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Abstract—We consider a visual search problem studied by
Sripati and Olson where the objective is to identify an oddball
image embedded among multiple distractor images as quickly as
possible. We model this visual search task as an active sequential
hypothesis testing problem (ASHT problem). Chernoff in 1959
proposed a policy in which the expected delay to decision is
asymptotically optimal. The asymptotics is under vanishing error
probabilities. We first prove a stronger property on the moments
of the delay until a decision, under the same asymptotics.
Applying the result to the visual search problem, we then propose
a “neuronal metric” on the measured neuronal responses that
captures the discriminability between images. From empirical
study we obtain a remarkable correlation (r = 0.90) between the
proposed neuronal metric and speed of discrimination between
the images. Although this correlation is lower than with the L
metric used by Sripati and Olson, this metric has the advantage
of being firmly grounded in formal decision theory.

I. INTRODUCTION

Sripati and Olson [1] studied the correlation between the
speed of discrimination of images and a measure of dis-
similarity of neuronal representations of the images in the
inferotemporal (IT) cortex of the brain. They conducted two
sets of experiments, one on human subjects and the other on
macaque monkeys. The experiments were the following.

(1) In the experiment on humans, subjects were shown a
picture as in Figure 1(a) having six images placed at the
vertices of a regular hexagon, with one image being different
from the others. In particular, let /; and I be two images.
One of these two was picked randomly with equal probability
and was placed at one of the six locations randomly, again
with equal probability. The remaining five locations contained
the copies of the other image. See Figure 1(a) and 1(b). The
subjects were required to identify the correct half (left or right)
of the plane where the odd image was located. The subjects
were advised to indicate their decision “as quickly as possible
without guessing” [1]. The time taken to make a decision after
the onset of the image was recorded.

(2) In the other set of experiments on macaque monkeys,
the images I; and I were displayed on the screen, and the
neuronal firings elicited by I; separately and I» separately on
a set of IT neurons were recorded. The neuronal representation
of an image was taken to be a vector of average firing
rates across the neurons. The two experiments were done
on several pairs (I1,/) of images. The authors observed a
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remarkably high correlation (r = 0.95) between the speed
of discrimination in humans and the L distance between the
firing rate vectors of the two images. They concluded that
the more similar the neuronal representation (in monkey IT
cortex), the tougher it is for humans to distinguish the images.

In this paper, we model the visual search problem as an
active sequential multiple hypothesis testing problem (ASHT
problem), first studied by Chernoff [2]. In sequential hypoth-
esis testing [3]-[9], the only decision a controller makes at
each stage is to either stop and make a decision or continue
to draw another sample and trade off the cost of delay for
a decision of better quality. In active sequential hypothesis
testing, the controller is additionally capable of controlling
the quality of the sample drawn. In our experiment the human
subject can actively choose the location to sample based on
past observations and actions.
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Fig. 1. Two examples of search task configurations.

a) Prior Work: Chernoff [2] formulated the ASHT prob-
lem, proved an asymptotic lower bound under vanishing error
probabilities and further devised the so-called Procedure A
that he went on to show was asymptotically optimal under
vanishing error probabilities. Recently Naghshvar and Javidi
[10]-[12], also motivated by a visual search problem, cast
Chernoff’s problem into the framework of dynamic program-
ming and attempted to derive structural properties on the value
functions and the decision regions. A related but different line
of research was carried out by Rao [13] who studied visual
search as a partially observed Markov decision problem over
fixed time horizons. In contrast, the works of Chernoff [2],
Naghshvar and Javidi [10]-[12], and this work model the
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search problem as one of optimal stopping with controls.

b) Our contribution: We first provide a mild extension
of Chernoff’s asymptotic optimality of expected delay for
his Procedure A by showing asymptotic optimality for all
moments. We then recognize that Chernoff’s solution suggests
a natural “neuronal metric” for the visual search problem that
is more appropriate than the L, distance between the vectors
of firing rates used in Sripati and Olson [1]. This metric is
closely related to the relative entropy between the Poisson
point processes associated with firing rate vectors for the two
images. We do see a high correlation (r = 0.9) between speed
of discrimination and the new neuronal metric. While this is
lower than the correlation (r = 0.95) with the L; metric
as observed by Sripati and Olson [1], we remark that our
abstraction is overly simplistic, and emphasize that our work
provides a more logical basis for the proposed neuronal metric
than the L, distance.

c) Organization: In Section II we study the ASHT
problem. We first set up the notation, state the assumptions,
and identify the performance criterion in sections II-A through
II-C. In section II-D we give an asymptotic lower bound for
the moments of the stopping time for all policies that satisfy
a constraint on the maximum possible conditional error cost.
In section II-E we show that a class of policies proposed by
Chernoff [2] and Naghshvar and Javidi [12] asymptotically
attain the lower bounds for general moments. In Section III, we
return to the visual search problem, and obtain the appropriate
metric for comparison with delays and identify the degree of
correlation.

