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Abstract—We consider multicast flow problems where either
all of the nodes or only a subset of the nodes may be in session.
Traffic from each node in the session has to be sent to every
other node in the session. If the session does not consist of all
the nodes, the remaining nodes act as relays. The nodes are
connected by undirected edges whose capacities are independent
and identically distributed random variables. We study the
asymptotics of the capacity region (with network coding) in the
limit of a large number of nodes, and show that the normalized
sum rate converges to a constant almost surely. We then provide
a decentralized push-pull algorithm that asymptotically achieves
this normalized sum rate.

I. INTRODUCTION

In this paper, we investigate the capacity of allcast and
multicast sessions over a random edge-capacitated graph.

Allcast: Consider a setting where there are n nodes, all of
which are engaged in a conference over a wired network. Each
node has data that needs to be made entirely available over the
network to each of the other n — 1 nodes in a simultaneous
fashion. The data can be split and routed and coded in any
way, so long as all nodes eventually get the information.
The underlying complete undirected graph on n vertices is
capacitated: each undirected edge e has capacity C, sampled
independently and identically from a distribution F'. An allcast
flow assignment is said to be feasible if the net flow over any
edge (in any direction) respects the edge’s capacity constraint.
For each such flow assignment, let r; be the bit-rate of traffic
sent by node i to each of the other nodes. We address the
question of the set of all achievable rate tuples rq,--- , 7, in
the asymptotics of a large number of nodes n. As we shall
soon see, this problem is closely related to packing of disjoint
spanning trees in an edge-capacitated network with integer
capacities. Minor extensions of some previous results readily
yield that the achievable rate region is almost surely (a.s.)

1 — 1
{(rl,rg,...) EZriggE[C]} (1)
=1

where the expectation is of a random variable C' having
distribution F'. The linear programming formulation of this
problem is given in Section II, and the proof of (1) is given in
Sections III (converse) and IV (achievability). It is known that
network coding does not yield any gain in allcast settings [1],
and thus we have an asymptotic characterization of allcast-
capacity.
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Multicast: We next address a more general setting with
only a subset of k, nodes in the multicast session, where
limy, 00 kn/n = @ and o < 1. Data from each of the k,, nodes
has to reach every one of the other k,, —1 nodes. The remaining
n — k, nodes serve as relays. Again, in an edge-capacitated
framework where each edge is independent and identically
distributed (iid) with distribution F', we are interested in the
set of all achievable rate tuples 7y, - - - , 7, in the asymptotics
of a large number of nodes n. We demonstrate that the capacity

region is almost surely
(1 - %) E[C].} ?)

k,
. 1 &

{(rl,rg,...) : hmsupﬁz;mg
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The LP formulation of this problem is in Section II, proof of
the converse is in Section III, and proof of achievability is
in Section V. Our proof of achievability in this case is via a
combination of “push” and “pull” that suggests a decentralized
implementation.

Our achievability proof is based on flows (allowing for
duplications) and thus do not employ network coding. While
it has been observed empirically that the gain from network
coding is marginal for random network topologies (see [,
p-1017]), our results of this paper imply that there is indeed
no asymptotic gain from network coding with respect to the
performance metric of normalized rate. Our simple “push-
pull” scheme in the multicast case and the observation that
asymptotically network coding does not yield a gain for almost
every graph (with respect to a probability distribution on
graphs) are the central contributions of this paper.

II. A LINEAR PROGRAMMING FORMULATION

A. Allcast

Consider the allcast problem described in Section I. Right-
away, we observe that the allcast capacity region in the
undirected capacitated network does not depend on who the
sender is ([1, Th. 4]). This is straightforward for flow-based
schemes, but the same holds under coding as well; see [1, Th.
4]. We may therefore assume that there is only one sender
(say node 1), and all other n — 1 nodes are recipients that
must receive all information sent by node 1. Thus, the rates
are (r1,0,0,...), and we characterize 7.



