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Abstract—This paper proposes a systematic approach to ex-
plore the search space of control parameters on an existing
water network in a locality within Mysore, India, to see if
continuous water supply can be provided to meet a nominal
diurnal demand pattern. The control parameters are the initial
states of the reservoirs at some reference hour and hourly
maximum flow rates across control valves. The system state
should return to its initial state after twenty four hours to follow
a diurnal rhythm without overflow or underflow of reservoirs.
The number of configurational changes should also be small.
The paper proposes an optimisation framework that relaxes the
constraints via convex penalty functions, performs approximate
gradient descent to minimise the net penalty, and thus identifies
a suitable configuration. The proposed framework is ideal for
integration into a cyber physical system that can actuate the
controls based on real-time demand and flow information.

I. INTRODUCTION

The Karnataka Urban Water Supply and Drainage Board

(henceforth Board) in the state of Karnataka, India, approached

us to seek suggestions on how to convert the Devanoor

Command Area (henceforth Devanoor) of Mysore, Karnataka,

India, into a region where uninterrupted water supply1 could

be provided with minimal additional infrastructure. Devanoor

spans about 2km x 2km with a population of about 160,000.

Water is pumped into a mass distribution tank from which

it flows via gravity to ten other overhead service reservoirs

located at different parts of Devanoor (see Fig. 1). Water

is then distributed from these reservoirs to the residential

consumers, once again via gravity. The terrain is undulated.

A significant fraction of the population (about 1/4) resides in

a sublocality called Rajiv Nagar I Phase2 (henceforth Rajiv

Nagar I) that is on higher ground. Moreover the reservoirs are

of insufficient capacity to meet demand during peak hours. At

least five of the reservoirs are undersized. As a consequence,

the Board and their execution partner (Jamshedpur Utilities

and Services Company (JUSCO)) have found it difficult to

meet, simultaneously, peak demand in this high population

sublocality and yet equitable distribution across all of De-

vanoor. Ad hoc attempts to stock up the Rajiv Nagar I

1This was part of an initiative to provide continuous water supply [1].
2Rajiv Nagar I is one of the two highly populated sublocatities in Devanoor.

reservoir, in order to meet the peak hour demand, had led

to disruption of water supply in the downstream localities.

This paper presents our systematic approach to explore the

search space of control parameters in an automated fashion in

order to decide if it is at all possible to provide uninterrupted

water supply to meet a nominal diurnal demand pattern [2] in

Devanoor. The framework we provide is ideal for integration

into a cyber physical system that can actuate the network based

on real-time demand and flow information.

The Devanoor water network has several flow control valves

(FCV) that can control the maximum flow rates across the

pipes. We take the control parameters to be the hourly maxi-

mum flow rates through these valves and the initial volumes

in each reservoir. Our contributions are the following.

1) We demonstrate that there are settings that can achieve

nearly continuous water supply in Devanoor to support a

nominal diurnal demand pattern.

2) We show this is achievable with changes in settings

restricted to a small subset valves, keeping the other valves

fixed at constant maximum flow rates. Moreover, the number

of changes in settings is small.

3) We show that the system is brought back to a state close

its initial setting, within a desired target error, after twenty

four hours. This readies the system for a diurnal rhythm.

A few remarks about our approach are in order. First, we

take a somewhat naı̈ve computational approach that sits on top

of a hydraulic modeling tool (EPANET [3]). Our approach

uses simple mass balance ideas for estimating inflows and

outflows to and from the reservoirs, uses penalty functions

for either overflow or underflow in the reservoirs, and em-

ploys gradient descent to explore the search space of control

parameters. The advantage of our naı̈ve approach is that it is

scalable and generalisable to wider area networks. We next

attempt to keep the number of changes to the valve settings

to a low number by a suitable choice of penalty functions

that encourages sparsity in the number of changes. We then

enforce a twenty-four hour periodicity by introducing another

penalty function for a deviation from a return to the initial

condition after twenty four hours.

