
Gossip With Transmission Constraints
V. S. Borkar and R. Makhijani

Department of Electrical Engineering
IIT Bombay

Powai, Mumbai 400076
India

Email: {borkar.vs,rahulmakhijani19}@gmail.com

R. Sundaresan
Department of Electrical Communication Engineering

Indian Institute of Science
Bangalore 560012

India
Email: rajeshs@ece.iisc.ernet.in

Abstract—We consider an asynchronous stochastic approxima-
tion version of the classical gossip algorithm wherein the inter-
processor communication is subject to transmission delays. We
highlight some fundamental difficulties associated with it and
suggest an alternative scheme based on reinforcement learning.

I. PLAIN VANILLA GOSSIP

Gossip algorithm [10] is a popular paradigm for averaging
schemes across a group of communicating processors, e.g., in
sensor networks. These are successive averaging schemes of
the form

x(n+ 1) = Px(n), n ≥ 0, (1)

which compute successive averages x(n + 1) ∈ Rd of the
previous iterate x(n) ∈ Rd with respect to a stochastic
matrix P = [[p(i, j)]] ∈ Rd×d, beginning with a prescribed
initial data vector x(0) = [x1(0), · · · , xd(0)]

T ∈ Rd. If P is
irreducible, this leads to the convergence

x(n)→

d∑
i=1

ηixi(0), as n→∞

where η = [η1, · · · , ηd]
T is the unique stationary distribution

for P . An ‘incremental’ version

x(n+ 1) = (1− a)x(n) + aPx(n), n ≥ 0,

has been proposed and analyzed as a model of opinion
formation in societies [7], where a ∈ (0, 1] is a parameter that
modulates the emphasis put on others’ opinions, as opposed
to one’s own evaluation.

II. ENTER STOCHASTIC APPROXIMATION

In engineering applications, one often considers a stochastic
approximation [4] version wherein at each time n, the proces-
sor (or ‘agent’) i polls a neighbor j according to probability
p(i, j) and ‘pulls’ the latter’s data xj(n) for averaging. The
recursion then is

xi(n+1) = (1−a)xi(n)+axξi(n)(n), 1 ≤ i ≤ d, n ≥ 0, (2)

where ξi(n) is generated with probability p(i, ·) independently
of all other random variables realized till time n. By adding
and subtracting the one step conditional expectation of the last
term, (2) can be written as

x(n+ 1) = (1− a)x(n) + a
(
Px(n) +M(n+ 1)

)
, n ≥ 0,

where {M(n)} is an appropriately defined martingale differ-
ence sequence. This then becomes an instance of the ‘constant
step-size’ version of the classical Robbins-Monro scheme for
stochastic approximation:

x(n+ 1) = x(n) + a
(
h(x(n)) +M(n+ 1)

)
, n ≥ 0, (3)

for a Lipschitz h : Rd �→ Rd. Under reasonable conditions
(see [4, Ch.9]), the iterate in (3) tracks the asymptotic behavior
of its limiting ordinary differential equation (in a sense that is
made precise in [4, Ch.2])

ẋ(t) = h(x(t)), t ≥ 0, (4)

which for us is the linear system

ẋ(t) = (P − I)x(t), t ≥ 0. (5)

Here I ∈ Rd×d is the identity matrix. Since P is stochastic,
1 := [1, 1, · · · , 1]T is the right Perron-Frobenius eigenvector of
P . It is easy to see that x(t) converges to (ηTx(0))1, which
depends on the initial condition x(0). The convergence rate
of this (hence of (3)) as well as the convergence rate of the
original discrete scheme (1) are dictated by the eigenvalue of
P with the second highest absolute value. We shall refer to
this as the ‘second eigenvalue’ henceforth. This has prompted
a lot of analysis and algorithms for minimizing the second
eigenvalue, ipso facto maximizing the rate of convergence [6],
[10].

The stochastic approximation version already introduces
‘noise’, as we are replacing an averaging operation by a
sample picked according to the averaging probability weights.
An additional complication arises when the implementation is
asynchronous wherein,

• not all components of x(n) are updated concurrently, and,
• the values computed at different processors are received

at other processors with random inter-processor commu-
nication delays.

