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Abstract—We consider multicast flow problems where either
all of the nodes or only a subset of the nodes may be in session.
Traffic from each node in the session has to be sent to every
other node in the session. If the session does not consist of all
the nodes, the remaining nodes act as relays. The nodes are
connected by undirected edges whose capacities are independent
and identically distributed random variables. We study the
asymptotics of the capacity region (with network coding) in the
limit of a large number of nodes, and show that the normalized
sum rate converges to a constant almost surely. We then provide
a decentralized push-pull algorithm that asymptotically achieves
this normalized sum rate.

I. INTRODUCTION

In this paper, we investigate the capacity of allcast and

multicast sessions over a random edge-capacitated graph.

Allcast: Consider a setting where there are n nodes, all of

which are engaged in a conference over a wired network. Each

node has data that needs to be made entirely available over the

network to each of the other n − 1 nodes in a simultaneous

fashion. The data can be split and routed and coded in any

way, so long as all nodes eventually get the information.

The underlying complete undirected graph on n vertices is

capacitated: each undirected edge e has capacity Ce sampled

independently and identically from a distribution F . An allcast

flow assignment is said to be feasible if the net flow over any

edge (in any direction) respects the edge’s capacity constraint.

For each such flow assignment, let ri be the bit-rate of traffic

sent by node i to each of the other nodes. We address the

question of the set of all achievable rate tuples r1, · · · , rn in

the asymptotics of a large number of nodes n. As we shall

soon see, this problem is closely related to packing of disjoint

spanning trees in an edge-capacitated network with integer

capacities. Minor extensions of some previous results readily

yield that the achievable rate region is almost surely (a.s.)
{

(r1, r2, . . .) : lim sup
n→∞

1

n

n
∑

i=1

ri ≤
1

2
E[C]

}

(1)

where the expectation is of a random variable C having

distribution F . The linear programming formulation of this

problem is given in Section II, and the proof of (1) is given in

Sections III (converse) and IV (achievability). It is known that

network coding does not yield any gain in allcast settings [1],

and thus we have an asymptotic characterization of allcast-

capacity.

Multicast: We next address a more general setting with

only a subset of kn nodes in the multicast session, where

limn→∞ kn/n = α and α < 1. Data from each of the kn nodes

has to reach every one of the other kn−1 nodes. The remaining

n − kn nodes serve as relays. Again, in an edge-capacitated

framework where each edge is independent and identically

distributed (iid) with distribution F , we are interested in the

set of all achievable rate tuples r1, · · · , rkn
in the asymptotics

of a large number of nodes n. We demonstrate that the capacity

region is almost surely

{

(r1, r2, . . .) : lim sup
n→∞

1

n

kn
∑

i=1

ri ≤
(

1−
α

2

)

E[C].

}

(2)

The LP formulation of this problem is in Section II, proof of

the converse is in Section III, and proof of achievability is

in Section V. Our proof of achievability in this case is via a

combination of “push” and “pull” that suggests a decentralized

implementation.

Our achievability proof is based on flows (allowing for

duplications) and thus do not employ network coding. While

it has been observed empirically that the gain from network

coding is marginal for random network topologies (see [1,

p.1017]), our results of this paper imply that there is indeed

no asymptotic gain from network coding with respect to the

performance metric of normalized rate. Our simple “push-

pull” scheme in the multicast case and the observation that

asymptotically network coding does not yield a gain for almost

every graph (with respect to a probability distribution on

graphs) are the central contributions of this paper.

II. A LINEAR PROGRAMMING FORMULATION

A. Allcast

Consider the allcast problem described in Section I. Right-

away, we observe that the allcast capacity region in the

undirected capacitated network does not depend on who the

sender is ([1, Th. 4]). This is straightforward for flow-based

schemes, but the same holds under coding as well; see [1, Th.

4]. We may therefore assume that there is only one sender

(say node 1), and all other n − 1 nodes are recipients that

must receive all information sent by node 1. Thus, the rates

are (r1, 0, 0, . . .), and we characterize r1.
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The maximum rate is obtained by solving the following

linear programming (LP) problem. Given the complete graph

Kn on n vertices, let C : E → R be the capacity function (a

realization of iid random variables). Let Tn be the set of all

spanning trees on the complete graph. The vertices are labeled,

and so Cayley’s formula tells that the number of such trees is

nn−2. Solve the LP (Tutte [2], Nash-Williams [3] Barahona

[4], Li et al. [1]):

Maximize
∑

T∈Tn

λT (3)

subject to (1)
∑

T∈Tn:T∋e

λT ≤ Ce for all e

(2) λT ≥ 0 for all T ∈ Tn.

