () (—Al(fja)) - 1) |t

(i,5)€€

Remarks: 1. This result is a mild generalization of [21, Th.
3.1], and of the results in [10], [17], and [13] that assume
chaotic initial conditions. We allow any arbitrary sequence of
initial conditions v so long as vy — v weakly.

2. For any initial measure v, it can be shown that the
cost Sjo,r)(p|v) of the limiting McKean-Vlasov path with the
initial condition v is 0. This is the path p : [0,T] — M1(Z)
that satisfies the ODE

(t) = Ap oy (t)

with initial condition u(0) = v.

3. Since 7*(u) = 0 if and only if u = 0, we can conclude
from (1) that if the rate function S 7)(u|v) = 0, then
must be the unique solution to the McKean-Vlasov equation
a(t) = A:,(t)ﬂ(t) with initial condition x(0) = wv. (That
the solution is unique follows from Lipschitz assumption
in Assumption (A) which implies the well-posedness of the
ODE). The limit law p(ij) — d,(.y in the topology of weak
convergence automatically follows.

4. When a path p is such that Sjg7)(ulv) < +oo, the
first bullet in the second statement of Theorem IV.1 says that
there is a control (tilt), given by the rate matrix L(t), such
that the normal limiting trajectory under this control is pu(-).
Sio,71(1|v) is then the cost of this control.

V. BEHAVIOR FOR LARGE TIME

The mean field approximation for finite durations is sum-
marized as follows. Given an initial condition, and any finite
time duration, the empirical measure follows the McKean-
Vlasov dynamics. A finite number of tagged particles evolve
approximately independently (in the large particle limit) in the
mean field environment.

What happens as ¢ — +00?
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Let us assume that the allowed transitions in £ are such that
the directed graph with vertices Z and edges £ is irreducible.
The corresponding continuous time Markov chain of empirical
measures fp(-) is then irreducible for each N € N. Its state
space grows with N but has size at most (N -+ 1)". It follows
that for each finite /V, there is a unique invariant measure, say
o) to which the law of u(N)(t) converges as t — +oo.
What can we say about limy_, 4 p¥)?

Let us consider the good case first. Consider the McKean-
Vlasov equation

fu(t) = Ay i(2)-

An equilibrium point is a { € M1 (Z) that satisfies AZ{ = 0.
If 14(0) =&, then u(t) = £ for all ¢ > 0. Such a point is said
to be globally asymptotically stable if the following hold:

o Regardless of the initial condition, we have
lims— 4 o0 14(t) = &o. The singleton set {&p} is therefore
an attractor, and all trajectories converge to it.

o The singleton set {&y} is Liapunov stable, i.e., for every
e > 0, there is a § > 0 such that every trajectory
initiated in the J-neighborhood of &y remains in its e-
neighborhood.

A unique equilibrium that is globally asymptotically stable,
say o, is a good thing to have. One anticipates in this case
that o) — &, weakly.

In general, however, there can be many equilibria. Or there
could even be a unique equilibrium, but it is not stable,
and the system settles at a different limit set, say a limit
cycle. Even worse, there could be multiple limiting sets,
connected compact sets that are invariant to the McKean-
Vlasov dynamics, with different basins of attraction. Such
situations are not uncommon; see [3]. In such cases, we need
to understand where limpy 4 p(N ) settles.

A large deviation principle, if we can find one, settles
this question. Suppose that (o), N > 1) satisfies the large
deviation principle with a good rate function s : M;(Z) —
[0, +00], then the likely set to which (™) will converge is

() = s7{0}.

It of course tells a lot more about likelihood of deviations from
this set and difficulty of being in far off neighborhoods. We
shall however focus only on the case when there is a unique
equilibrium that is globally asympotically stable.

arg min
EeEM1(2)

VI. A CONTROL THEORETIC VIEW

We now describe our approach to obtaining a large deviation
principle for (™), N > 1). Our work is naturally related to
small noise asymptotics of invariant measures of diffusions and
of certain jump processes, which were considered by Freidlin
and Wentzell [18] and Shwartz and Weiss [27]. For jump
processes, they provide results under rather strong assumptions
on jump rates (for e.g., logarithm of the empirical process’s
jump rates is bounded). These are not satisfied by the Markov
empirical process considered here. Since the state-space is
constrained to lie within the probability simplex, there is a
significant push inward at the boundary of the simplex, and

the logarithm of the transition rates cannot be bounded. We
therefore need to do a little more work.

Our approach for solving the large deviations of invariant
measure exploits a control-theoretic view described in [5],
which considers a class of diffusions and generalizes results
of [26] and [12] on small noise asymptotics of invariant
measures and exit probabilities in diffusions. See [25] for
small noise asymptotics of exit probabilities in processes with
jumps. The control-theoretic approach differs from those of
Freidlin and Wentzell [18] and Shwartz and Weiss [27], which
rely on a result of Khasminskii (see, e.g., [18, Ch. 6.4])
for the description of invariant measures of Markov chains.
Our control-theoretic approach works when there is a unique
globally asymptotically stable equilibrium for the McKean-
Vlasov dynamics, but appears to require the Khasminskii result
for resolution of certain boundary conditions in the case when
there is more than one equilibrium. We do not address here
the case of multiple equilibria or attractors.