The maximum rate is obtained by solving the following
linear programming (LP) problem. Given the complete graph
K, on n vertices, let C': E — R be the capacity function (a
realization of iid random variables). Let 7,, be the set of all
spanning trees on the complete graph. The vertices are labeled,
and so Cayley’s formula tells that the number of such trees is
n™2. Solve the LP (Tutte [2], Nash-Williams [3] Barahona
[4], Li et al. [1]):

Maximize Z A1 3)
T€eTn
subject to (1) Z A < C, forall e
TeTn:Te
(2) A >0 forall T € T,,.

Denote the maximum value of (3) as m,. Then =, is the
maximum rate at which node 1 can allcast its information to
all the other nodes. This has a simple and intuitive explanation.

« If one tags an infinitesimal information element originat-
ing at node 1 and follows the path of its spread to each
of the n — 1 recipients, one gets a directed graph rooted
at the source node 1 and spanning all the n nodes.

« If the undirected version of this directed graph is not a
tree, i.e., there is some cycle, some node in the cycle is
receiving this information element from two other nodes.
One of these links can be removed without affecting the
multicast property. We can thus reduce the directed graph
to a spanning arborescence, which is a directed graph
with no incoming edges at the root node, exactly one
incoming edge at every other node, and all vertices are
covered.

o This spanning arborescence is in one-to-one correspon-
dence with a tree, since the root is specified. So we
may simply focus on the spanning tree associated with
arborescence. Call this tree T, an element of 7.

e Collect all the information elements that are spread via
this tree. Call its volume Ar.

It is clear that each A > 0 and constraint (1) above is
the capacity constraint associated with each of the edges.
Consequently, the value of the optimization problem in (3)
is an upper bound on the optimal net flow from node 1.
But it is immediate that any set of Ap satisfying the two
constraints provides a means to achieve a rate ZT A, since
Ar units of information may be directed through the spanning
arborescence associated with the tree 7' and root vertex 1.
Thus the maximum rate of allcast flow from a single sender
is m,, the solution to the LP in (3).

When edge capacities are random, m,, is a random variable
whose asymptotics we shall soon characterize.

B. Multicast

For the multicast problem, without loss of generality, let us
index the session nodes as {1,2,...,ky,}. Denote by T, (k)
the set of all Steiner trees that span the vertices 1,2, ..., k,.
Obviously 7,(n) = 7T,. For multicast, as for allcast, the
maximum simultaneously transmissible rate from one sender
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(node 1) to the k,, — 1 other recipients is the maximum value
of the modified LP:

Maximize

S )

TE'Tn(kn)

>

TeTn(kn):T>e
(2) Ar>0

subject to (1) Ar < C, foralle

for all T € T, (k).

Set o, = k,/n, and denote the maximum value of (4) as
7n (). The above LP is the same as that of (3) with 7,
replaced by the less restrictive 7,,(ky,).

III. AN UPPER BOUND

Consider the following definitions.

e Let x, and x,(k,) denote the maximum throughput
achievable in the allcast and multicast settings with the
added possibility of network coding at each node. (The
dependence of these quantities on the edge capacities is
understood and suppressed).

o Let 1, denote the strength of the allcast network defined
as follows. Let P denote the set of all partitions of the
vertex set {1,2,...,n}. Consider a partition p € P. Let
Jp denote the set of intercomponent edges. Define

)

where |p| denotes the number of subsets in the partition.
e Let n,(ky) denote the strength of the multicast network
with k,, nodes in the session. This is defined as follows.
Let P(ky) denote the set of all partitions of the vertex

set {1,2,...,n} such that each component of a partition
contains at least one of the session nodes {1,2,...,k,}.
Define
Ce
N (ky) := min 2266789. (6)
peP(ky) o] — 1

Li et al. [1] showed the following result.

Theorem 1: (Li et al. [1, Th. 2 and Th. 3])
(a) For any allcast session, m, = X = M.
(b) For any multicast session, 7, (kn) < Xn(kn) < 0p(kp). O

We can easily find upper bounds on 7,, and 7, (k,) as in
the following theorem.