Denote the maximum value of (3) as πn. Then πn is the

maximum rate at which node 1 can allcast its information to

all the other nodes. This has a simple and intuitive explanation.

• If one tags an infinitesimal information element originat-

ing at node 1 and follows the path of its spread to each

of the n− 1 recipients, one gets a directed graph rooted

at the source node 1 and spanning all the n nodes.

• If the undirected version of this directed graph is not a

tree, i.e., there is some cycle, some node in the cycle is

receiving this information element from two other nodes.

One of these links can be removed without affecting the

multicast property. We can thus reduce the directed graph

to a spanning arborescence, which is a directed graph

with no incoming edges at the root node, exactly one

incoming edge at every other node, and all vertices are

covered.

• This spanning arborescence is in one-to-one correspon-

dence with a tree, since the root is specified. So we

may simply focus on the spanning tree associated with

arborescence. Call this tree T , an element of Tn.

• Collect all the information elements that are spread via

this tree. Call its volume λT .

It is clear that each λT ≥ 0 and constraint (1) above is

the capacity constraint associated with each of the edges.

Consequently, the value of the optimization problem in (3)

is an upper bound on the optimal net flow from node 1.

But it is immediate that any set of λT satisfying the two

constraints provides a means to achieve a rate
∑

T λT , since

λT units of information may be directed through the spanning

arborescence associated with the tree T and root vertex 1.

Thus the maximum rate of allcast flow from a single sender

is πn, the solution to the LP in (3).

When edge capacities are random, πn is a random variable

whose asymptotics we shall soon characterize.

B. Multicast

For the multicast problem, without loss of generality, let us

index the session nodes as {1, 2, . . . , kn}. Denote by Tn(kn)
the set of all Steiner trees that span the vertices 1, 2, . . . , kn.

Obviously Tn(n) ≡ Tn. For multicast, as for allcast, the

maximum simultaneously transmissible rate from one sender

(node 1) to the kn − 1 other recipients is the maximum value

of the modified LP:

Maximize
∑

T∈Tn(kn)

λT (4)

subject to (1)
∑

T∈Tn(kn):T∋e

λT ≤ Ce for all e

(2) λT ≥ 0 for all T ∈ Tn(kn).

Set αn = kn/n, and denote the maximum value of (4) as

πn(αn). The above LP is the same as that of (3) with Tn
replaced by the less restrictive Tn(kn).

III. AN UPPER BOUND

Consider the following definitions.

• Let χn and χn(kn) denote the maximum throughput

achievable in the allcast and multicast settings with the

added possibility of network coding at each node. (The

dependence of these quantities on the edge capacities is

understood and suppressed).

• Let ηn denote the strength of the allcast network defined

as follows. Let P denote the set of all partitions of the

vertex set {1, 2, . . . , n}. Consider a partition ℘ ∈ P . Let

∂℘ denote the set of intercomponent edges. Define

ηn := min
℘∈P

∑

e∈∂℘ Ce

|℘| − 1
(5)

where |℘| denotes the number of subsets in the partition.

• Let ηn(kn) denote the strength of the multicast network

with kn nodes in the session. This is defined as follows.

Let P(kn) denote the set of all partitions of the vertex

set {1, 2, . . . , n} such that each component of a partition

contains at least one of the session nodes {1, 2, . . . , kn}.

Define

ηn(kn) := min
℘∈P(kn)

∑

e∈∂℘ Ce

|℘| − 1
. (6)

Li et al. [1] showed the following result.

Theorem 1: (Li et al. [1, Th. 2 and Th. 3])

(a) For any allcast session, πn = χn = ηn.

(b) For any multicast session, πn(kn) ≤ χn(kn) ≤ ηn(kn).

We can easily find upper bounds on ηn and ηn(kn) as in

the following theorem.

Theorem 2: Let {Ci,j}1≤i<j≤n denote the undirected edge

capacities. We then have the following upper bounds:

ηn ≤
1

n− 1

∑

1≤i<j≤n

Ci,j (7)

ηn(kn) ≤
1

kn





∑

i≤kn

∑

j>kn

Ci,j +
∑

1≤i<j≤kn

Ci,j



 . (8)
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As a consequence, with limn→∞ kn/n = α, the inequalities

lim sup
n→∞

ηn
n

≤
1

2
E[C] (9)

lim sup
n→∞

ηn(kn)

n
≤

(

1−
α

2

)

E[C] (10)

hold almost surely.