1) Nonchaotic initial conditions: As in Freidlin-Wentzell
[18], we will extract a large deviation principle for the in-
variant measure from a large deviation principle over finite
time durations. Let us assume that the random variables
{XT(LN)(O),l < n < N} that describe the state of the N
particles are exchangeable, and that pv(0) is started at its
invariant measure V), which may not be degenerate. The
initial law of particles’ states, with the invariant measure p(N )
for the empirical measure, may not be independent across
particles (i.e., not a product measure and so nonchaotic). To
handle this, we first establish a subsequential large deviation
result using Theorem I'V.1, and then show that the rate function
is unique. It is well known in the theory of weak convergence
of probability measures that given a sequence of probability
measures (Qn, N > 1), if every subsequence has a further
subsequence that converges weakly to the same limit (), then
QN converges weakly to Q. An analogous statement holds
for large deviations: if every subsequence (Qn,,k > 1) has
a further subsequence (Qn, ! > 1) that satisfies the large
deviation principle with speed Ny, and the same rate function
s, and the sequence is exponentially tight, then the original
sequence satisfies the large deviation principle with speed N
and rate s.

2) Empirical measure at terminal times: Fix a finite duration
[0,T]. Let us use the notation uyn(0) = vy and p(0) = v.
Suppose that the initial conditions satisfy vy — v weakly.
(No exchangeability assumption is made on the distribution of
the particles, and so the initial conditions need not be chaotic).
Recall that p,,, (N) is the law of ux : [0,T] — M;(Z). Let
Pun,7(N) be the law of pux (7). Then, since the projection
map p — p(7T) is continuous, Theorem IV.1 and the contrac-
tion principle imply that (p,, 7(N), N > 1) satisfies the large
deviation principle with speed N and rate

St(€lv) = inf{Spo, 1y (p|v)[1(0) = v, (T) = &, € A}
2
One can also extract a minimizing path 7 : [0,7] — M1(Z)
that moves from 7z(0) = v to i(T") = &, and time varying rates
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(l;,;,t € [0,T]) with an associated rate matrix L(t), such that
the minimizing path is now the normal path under control
L(t), i.e.,

at) = L) p(d),

and St (&|v) = Sjo, 1) (7|v).

3) Empirical measure at initial and terminal times: Suppose
that the initial empirical measure pn(0) has law p(()N . Let
pé?)T denote the joint law of the pair (un(0), un(T)). If the

sequence of initial conditions (p(()N), N > 1) satisfies the large
deviation principle with a good rate function s, then using a
result for product distributions, see Feng and Kurtz [16, Prop.
3.25], and using some regularity properties of Sy (£|v), one
can establish that the sequence of joint laws (p((){\?, N >1)
satisfies the large deviation principle with speed N and good
rate function

So.r(v,€) = s(v) + Sr(€lv).

If one applies the contraction principle for the map p +— pu(7),
then the sequence of terminal measures (p(TN), N > 1)
satisfies the large deviation principle with good rate function
int{s() + Sr(elv)). 3)
4) Invariant measure: We saw that the Markov chain ()
has a unique invariant measure (™) for each N. Since
M1(Z) may be viewed as a compact subset of R", there
is a subsequential large deviation principle for the sequence
of invariant measures. From this and the fact that invariance
means p(()N) = p(TN) ), one recognizes that (3)
evaluates to s(€), and so this rate function for the subsequential
large deviation principle satisfies the Hamilton-Jacobi-Bellman
equation
inf
vEM1(Z)

5(€) = {s(v) + Sr(Elv)}. 4)
Note that the above equation says that s(£) has the interpre-
tation that it is a minimum over all paths that last 7" units of
time and end at ¢ after taking into account the cost for the
initial state; see (2). We then show that this equation holds
for a countable set of time durations, say with 7" replaced by
mT’ with m > 1, and extract a single path of infinite duration
ending at &, each of whose pieces of duration m7” is optimal
and satisfies (4) with equality. If we view this path in reverse
time and call it ji(+), it starts at 1(0) = £ and satisfies

Alt) = —L(t)"Alt),

for some family of rate matrices i() When there is a unique
globally asymptotically stable equilibrium &y, we show that
s(&) = 0, and that the chosen infinite duration path must
converge to &y. Using (1) in reversed time, and letting £ denote
the reversed edges of £, one then gets

t>0,

s(§) = inf [ > 6N )
# 10, +00) (i,5)€€
Y (R IORNEY | P
T LA

where the infimum is over all j that lie in M;(Z) and are
solutions to the dynamical system fi(t) = —L(t)*fu(t) for
some family of rate matrices L(-) = (I ;(-))i jez, with initial
condition /1(0) = £ and terminal condition lim; , fi(t) =

£o-

Since this does not depend on the subsequence, the sub-
sequential large deviation principle is indeed a full large
deviation principle. We now summarize the main theorem.

Theorem VIL.1. Let Assumption (A) hold. Let the graph
with vertex set Z and edge set £ be irreducible. Let the
McKean-Vlasov equation fi(t) = Ay u(t) have a unique
globally asymptotically stable equilibrium &,. Then the se-
quence (p(N ),N > 1) satisfies the large deviation principle
with speed N and good rate function s given by (5).
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