Theorem 2: Let {C; j }1<i<j<n denote the undirected edge
capacities. We then have the following upper bounds:

1
Tin S n—1 Z Ci,j (7)
1<i<j<n
1
mkn) < = | D0 D Cijt D, Ci| ®
T\ i<ky j>kn 1<i<j<kn



As a consequence, with lim,_,« k,/n = «, the inequalities

. 1
lim sup Ui < =E[C] 9)
n—oo N 2
n kn
lim sup M < (1 — g) E[C] (10)
n— 00 n 2
hold almost surely. O

Proof: Consider the partition o = {{1},{2},---,{n}}.
There are n subsets in the partition, and Jgp is the set of all
edges. Apply now the definition (5) of 7,, and we immediately
get (7) as the upper bound for the allcast case.

For the multicast case, consider the partition

o= {152} Ak} {kn +1,...,n}}
There are k,, + 1 subsets in the partition. The set of edges in
Ogp are
{(4,) : 1 <i<kpn,j 2 kot U{(4,]): 1 <i<j<kp}
Apply now the definition (6) of 7, (k,) and we immediately

get (8) as the upper bound for the multicast case.
Note that |0p| = n(n — 1)/2 for allcast, and
kn+1
11
5 ) (11)

o (i — 1
R (e
for multicast.

Using |0p| = n(n — 1)/2 for allcast in (7), we obtain

N

The sum on the right-hand side is composed of independent
and identically distributed random variables. Consequently, the
right-hand side converges almost surely to %E[C’] by the strong
law of large numbers, and we obtain (9).

For the multicast case, use (11) in (8) to obtain

nn(kn) _ (kn + 1)) 1 Z Ce-

MUY _
2n
e€0p

1
no- ( |0p]

Again by an application of the strong law of large numbers,
the conclusion (10) follows. [ |

Observe that, by Theorem 1, the upper bounds in Theorem
2 apply for capacity with the possibility of network coding.
Let us now turn to achievability of this rate with no network
coding.

IV. ALLCAST: ACHIEVABILITY

Achievability follows directly from prior results.

Theorem 3: For the allcast problem, we have

O

Proof: The converse was already shown in (9). So it
suffices to show achievability.
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Furthermore, it suffices to prove achievability for graphs
whose edge capacities are independent Bernoulli random vari-
ables with parameter p, i.e., liminf, . 7,/n > p/2 almost
surely. By following standard techniques of truncation, scaling,
and quantization, see for example [S5], one can show that
liminf, o m/n > (1/2)E[C] for any generic distribution
with an expectation.

Graphs whose edge capacities are independent Bernoulli
random variables with parameter p are the Erd6s-Rényi ran-
dom graphs denoted G(n, p). For such graphs, even for p as
low as (28logn/n)/3, Catlin et al. [6, Sec. 3] proved the
stronger result that

Yi<icj<n Ci
Ty = | —==I=2 | 35,

n—1

By the strong law of large numbers, it is then obvious that
lim,, 7, /n = p/2 almost surely. [ |

V. MULTICAST: ACHIEVABILITY

While one could in principle proceed as in Catlin et al. [6]
to prove achievability, we wish to provide a more constructive
proof of achievability for cases when o < 1. We shall use
Theorem (3) in the proof. Our constructive procedure does
not yet handle the boundary case when o = 1.

Theorem 4: For the multicast problem with k, in the ses-
sion, let lim,,_, o kn/n = o < 1. We then have

lim Tn (kn)
n—oo n

= (1 - %) E[C] as.

O

Proof: As in the proof of Theorem 3, converse was
already shown in (10). So showing achievability suffices, and
further this can be shown on Erd&s-Rényi random graphs with
parameter p.

Next observe that the subset of session nodes alone form
a complete graph with k, vertices for which Theorem 3 is
applicable. Using the scheme suggested by that theorem, we
have
71-(1) > Zl§i<j§k” C’i,j
moT knp—1

is achievable for simultaneous multicast, almost surely, with-
out using any of the relay nodes.