Proof: Consider the partition ℘ = {{1}, {2}, · · · , {n}}.

There are n subsets in the partition, and ∂℘ is the set of all

edges. Apply now the definition (5) of ηn and we immediately

get (7) as the upper bound for the allcast case.

For the multicast case, consider the partition

℘ = {{1}, {2}, · · · , {kn}, {kn + 1, . . . , n}}.

There are kn + 1 subsets in the partition. The set of edges in

∂℘ are

{(i, j) : 1 ≤ i ≤ kn, j ≥ kn} ∪ {(i, j) : 1 ≤ i < j ≤ kn}.

Apply now the definition (6) of ηn(kn) and we immediately

get (8) as the upper bound for the multicast case.

Note that |∂℘| = n(n− 1)/2 for allcast, and

|∂℘| = kn(n−kn)+
kn(kn − 1)

2
= kn

(

n−
kn + 1

2

)

(11)

for multicast.

Using |∂℘| = n(n− 1)/2 for allcast in (7), we obtain

ηn
n

≤
1

2

1

|∂℘|

∑

e∈∂℘

Ce.

The sum on the right-hand side is composed of independent

and identically distributed random variables. Consequently, the

right-hand side converges almost surely to 1
2E[C] by the strong

law of large numbers, and we obtain (9).

For the multicast case, use (11) in (8) to obtain

ηn(kn)

n
≤

(

1−
(kn + 1)

2n

)

1

|∂℘|

∑

e∈∂℘

Ce.

Again by an application of the strong law of large numbers,

the conclusion (10) follows.

Observe that, by Theorem 1, the upper bounds in Theorem

2 apply for capacity with the possibility of network coding.

Let us now turn to achievability of this rate with no network

coding.

IV. ALLCAST: ACHIEVABILITY

Achievability follows directly from prior results.

Theorem 3: For the allcast problem, we have

lim
n→∞

πn

n
=

1

2
E[C] a.s.

Proof: The converse was already shown in (9). So it

suffices to show achievability.

Furthermore, it suffices to prove achievability for graphs

whose edge capacities are independent Bernoulli random vari-

ables with parameter p, i.e., lim infn→∞ πn/n ≥ p/2 almost

surely. By following standard techniques of truncation, scaling,

and quantization, see for example [5], one can show that

lim infn→∞ πn/n ≥ (1/2)E[C] for any generic distribution

with an expectation.

Graphs whose edge capacities are independent Bernoulli

random variables with parameter p are the Erdős-Rényi ran-

dom graphs denoted G(n, p). For such graphs, even for p as

low as (28 logn/n)1/3, Catlin et al. [6, Sec. 3] proved the

stronger result that

πn =

⌊

∑

1≤i<j≤n Ci,j

n− 1

⌋

a.s.

By the strong law of large numbers, it is then obvious that

limn πn/n = p/2 almost surely.

V. MULTICAST: ACHIEVABILITY

While one could in principle proceed as in Catlin et al. [6]

to prove achievability, we wish to provide a more constructive

proof of achievability for cases when α < 1. We shall use

Theorem (3) in the proof. Our constructive procedure does

not yet handle the boundary case when α = 1.

Theorem 4: For the multicast problem with kn in the ses-

sion, let limn→∞ kn/n = α < 1. We then have

lim
n→∞

πn(kn)

n
=
(

1−
α

2

)

E[C] a.s.

Proof: As in the proof of Theorem 3, converse was

already shown in (10). So showing achievability suffices, and

further this can be shown on Erdős-Rényi random graphs with

parameter p.

Next observe that the subset of session nodes alone form

a complete graph with kn vertices for which Theorem 3 is

applicable. Using the scheme suggested by that theorem, we

have

π(1)
n ≥

∑

1≤i<j≤kn

Ci,j

kn − 1
(12)

is achievable for simultaneous multicast, almost surely, with-

out using any of the relay nodes.

Removing these direct links between the session nodes,

we end up with a graph in Figure 1, where the session

nodes are now only connected to the mn = n − kn relay

nodes. The edge to each relay node from each session node

has Bernoulli(p) capacity. Further the relay nodes have inter-

relay edge capacities that are independent Bernoulli(p) random

variables. We now claim that a rate π
(2)
n can be simultaneously

multicast to the kn session nodes (solely with the help of the

relay nodes), and the rate almost surely satisfies

lim inf
n

π
(2)
n

mn
≥ p. (13)
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Source

1

2

3

k n

Figure 1. Graph with all links between session nodes removed. Source pushes
bits to first hop relays which then push to secondary relays (solid lines). The
session nodes pull the bits from either first hop relays or secondary relays
(dashed lines).