II. THE ASHT PROBLEM

In this section we study the active sequential multiple
hypothesis testing problem (ASHT problem).

A. Basic Notation

Let H;, i« = 1,2,...,M denote the M hypotheses of
which only one holds true. Let 4 be the set of all possible
actions which we take as finite |A| = K < oo. Let X" be
the observation space. Let (X,,),>1 and (A4,),>1 denote the
observation process and the control process respectively. We
assume that (A, ),>1 is a random or deterministic function of
the past observations and actions. Conditioned on action A,
and the true hypothesis H, we assume that X, is conditionally
independent of previous actions A" = (A, Ay, ... A, 1)
and observations X® ™1 = (X7, X5,...,X,,_1). Let ¢* be the
probability density function with respect to some reference
measure u for observation X under action a when H; is the
true hypothesis. Let ¢;(X™, A™) be the probability density,
with respect to a common reference measure 1" x unif(4)®",
of observations and actions till time n, where unif(A) is
the uniform distribution on A. Let Z;;(n) denote the log-
likelihood ratio (LLR) process of hypothesis H; with respect
to hypothesis Hj, i.e.,

) = 1og Ji (X", A") _ g (Xl).
Ziy(n) = log g; (X, An) ;log g, (X1) .

Let E; denote the conditional expectation and let P; de-
note the conditional probability measure under the hypothesis
H;. Let D(qf|lq}) denote the relative entropy between the
probability measures associated with the observations under
hypothesis H; and hypothesis H; under action a.

Let p;(0) denote the prior probability that hypothesis H;
is true. The posterior probability that hypothesis H; is true,
given the observations and actions till time 7 is denoted p;(n).
The beliefs p(n) = (p1(n),...,pm(n)) admit the sequential
update

Ant1
i\1)q; Xn
pln 1) = POV
> pi(n)g; " (Xnt1)

a fact that follows by an easy application of Bayes rule.

A policy 7 is a sequence of action plans that at time n
looks at the history X"~1, A”~! and prescribes a composite
action that could be either (stop,d) or (continue, ). If the
composite action is (stop,d), then d is the decision on the
hypothesis at the stopping time, and so d € {1,2,...,M}. If
the composite action plan is (continue, A), then A € P(A) is
the distribution with which the next control is picked. Let 7 be
the stopping time. Recall that (A4,,),>1 is the control process
until the stopping time.

; )

Given an error tolerance vector o = (avy, aa, . .., apr) With
0 < a; <1, let A(e) be the set of policies

These are policies that meet a specified conditional error
probability tolerance criterion. Let ||a|| = max; o;.

We define \; to be the mixed action under hypothesis H;
that guards against the nearest alternative, i.e., \; € P(A)
such that

Ai = arg max min za: Ai(a)D(q}(|qf)- )
Further define

D; = maxmin Z Aa)D (Q?Hq?) )
A dF acA

Let A;; = {a € A: D(q[|q}) > 0} be the set of all actions
that can differentiate hypothesis H; from hypothesis H;. It is
easy to see that A;; = Aj;. Finally, let 8 = 3¢ 4. M(a),
ie., ij is the probability of choosing some action that
can distinguish hypothesis H; from hypothesis H; when the
actions are picked according to Ag.

B. Assumptions

Throughout, we assume the following:
a 2

a0 E ng ggg) } <00V i,ja.

() B = min; jx B > 0.
Assumption (I) implies that D(g||gj) < oo and ensures that
no single observation can result in a reliable decision. Assump-
tion (I) is an important technical assumption in our work. A
crucial exponential boundedness property of the stopping time
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for Chernoffs Procedure A and Naghshvar and Javidi’s Policy-
NJ (described in section II-E), which is required in many
proofs, is based on this assumption. Further it, ensures that
under all beliefs, there is a positive probability of choosing an
action that can distinguish hypothesis H; from hypothesis H;
(i # j). In particular, for any distinct ¢ and j, there is at least
one control that can help distinguish the hypotheses H; from
H;.

C. Performance Criterion

We study the ASHT problem from the perspective of mini-
mizing the expected stopping time delay subject to constraints
on the conditional probability of error, i.e., policies belonging
to A(«).