Removing these direct links between the session nodes,
we end up with a graph in Figure 1, where the session
nodes are now only connected to the m,, = n — k, relay
nodes. The edge to each relay node from each session node
has Bernoulli(p) capacity. Further the relay nodes have inter-
relay edge capacities that are independent Bernoulli(p) random
variables. We now claim that a rate ’/TELQ ) can be simultaneously
multicast to the k,, session nodes (solely with the help of the
relay nodes), and the rate almost surely satisfies

(2)

Tn

(12)

lim inf >p. (13)

mTL



Figure 1. Graph with all links between session nodes removed. Source pushes
bits to first hop relays which then push to secondary relays (solid lines). The
session nodes pull the bits from either first hop relays or secondary relays
(dashed lines).

Supposing the claim is true, we can put (12) and (13)
together, and get an achievable rate m, = 777(11) + 7r7(12) that
satisfies the following almost surely:

m@)
+ _
n

. .. »Tn
lim inf —
n

(1)
= liminf (WL
n n

ey e
> liminf | = | 4+ liminf | —/—
n n n n
ko i) n T
>  liminf Bn Tn_ + lim inf Mn T
n 2n kn /2 n n my
>

. kTL . mn
(hin %) e (i)
(using (12) and (13))

(%)p+ (1—a)p

(1-3)»

which establishes the theorem.

We now proceed to verify the claim in (13). Fix ¢ > 0
sufficiently small. Data is “pushed” as follows.

Push step 1: The source sends a total of m,p(1 — ¢) bits
to relays connected to it. (Rounding to integer can easily be
handled and is ignored for expository purposes). Each relay
carries a unique bit. If there are more neighbors than (m.,p(1—
g)), the extra relays are not supplied a bit. Let us call all
those nodes that receive a bit directly from the source as first
hop relays. The case when there are fewer first hop relays
than m,p(l — €) is an event having negligible probability.
Indeed, let A; be the event that the degree of the source node
is less than m,,p(1—¢). By Bernstein’s inequality, Pr{A{"} <
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e~ " for some c1 > 0.

Push step 2: Each first hop relay node relays its bit to each
neighbor that is not already a first hop relay. The resulting
bit carrying relays are called secondary relays. Note that there
may be secondary relays that are in contact with the source,
but did not receive any bit on account of the source’s degree
exceeding m,p(l —¢).

The bit-map of available bits with relays is as follows.
Let us index the bits as 1,2,...,m,p(1 — ¢), and relays as
1,2,...,m,. Then row ¢ indicates what relay ¢ contains.

In the table, X; ; = 1 if relay ¢ (with m,p(1 —¢) < ¢ <
my,) is connected to first hop relay j. Clearly, the presence or
absence of this edge is independent of all other events, and so
X;,; is a Bernoulli(p) random variable.

Bit Bit Bit
1 2 mpp(l —€)
First hop relay 1 1 0 e 0
First hop relay 2 0 1 e 0
First hop relay 0 0 e 1

mpp(l —¢€)

Relay 1+ mypp(1 —¢)
' ((Xi5))

Relay m,

Data is “pulled” from the relays by the session nodes as
follows. Consider a session node .

Pull step 1. If a session node ¢ is connected to a first
hop relay, it pulls the corresponding bit. Let Aén) (i) be the
event there are less than m,,p?(1 — ¢)? first hop relays that
our session node is in contact with. Again by Bernstein’s
inequality, Pr{Aén)(i)} < e ™n for some cg > 0.

Pull step 2: The session node now has to pull the remaining
bits from the secondary relays. The number of bits that remain
to be pulled is

b i= mup(l—&) —myp*(1—)* = mup(1—e) (1—p(1—2)).
The number of relays that are not first hop relays is at least
my — mnp(l - 5) = mn(l —p(l — E))