Supposing the claim is true, we can put (12) and (13)

together, and get an achievable rate πn = π
(1)
n + π

(2)
n that

satisfies the following almost surely:

lim inf
n

πn

n

= lim inf
n

(

π
(1)
n

n
+

π
(2)
n

n

)

≥ lim inf
n

(

π
(1)
n

n

)

+ lim inf
n

(

π
(2)
n

n

)

≥ lim inf
n

(

kn
2n

π
(1)
n

kn/2

)

+ lim inf
n

(

mn

n

π
(2)
n

mn

)

≥

(

lim
n

kn
2n

)

· p+
(

lim
n

mn

n

)

· p

(using (12) and (13))

=
(α

2

)

p+ (1− α)p

=
(

1−
α

2

)

p

which establishes the theorem.

We now proceed to verify the claim in (13). Fix ε > 0
sufficiently small. Data is “pushed” as follows.

Push step 1: The source sends a total of mnp(1 − ε) bits

to relays connected to it. (Rounding to integer can easily be

handled and is ignored for expository purposes). Each relay

carries a unique bit. If there are more neighbors than (mnp(1−
ε)), the extra relays are not supplied a bit. Let us call all

those nodes that receive a bit directly from the source as first

hop relays. The case when there are fewer first hop relays

than mnp(1 − ε) is an event having negligible probability.

Indeed, let A1 be the event that the degree of the source node

is less than mnp(1−ε). By Bernstein’s inequality, Pr{A
(n)
1 } ≤

e−mnc1 for some c1 > 0.

Push step 2: Each first hop relay node relays its bit to each

neighbor that is not already a first hop relay. The resulting

bit carrying relays are called secondary relays. Note that there

may be secondary relays that are in contact with the source,

but did not receive any bit on account of the source’s degree

exceeding mnp(1− ε).
The bit-map of available bits with relays is as follows.

Let us index the bits as 1, 2, . . . ,mnp(1 − ε), and relays as

1, 2, . . . ,mn. Then row i indicates what relay i contains.

In the table, Xi,j = 1 if relay i (with mnp(1 − ε) < i ≤
mn) is connected to first hop relay j. Clearly, the presence or

absence of this edge is independent of all other events, and so

Xi,j is a Bernoulli(p) random variable.

Bit Bit · · · Bit
1 2 mnp(1− ε)

First hop relay 1 1 0 · · · 0
First hop relay 2 0 1 · · · 0

..

.
. . .

First hop relay 0 0 · · · 1
mnp(1− ε)

Relay 1 +mnp(1− ε)
..
. ((Xi,j))

Relay mn

Data is “pulled” from the relays by the session nodes as

follows. Consider a session node i.
Pull step 1: If a session node i is connected to a first

hop relay, it pulls the corresponding bit. Let A
(n)
2 (i) be the

event there are less than mnp
2(1 − ε)2 first hop relays that

our session node is in contact with. Again by Bernstein’s

inequality, Pr{A
(n)
2 (i)} ≤ e−mnc2 for some c2 > 0.

Pull step 2: The session node now has to pull the remaining

bits from the secondary relays. The number of bits that remain

to be pulled is

bn := mnp(1−ε)−mnp
2(1−ε)2 = mnp(1−ε)(1−p(1−ε)).

The number of relays that are not first hop relays is at least

mn −mnp(1− ε) = mn(1− p(1− ε)).

Let A
(n)
3 (i) be the event that the session node is connected to

fewer than p(1− ε) fraction of these nodes, i.e., to fewer than

mn(1− p(1− ε)) · p(1− ε) = bn such relays. By Bernstein’s

inequality again, Pr{A
(n)
3 (i)} ≤ e−mnc3 for some c3 > 0.

Pull step 3: Assume now that A
(1)
n ∪ A

(2)
n (i) ∪ A

(3)
n (i)

does not occur. Then the matrix rows corresponding to the

secondary relays in contact with the session node and the

columns corresponding to the bits not yet pulled constitutes a

bn × bn square submatrix whose entries are conditionally iid

Bernoulli(p) random variables. We may view this as a bipartite

graph with (non-first-hop) relays on the one side and not-yet-

pulled bit indices on the other side. There are bn vertices on

each side. The edges of this bipartite graph are Xk,l which

are independent Bernoulli(p) random variables. For a selected
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relay k connected to session node i, if Xk,l = 1, then the

relay is a secondary relay and has bit l. It may contain other

bits of interest to session node i, but can send at most 1 bit to

node i. If we have a complete matching (where all bn selected

relays and all unpulled bits are matched), then the session node

can pull these remaining bits from the selected relays without

violating the capacity constraint of one bit per edge.