D. Lower Bound

The following proposition gives a lower bound for the mth
moment of the conditional stopping time given hypothesis H;
for all policies belonging to A(a).

Proposition 2.1: Assume (I). Then for any 7 € A(«) and
any m > 1, we have

| log Zj;éi |

. M >
inf E;[r"] > ( D,

m
1 1 — 0.
Lt ) o) aslal

(6)

where D; is given in (5).

Proof: The proof for the case m = 1 follows from the
proof of [2, Th. 2, p. 768] with minor modifications to account
for the possibly different a;. (See also proof of [8, Lem 2.1,
Th 2.2]). For m > 1, the results follows from the fact that

E. Achievability - Chernoff’s Procedure A and related policies

Chernoff [2] proposed a policy termed Procedure A and
showed that it has asymptotically optimal expected decision
delay. Naghshvar and Javidi [12] proposed a class of policies
(hereafter referred to as Policy-NJ), which are minor variants
of Procedure A. We shall now argue that both the above poli-
cies are asymptotically optimal for all moments of stopping
time. We consider only Procedure A. The result for Policy-NJ
follows from a similar analysis.

Policy Procedure A: wp (L)
Fix L > 0.
At time n:
e Let 8(n) = argmax; p;(n)
o If poeny(n) < HLL , then A, 41(p) is chosen according
to )\g(n), ie., P(An+1(p) = a) = )\g(n) (a)
o If poiny(n) > L_, then the test retires and declares

1+ .
Hy () as the true hypothesis.

Policy 7 ;(L) :
Fix 0.5 <p < 1. Fix L > 0.
At time n:

o If 0 < p;i(n) < p for every 4, then A,1(p) is chosen

uniformly, i.e., P(A,11(p) = a) = +.

o If p<p;i(n) < H_LL for some i, then A,11(p) is chosen

according to A;, i.e., P(A,1(p) = a) = \i(a).
o If pi(n) > 3 fL for some %, then the test retires and
declares H; as the true hypothesis.

As mentioned earlier, we focus only on Procedure A. However,
we also consider the following variant of Procedure A for
analysis. Policy 7% ,(L) is same as mpa(L) except that it
stops only when p;(n) > 7.

Definition 2.2: We define the following entities:
1) 75 4(L) = inf{n : pj(n) > H_LL} is the stopping time
at which the posterior belief of hypothesis H; crosses the
detection threshold for policy T 4-
2) 7pa(L) := min; 75 ,(L) is the stopping time for policy
mp A(L) )
Observe that 7pa(L) < 75 4(L) for all j.

Policy mp,4 is defined to stop only when the posteriors
suggest a reliable decision. This is formalized now.

Proposition 2.3: For Policy mp 4, the conditional probabil-
ity of error under hypothesis H; is upper bounded by

1

Pi(d # i) < ———. (7
WADS LoD
Consequently mp4 (L) € A(«) if for every ¢ we have
1
®)

N O+ D)
We now proceed towards identifying the time-delay perfor-
mance of the policy mp 4. Towards this, we first consider the
easier to analyze policy 7% 4. Note that as L — oo, we have
a; — 0, and therefore the policy has vanishing error cost.
However, the time taken scales to infinity as given next.
Proposition 2.4: Assume (I) and (IT). Consider policy 7Tj:, A
The following convergences then hold as L — oo:

Tha(L) 1
— .8.— P,
log L — D, a.s % )

Th A (D)\™ 1
E; PA )
L{< log L > ]_*Dr

A sandwiching argument on the likelihood ratio about the
stopping time 75 4 (L) gives the first result. To show conver-
gence in £,, we prove and use an exponentially boundedness
property of the stopping time 75 4 (L). We omit the complete
proof due to lack of space.

Theorem 2.5: Choose « as per (8). Assume (I) and (III).
The family of policies (mpa (L))o is asymptotically optimal
in the sense that, for each m > 1, we have

(10)

i if B () | = tim g [ (AN
im in H = lim E;
L—oo m€A(a) * log L L0 log L
1
= —. 11
Dy (11)

Proof: By the choice of a and Proposition 2.1 we have

T m 1
li inf F;|——| >—
Lo reA() [log L} = D
and by Proposition 2.4, we have the achievability of the above
lower bound by policy mpa(L) € A(a). [ |
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III. AN APPLICATION TO VISUAL SEARCH