This situation is often brought about by transmission con-
straints such as those imposed by the wireless medium that
disallow the co-occurrence of transmission of messages across
certain edges. This leads to several nontrivial complications
not present in the deterministic versions (1) or (5). Even
though (1) and (5) converge to a unique limit for any initial
condition x(0), the same may not be true of the stochastic



case (3). If we use a decreasing step-size schedule {a(n)} with∑
n a(n) =∞,

∑
n a(n)

2 <∞, we observe a.s. convergence
of the projected scheme to a random multiple of the eigen-
vector 1, not necessarily the desired one. This convergence
is in fact suggested by the results of [8], established under
somewhat more restrictive conditions. If we use a constant
stepsize, stability of the iterations (2) can also become an
issue, since constant stepsize algorithms are not provably a
priori bounded a.s. In the special case here, they were found to
converge, presumably because the martingale noise {M(n)}
also scales down to zero with minc ‖x(n) − c1‖. Constant
stepsize schemes have higher fluctuations in general; so we
introduce a parallel averaging scheme at each node as follows
in order to reduce variance:

z(n+ 1) = z(n) +
1

n+ 1
(x(n+ 1)− z(n)) , n ≥ 0. (6)

This leads to graceful convergence. Nevertheless, the conver-
gence can be at a point other than the desired one. We also
consider the case of ‘noisy measurements’ wherein xξi(n)(n)
above gets replaced by xξi(n)(n) +W (n+ 1) for some i.i.d.
zero mean noise {W (n)}. In this case, the constant stepsize
scheme does not even converge. See lack of convergence in
the noisy case in Figure 2 and compare with convergence
to consensus value (maximum error from consensus value
approaches zero) in Figure 1. We now describe the set up
used for these simulations.

Simulation description: The simulation was done on a single
randomly generated Erdös-Rényi graph of 100 nodes. The
probability of an edge between a pair of nodes was 0.2. The P

matrix is symmetric with each entry in the upper triangle hav-
ing independent and uniform distribution over [0, 1] whenever
a link exists between the corresponding nodes. The nodes were
initialized with x(0) generated with independent and uniform
distribution over [0, 1]. The plotted errors are the supremum
norms of errors x(n) − (ηTx(0))1 and z(n) − (ηTx(0))1.
Figure 1 is a plot of the iterates where the data is received
noiselessly. The updates were asynchronous, and the update
rates differed across nodes. (Average inter-update time for
node j was 10+ j time steps.) This difference was introduced
in order to simulate the effect of activation set transmission
constraints. The total number of time steps simulated were
120,000. Figure 2 considers the case when the data is corrupted
by additive white Gaussian noise of variance 0.25. This yields
a per node average signal power to noise power ratio of 1.

III. A REINFORCEMENT LEARNING TWIST

The foregoing discussion prompts us to consider a different
scheme motivated by the reinforcement learning algorithms
for average cost problem [1]. This is based on the Poisson
equation

V = PV + x(0)− β, (7)

This is to be solved for the pair V (·) ∈ Rd, β ∈ R. Under an
irreducibility hypothesis on P , it has a solution (V (·), β). Here
V is specified uniquely modulo an additive scalar constant,
whereas β is characterized uniquely as the optimal cost:

1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Er
ro

r i
n 

ite
ra

te
s

Iteration number

x
z

Fig. 1. Residual error in iterates over time. Data is noiselessly received.

1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.1

0.2

0.3

0.4

0.5

Er
ro

r i
n 

ite
ra

te
s

Iteration number

x
z

Fig. 2. Residual error in iterates over time. Data is received with noise.

β = ηTx(0), where once again η is the stationary distribution
for P . Furthermore, these can be computed by the iterative
scheme, dubbed relative value iteration, given by:

V (n+ 1) = PV (n) + x(0)− Vi0(n)1, n ≥ 0,

where i0 is a fixed state. It can be shown that V (n) →
V ∗, Vi0(n) → β, where V ∗ is the unique solution of (7)
satisfying V ∗

i0
= β. See [9] for these and related facts for

the more complicated ‘controlled’ P .
A stochastic approximation version of the above can be

given along the lines of Abounadi et al. [1], as

yi(n+ 1) = (1− a)yi(n) + a
(
yξi(n)(n)− xi(0)− yi0(n)

)
.