Let Aén)(i) be the event that the session node is connected to
fewer than p(1 — ¢) fraction of these nodes, i.e., to fewer than
mu(l —p(1 —¢))-p(1 —¢€) = by, such relays. By Bernstein’s
inequality again, Pr{Agn)(i)} < e~ ™= for some c3 > 0.
Pull step 3: Assume now that ASLI) U AS?) (i) U AS?) (i)
does not occur. Then the matrix rows corresponding to the
secondary relays in contact with the session node and the
columns corresponding to the bits not yet pulled constitutes a
b, X b, square submatrix whose entries are conditionally iid
Bernoulli(p) random variables. We may view this as a bipartite
graph with (non-first-hop) relays on the one side and not-yet-
pulled bit indices on the other side. There are b,, vertices on
each side. The edges of this bipartite graph are X} ; which
are independent Bernoulli(p) random variables. For a selected



relay k connected to session node %, if X3 ; = 1, then the
relay is a secondary relay and has bit /. It may contain other
bits of interest to session node 7, but can send at most 1 bit to
node i. If we have a complete matching (where all b,, selected
relays and all unpulled bits are matched), then the session node
can pull these remaining bits from the selected relays without
violating the capacity constraint of one bit per edge.

The probability that such a matching does not exist, say
M,,(7), can be upper bounded by ~(b,,), where k(n)y(b,) is
summable, using [7, Lem. 7.12, p.174]. (See Appendix).

In the final analysis, the event that some session node is
unable to pull all the bits is

A Uty (A2 () U AP () U M) )

Its probability is upper bounded by
e—'rnncl +kn(e—7nn02 +e—7nn02 +’y(bn))

Using a < 1, summing the above over n, using the fact that
kny(n) is summable, and the Borel-Cantelli lemma, we obtain
that almost surely all the session nodes will be able to pull
mpp(l — €) bits. By considering rational ¢ and staying out
of the union of all the associated null sets, it follows that
lim inf,, ’/TIELQ) /my, > p (as.). This concludes the proof. [ |

VI. SUMMARY

Our main contributions are the following.

o For multicast sessions on random graphs, specifically
Erd6s-Rényi random graphs, the maximum asymptotic
rate can be achieved via flows. This was already known
for the allcast case k,, = n. We studied the multicast case
when ky/n — o < 1.

¢ We proposed a push-pull scheme for data distribution in
a multicast session with &, nodes, k,/n — a < 1. Our
scheme is decentralized and easily implementable.

APPENDIX A
THE EXISTENCE OF A BIPARTITE MATCHING

The following lemma, taken from Bollobds, is key to
showing that matchings exist almost surely and one can pull
the b, bits from secondary relays. We present the result for a
bipartite graph with n vertices.

Lemma 5: ([7, Lem. 7.12, p. 174]). Let G be a bipartite
graph with vertex classes V; and Va, [V1| = [V2| = n. Suppose
G has no isolated vertices and it does not have a complete
matching. Then there is a set A C V; (i = 1,2) such that:

i) I'(A) ={y: (z,y) € E(G) for some x € A} has |A|—1
elements,
(ii) the subgraph of G spanned by AUT'(A) is connected and
(i) 2<[A] < (n+1)/2.

Let n; = |(n + 1)/2]. We follow Bollobds’s arguments
on [7, p. 174]. Let F, denote the event that there is a set
AcCV;, (i=1or2), |A| = a, satisfying (i)-(iii) of Lemma
5. The subgraph spanned by A UT'(A) is connected, and so
must have at least 2a — 2 edges. Further the vertices of A must
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not be connected to any vertex in V3_; —I'(A) The probability
that this happens for A C V; is at most

a‘(a - 1) 2a—2 a(n—a+1)
1-— .
( 5y 9 )p (1-p)

There are () choices for A C Vy with [A| = a, (") choices
for T'(A), and an extra factor of 2 to account for A C V,,
i =1,2. Using these and (}) < (en/k)*, we get

"(U7)

ni

2>
a=2

ni

< Y P(F.)
a=2

()65 (s)
x P31 — p)eln et

3 () (%) (5)

% an—Q(l _p)a(n—a—f—l)

IN

ni
< const. Z e3an2“_1p2a—2(1 _ p)a(n—a—H)
a=2

Y1 (n)v

where the last equation is the defining equation for 1 (n).

The probability that there is some isolated node is upper
bounded by 72 (n) := n(1 — p)"~!. Thus the probability that
the bipartite graph of n vertices does not have a complete
matching is at most v(n) = v;(n) + y2(n).

When we have b,, vertices on each side, the above bound
turns out to be (b, ). Straightforward computations yield that
> kny(by) is summable, details of which we are omitted.
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