We now return to the visual search problem. In the visual
search task, a subject has to identify an oddball image from
amongst W images displayed on a screen (W = 6 in Figures
1(a) and 1(b)). With equal probability, the odd image can either
be image I; or image I>. When image I; is the odd image,
the other W — 1 images are of type I and vice-versa. For the
purpose of modeling, we make the following assumptions. The
subject can focus attention on only one of the W positions,
and that the field of view is restricted to that image alone.
Further, we assume that time is slotted and of duration 7". The
subject can change the focus of his attention to any of the W
image locations, but only at the slot boundaries. We assume
that the subject would have indeed found the exact location
of the odd image and the image identity before mapping it to
a “left” or “right” decision. These are clearly oversimplifying
assumptions, yet our model and analysis provide some insights
into the visual search problem.

If the image in the focused location is I;, we assume that
a set of d neurons sensitive to these images produce spike
trains, which constitute the observations. These are modeled
as d Poisson point processes of duration 7" with rates R; =
(Ri(1),Ri(2),...,Ri(d)).

The visual search problem can be formulated as a 2W
hypothesis testing problem:

H;,©» < W : The odd image is I; and is at location
H;,© > W : The odd image is I> and is at location ¢ — M

As the subject can change the point of focus at any slot
boundary we have an ASHT problem.

We now calculate the optimal \; and the optimal neuronal
metric D; for the visual search problem. Recall that the set
of controls A = {1,2,...,W}. For notational simplicity let
fi denote the probability density on the observations when
focusing on image I;, ¢« = 1,2 . The conditional probability
density function ¢ under hypothesis H; when action a is

chosen is :
a fl iSW,a:i
BTN i<W, ai
o fo i>W,a=i-W
BTN isWoati-W

Indeed, under Hypothesis H; with ¢ < W, the odd image is I3
and is at location 7. If the control is to focus on location 7, i.e.,
a = 1, then the subject views image I; and so the observations
have density f7 corresponding to I;. The others are explained
similarly.

The relative entropy between the probability densities for
the various combinations of hypotheses and actions are:

(4) i<W, j<W
D(filfz) a=i
D(gillqj) = { D(follf1) a=
0 a#i,a#j,
(i) i<W.j=i+W
all .a D(f1||f2) a=1
D(a%]lg%) =
(i) {D(f2||f1) a#i,

i<W, i>W,j#i+W
0 a=1
D(qillgf) =10 a=j-W
D(fa2llf1) a#i,a#j—W.

Our aim is to find the optimum J; that maximizes
Dizngmg§%;AMNX%ﬂﬁ)
a

The corresponding optimum D; thus obtained will yield the
required “neuronal metric” (after a further scaling). Due to the
symmetry in the problem, A; and D; will be the same under
all hypotheses H;,7 < W, and similarly it will be the same
under all hypotheses H;,7 > W. Without loss of generality
we consider the case ¢ < W. Solution to the case when i > W
will have the same structure.

Theorem 3.1: Let i < W. The optimum \; and D, are as
follows

(W =3)D(f2|l.f1)

MO = D D(A) + (W - 3Dl
L DfilIf2) -
MO = G DDA - V9Dl T
o (W-2)D( Dl f) >
= W DDA L) + (W - 3)DUallfy)
when D(Alf2) > P42 and
(i) = 0, X)) = —(Wﬂ 5 Vi # 6D = l()évf“’”’;l;

when D(fy]|f2) < 24210,

The proof is omitted due to lack of space. Note that the
lower bound in Naghshvar and Javidi [12] would have
max{D(f1||f2), D(f2||f1)} as an upper bound for the neu-
ronal metric, but our bound tightens it by a factor of two.

d) Empirical Study on Neuronal Data: We now apply
the results obtained in the previous section to the empirical
data obtained from the experiments of Sripati and Olson
[1]. Let T be the slot duration, during which one focuses
attention on a particular image. X is the space of counting
processes in [0, 7] with an associated o-algebra. Let Py v be
the standard Poisson point process and let Pf?:ff its d-fold

product measure. Let Pr; 7 denote the probability measure
dPr T

Pj, so that f; = 2. First we calculate the neuronal
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metric when f; and f; are vector Poisson processes of
duration T' with rates Ry = (R1(1), R1(2),...,R1(d)) and
Ry = (R2(1),R2(2),...,Ra(d)). Under an independence
assumption, the relative entropy between the vector Poisson
processes becomes the sum of relative entropies between the
individual processes. Then

dP
2,T
‘ dPR]_(k)
Z Pr, (x log
Pt 1(k), T dPR2(k)

d
=Ty {RQ(k) — Ry(E) + Ry (k) 1o Rl(k)} .
k=1

s Ry (k)

Sripati and Olson [1] conducted the experiment with W =
6. The normalized per-unit-time per-neuron neuronal metric
when image [; is the target image is

5, = L AD(Pry 1| Pra,7)D(PRo,7 || PRy 1)
dT" 5D(Pry,7||Pro,7) + 3D (PRay7 || PRy 1)

13)

A similar relation holds when image I is the target image.