(8)
It is proved in [1, Th.3.5] that y(n)→ V ∗, yi0(n)→ β, a.s.

As pointed out in [1], we can replace yi0(n) above by
f(y(n)) for any f : R �→ R, satisfying f(1) = 1 and
f(x + c1) = f(x) + c for c ∈ R.



1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Er
ro

r i
n 

ite
ra

te
s

Iteration number

x
z

Fig. 3. Residual error in reinforcement-learning iterates over time. Data is
received with noise.

Our numerical experiments showed significant improvement
in error when (8) was used in place of (2) and (6). What’s
more, the additional measurement noise {W (n)} introduced
above does not affect the conclusions. Figure 3 depicts the
error in iterates (8). The setting is the same as the setting in
Figure 2 (with noise).

One important issue with (8) is that the i0th component of
the iteration has to be broadcast to all nodes. Alternatively, we
can replace it by a suitable weighted average of the xi(n)’s
that is computed in a distributed manner on a faster time scale,
as in [5].

IV. ADDITIONAL POSSIBILITIES

Some further possibilities are as follows.

A. Conditional importance sampling

In the asynchronous case, there is an additional error term
due to delays, over and above the errors due to discretization
and noise. This can be shown to be bounded by a term propor-
tional to a and any bound on the mean delays {E[τji(m)]},
where τji(n) is the delay with which node i received the value
at node j at time n. This is not surprising, because on the
algorithm’s time scale, in τ steps, each component would have
changed by an amount that is O(τ). This suggests favoring low
values of E[τji(n)]. Since this will be inversely proportional
to the frequency with which i polls j, this suggests sampling
with a different polling matrix

Q := [[q(i, j)]] with q(i, j) > 0⇐⇒ p(i, j) > 0,

and compensating for it by inserting the appropriate likelihood
ratio correction as in [2]. Thus we replace (2), (6) by

xi(n+ 1) = (1− a(n+ 1, i))xi(n)

+ a(n+ 1, i)

(
p(i, ξi(n))

q(i, ξi(n))

)
· xξi(n)(n),

1 ≤ i ≤ d, n ≥ 0, (9)

1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.1

0.2

0.3

0.4

0.5

M
a
x−

e
rr

o
r 

in
 x

 it
e
ra

te
s

Iteration number

Sampling under P
Sampling under Q

1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.1

0.2

0.3

0.4

0.5

M
a
x−

e
rr

o
r 

in
 z

 it
e
ra

te
s

Iteration number

Sampling under P
Sampling under Q

Fig. 4. Comparison of residual error under normal P sampling and under
importance sampling (Q) over time. Data is noiselessly received.

zi(n+ 1) = zi(n) +
1

n+ 1
(xi(n+ 1)− zi(n)) ,

n ≥ 0, (10)

where the stepsizes are judiciously chosen to compensate for
any differences in the relative rates of updates across vertices.
(We omit the details of this compensation, but refer the reader
to [4, Sec.9.3.6]). In view of (9), the mean error due to delay in
i receiving j’s value is weighted by q(i, j)×

(
p(i,j)
q(i,j)

)
= p(i, j).

The foregoing suggests choosing Q to minimize
∑
i

∑
j∈N (i)

p(i, j)

q(i, j)
, (11)

subject to the constraints
∑

j q(i, j) = 1 for every i and
q(i, j) ≥ 0 for every (i, j). It is easy to see that the optimal
Q is given by

q(i, j) =

√
p(i, j)∑

k

√
p(i, k)

.

We tried this scheme as well, but the improvement for mod-
erate sized problems was negligible, suggesting that the O(a)
bound on delay errors is pessimistic. See Figures 4 and 5 for
plots without and with noise, respectively, in the received data.
The simulation settings are the same as in Figures 1 and 2,
respectively.