The probability that such a matching does not exist, say

Mn(i), can be upper bounded by γ(bn), where k(n)γ(bn) is

summable, using [7, Lem. 7.12, p.174]. (See Appendix).

In the final analysis, the event that some session node is

unable to pull all the bits is

A
(n)
1 ∪kn

i=2

(

A(2)
n (i) ∪ A(3)

n (i) ∪Mn(i)
)

.

Its probability is upper bounded by

e−mnc1 + kn(e
−mnc2 + e−mnc2 + γ(bn)).

Using α < 1, summing the above over n, using the fact that

knγ(n) is summable, and the Borel-Cantelli lemma, we obtain

that almost surely all the session nodes will be able to pull

mnp(1 − ε) bits. By considering rational ε and staying out

of the union of all the associated null sets, it follows that

lim infn π
(2)
n /mn ≥ p (a.s.). This concludes the proof.

VI. SUMMARY

Our main contributions are the following.

• For multicast sessions on random graphs, specifically

Erdős-Rényi random graphs, the maximum asymptotic

rate can be achieved via flows. This was already known

for the allcast case kn = n. We studied the multicast case

when kn/n → α < 1.

• We proposed a push-pull scheme for data distribution in

a multicast session with kn nodes, kn/n → α < 1. Our

scheme is decentralized and easily implementable.

APPENDIX A

THE EXISTENCE OF A BIPARTITE MATCHING

The following lemma, taken from Bollobás, is key to

showing that matchings exist almost surely and one can pull

the bn bits from secondary relays. We present the result for a

bipartite graph with n vertices.

Lemma 5: ([7, Lem. 7.12, p. 174]). Let G be a bipartite

graph with vertex classes V1 and V2, |V1| = |V2| = n. Suppose

G has no isolated vertices and it does not have a complete

matching. Then there is a set A ⊂ Vi (i = 1, 2) such that:

(i) Γ(A) = {y : (x, y) ∈ E(G) for some x ∈ A} has |A|−1
elements,

(ii) the subgraph of G spanned by A∪Γ(A) is connected and

(iii) 2 ≤ |A| ≤ (n+ 1)/2.

Let n1 = ⌊(n + 1)/2⌋. We follow Bollobás’s arguments

on [7, p. 174]. Let Fa denote the event that there is a set

A ⊂ Vi (i = 1 or 2), |A| = a, satisfying (i)-(iii) of Lemma

5. The subgraph spanned by A ∪ Γ(A) is connected, and so

must have at least 2a−2 edges. Further the vertices of A must

not be connected to any vertex in V3−i−Γ(A) The probability

that this happens for A ⊂ V1 is at most
(

a(a− 1)

2a− 2

)

p2a−2(1− p)a(n−a+1).

There are
(

n
a

)

choices for A ⊂ V1 with |A| = a,
(

n
a−1

)

choices

for Γ(A), and an extra factor of 2 to account for A ⊂ Vi,

i = 1, 2. Using these and
(

n
k

)

≤ (en/k)k, we get

P

(

n1
⋃

a=2

Fa

)

≤

n1
∑

a=2

P (Fa)

= 2

n1
∑

a=2

(

n

a

)(

n

a− 1

)(

a(a− 1)

2a− 2

)

× p2a−2(1− p)a(n−a+1)

≤ 2

n1
∑

a=2

(en

a

)a
(

en

a− 1

)a−1
(ea

2

)2a−2

× p2a−2(1− p)a(n−a+1)

≤ const.

n1
∑

a=2

e3an2a−1p2a−2(1− p)a(n−a+1)

=: γ1(n),

where the last equation is the defining equation for γ1(n).
The probability that there is some isolated node is upper

bounded by γ2(n) := n(1 − p)n−1. Thus the probability that

the bipartite graph of n vertices does not have a complete

matching is at most γ(n) = γ1(n) + γ2(n).
When we have bn vertices on each side, the above bound

turns out to be γ(bn). Straightforward computations yield that
∑

n knγ(bn) is summable, details of which we are omitted.
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