The experimental data used in the empirical study consisted
of the following. 1) Neuronal firing rate vectors were obtained
from the IT cortex of rhesus macaque monkeys for twelve
image pairs with the number of neurons ranging from 78 to
174 for different image pairs. 2) Reaction times statistics for
detection of the odd image were obtained from experiments on
human subjects. The neuronal behavioral index for an ordered
pair of images (4, j) is the inverse of average decision delay
minus a baseline delay. In Figure 2, we plot the behavioral
discrimination index (speed of discrimination or inverse of
time taken to decide) against the normalized per-unit-time per-
neuron neuronal metric. The correlation between behavioral
discrimination index and the neuronal metric was 0.90. This
is smaller than the correlation of 0.95 between the behavioral
discrimination index and the [; distance between the neuronal
firing rate vectors. The discrepancy might arise from the highly
simplified theoretical formulation, or from computational con-
straints in the brain. Nonetheless the close correspondence
with the data suggests that the neuronal metric proposed here
is a step in the right direction.

ACKNOWLEDGMENTS

This work is supported by the DST and UGC, Government
of India. The authors would like to thank an anonymous
reviewer for pointing our attention to [2] which greatly sim-
plified our presentation.

REFERENCES

[11 A. P. Sripati and C. R. Olson, “Global image dissimilarity in macaque
inferotemporal cortex predicts human visual search efficiency,” Journal
of Neuroscience, vol. 30, no. 4, pp. 1258-1269, Jan 2010.

[2] H. Chernoff, “Sequential design of experiments,” The Annals of Math-
ematical Statistics, vol. 30, no. 3, pp. 755-770, 1959.

[3] A. Wald, “Sequential tests of statistical hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, pp. 117-186, 1945.

(=

r=0.90,p=14x10"°

S

Behavioural index (s™")
N W

0 0.2 0.4 0.6 0.8 1. 1.2 14 1.6
Neuronal Metric (D;)

Fig. 2. The observed behavioral discrimination index is plotted against the
neuronal metric calculated based on the observed neuronal responses. We
found a striking degree of correlation (r = 0.90,p = 1.4 x 1079).

[4] A. Wald and J. Wolfowitz, “Optimum character of the sequential
probability ratio test,” The Annals of Mathematical Statistics, vol. 19,
no. 3, pp. 326-339, 1948.

[5] A. Tartakovsky, “Sequential testing of many simple hypotheses with
independednt observations,” Probl. Inform. Transm., vol. 24, no. 4, pp.
299-309, Oct 1988.

[6] C.Baum and V. Veeravalli, “A sequential procedure for multihypothesis
testing,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1994 —2007, Nov
1994.

[7]1 V. Veeravalli and C. Baum, “Asymptotic efficiency of a sequential
multihypothesis test,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1994
—1997, Nov 1995.

[8] A. Tartakovsky, “Asymptotic optimality of certain multihypothesis se-
quential tests: Non - ii.d. case,” Statistical Inference for Stochastic
Processes, vol. 1, no. 3, pp. 265-295, 1998.

[9] V. Draglia, A. Tartakovsky, and V. Veeravalli, “Multihypothesis sequen-
tial probability ratio tests - part I. Asymptotic optimality,” IEEE Trans.
Inf. Theory, vol. 45, no. 7, pp. 2448 —2461, Nov 1999.

[10] M. Naghshvar and T. Javidi, “Active M-ary sequential hypothesis
testing,” in J/EEE Int. Symp. Info. Theory, June 2010, pp. 1623 —1627.

[11] , “Information utility in active sequential hypothesis testing,” in
48th Annual Allerton Conference, Oct 2010, pp. 123 —129.

[12] ——, “Performance bounds for active sequential hypothesis testing,” in
IEEE Int. Symp. Info. Theory, Aug 2011, pp. 2666 —2670.

[13] R. P. N. Rao, “Decision making under uncertainty: A neural model

based on partially observable markov decision processes,” Frontiers in

Computational Neuroscience, vol. 4, no. 00146, 2010.

2215