B. A friend’s friend is also a friend: multihop

A further possibility to modulate the above scheme would
be to use multihop. Consider, for example, the possibility
of two hops. Let j ∈ V be a neighbor of i ∈ V and
k1, k2, · · · , km ∈ V neighbors of j that are not neighbors of



1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.1

0.2

0.3

0.4

0.5

M
a
x−

e
rr

o
r 

in
 x

 it
e
ra

te
s

Iteration number

Sampling under P
Sampling under Q

1 2 3 4 5 6 7 8 9 10 11 12

x 104

0

0.1

0.2

0.3

0.4

0.5

M
a
x−

e
rr

o
r 

in
 z

 it
e
ra

te
s

Iteration number

Sampling under P
Sampling under Q

Fig. 5. Comparison of residual error under normal P sampling and under
importance sampling (Q) over time. Data is received with noise.

i. Then each time i polls j, i may either pull the current
value at j, or pull the value at some k� that has been already
pulled and stored by j. Suppose the former is done with
probability p0(i, j) and the latter with probability p�(i, j).
Then we must have

∑m

�=0 p
�(i, j) = p(i, j). Note that p(i, j)

now is the probability with which i polls j, but it is no longer
the weight which it assigns to the values pulled from j. This
is tantamount to replacing the original P by a modified Q

with additional edges from i to the k�s with weights p�(i, j)
resp., and replacing the weight p(i, j) of edge (i, j) by p0(i, j).
There are, however, tradeoffs involved. For one, i is actually
sampling j’s value at a lower rate, thereby increasing the
associated mean delay. Note also that the delay associated with
i’s ‘virtual’ sampling of kl will be a combination of delays
due to its sampling of j and j’s sampling of kr. The benefit
however is that the network is better connected.

We also need to choose the new sampling probabilities so
as to retain the stationary distribution as η, since our focus
is on averaging with respect to η, not merely on obtaining
a consensus. Some constraints suggest themselves, e.g., if
p(i, j, k) is the fraction of times i polls j in order to pull
its stored value from k, then p(j, k) ≥ p(i, j, k) so as to avoid
pulling the same value often. The tradeoffs and optimal choice
of the parameters p�(i, j) are items for further study.

ACKNOWLEDGMENT

Research of V. S. Borkar was supported in part by a J. C.
Bose Fellowship and a grant “Distributed Computation for Op-
timization over Large Networks and High Dimensional Data
Analysis” from Department of Science and Technology, Gov-
ernment of India. R. Sundaresan was supported by the Indo-
US Science and Technology Forum Fellowship and by the US
National Science Foundation under grant CCF-1017430. This
author thanks the Coordinated Sciences Laboratory, University
of Illinois at Urbana-Champaign, for its hospitality during the
course of this work.

REFERENCES

[1] Abounadi, J.; Bertsekas, D. P. and Borkar, V. S.; “Learning algorithms
for Markov decision processes with average cost”, SIAM J. Control
Optim. 40(3), 681-698, 2001.

[2] Ahamed, T. P. I.; Borkar, V. S. and Juneja, S. K.; “Adaptive importance
sampling technique for Markov chains using stochastic approximation”,
Operations Research, vol. 54(3), pp. 489-504, 2006.

[3] Bertsekas, D. P. and Tsitsiklis, J. N.; Parallel and Distributed Compu-
tation: Numerical Methods, Prentice Hall, Englewood Cliffs, NJ, 1989.

[4] Borkar, V. S.; Stochastic Approximation: A Dynamical Systems View-
point, New Delhi: Hindustan Publ. Agency, and Cambridge, UK: Cam-
bridge Uni. Press, 2008.

[5] Borkar, V. S. and Makhijani, R., “Who is the fairest of them all?”, Proc.
50th Allerton Conf. on Communication, Control and Computing, Sep.
29 - Oct. 3, 2012, Monticello, Ill.

[6] Boyd, S.; Diaconis, P. and Xiao, L., “Fastest mixing Markov chains on
a graph”, SIAM Review, vol. 46(4), pp. 667-689, 2004.

[7] DeGroot, M.; “Reaching a consensus”, J. American Stat. Assoc., vol.
69, pp. 118-121, 1974.

[8] Huang, M.; “Stochastic approximation for consensus: a new approach
via ergodic backward products”, IEEE Trans. on Automatic Control
57(12), 2994-3008, 2012.

[9] Puterman, M. I.; Markov Decision Processes, Wiley-Interscience, New
York, 2005.

[10] Shah, D.; “Gossip algorithms”, Foundations and Trends in Networking,
Vol. 3(1), pp. 1-125, 2008.