We now discuss some related works. A dynamic inversion

based controller approach for control valve throttling to ensure

target flows to all reservoirs in different zones of an undulat-978-1-5090-1161-2/16/$31.00 c©2016 IEEE
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Fig. 2. Diurnal demand pattern

ing terrain was proposed in [4]. Another optimization based

control to achieve supply management goals is discussed in

[5]. This is applied to water transfer operations to the city

of Sintra (Portugal) using a supervisory control system. An

optimal valve control algorithm for minimization of leakage

rates was presented in [6] and its performance was studied on

an example network. This works differs from the above in that

the search for a good configuration is fully automated.
The rest of this paper is organised as follows. In section

II, we provide a very brief description of the Devanoor water

network and highlight the key issues related to continuous

water supply. In section IV, we describe the components

of our method. In section III, we discuss our computational

methodology in detail. In section V, we conclude with a short

discussion of the outcomes of our research.

II. KEY ISSUES IN THE DEVANOOR AREA

Devanoor is divided into ten metered areas, each with a

reservoir. See Fig. 1. Water from a treatment plant is pumped

into a mass distribution tank ((MDT) either directly or via an

intermediate mass balancing reservoir). This water then flows

via gravity to each of the ten reservoirs of the metered areas.
The goal is to meet consumption of 180 litres (ℓ) per capita

per day, including losses, as suggested by [2]. The diurnal

demand pattern3 [2] is given in Fig. 2. Taking the population in

the various metered areas and the daily per capita consumption

into account, we arrive at the average demand rate per second

and report it in column 3 of Table I. Column 4 of that

table provides capacities of the corresponding reservoirs. The

supply from the MDT, by itself, is not enough to serve all ten

metered areas during peak hours since the feeder mains are of

inadequate sizes. Further, it can be gleaned from Table I that

the reservoirs do not have enough capacity, by themselves, to

meet demand during the peak hours4. Finally, as mentioned

3For simplicity, we take a standard demand pattern although in reality there
is variation due to demographics, seasonality, emergency settings, etc. The
area under the curve in Fig. 2 is 1 unit, which refers to (180/24)ℓ per capita
per hour = 7.5ℓ per capita per hour.

4Consider Rajiv Nagar I and N. R. Mohalla II. The demand rate during
06:00 - 09:00 hrs is more than twice the daily average rate: (79.8 × 2)ℓps
in Rajiv Nagar I and (14.4 × 2)ℓps in N. R. Mohalla II. The total demands
works out to be 17.2 and 3.1 lakh litres (1 lakh =100,000), respectively, both
of which exceed the respective capacities of 15.0 and 2.5 lakh litres.

TABLE I
DEMAND, IN LITRES PER SECOND, AND CAPACITY, IN UNITS OF 100,000

LITRES, IN EACH METERED AREA.

S.No. Metered area Demand Capacity
(ℓps) (100,000ℓ)

1 Rajiv Nagar I 79.8 15.0
2 Tippu Park 37.4 10.0
3 N. R. Mohalla I 57.0 10.0
4 N. R. Mohalla II 14.4 2.5
5 Veeranagere 28.1 5.0
6 Rajendra Nagar I 39.6 15.0
7 Rajendra Nagar II 34.0 10.0
8 Rajiv Nagar II 19.6 10.0
9 Kesare 14.4 5.0

10 Bademakan 9.9 5.0

in the introduction, the terrain is undulated, but the supply

lines are arranged in a cascade. Supply to higher ground

reservoirs (for example, Rajiv Nagar I) affects the supply to

the downstream sublocaties that are part of the cascade (Rajiv

Nagar I, Tippu Park, N. R. Mohalla I and II, and Veeranagere).

A combination of (1) supply via the feeder lines, and (2)

storage in the reservoirs is therefore needed to meet peak

demand and provide continuous water supply, if at all feasible.

There are additional complexities. The metered areas are

not completely isolated. The feeder to the MDT also feeds a

neighbouring area. So continuous water supply to Devanoor

could affect supply to neighbouring areas. These issues are

beyond the scope of this paper.

III. MODELING AND METHODOLOGY

Let time be slotted into hours for convenience. We will use

t to denote the hours; t = 0 will denote a reference time, say

midnight, in which case t = T := 24 refers to the following

midnight. Our optimisation will run for one period which is

a duration of T stages. T is the specified periodicity of the

demand pattern. Let there be a total of R reservoirs including

the main distribution tank. Reservoir r has capacity cr. Each

reservoir has its own set of parameters (for example staging

height) all of which are important for calculating inflows and

outflows based on hydraulic models. See the subsection III-A.

Let vr(t) denote the volume of water in the reservoir r at

time t. The following are constraints for the time evolution of

the state defined by (vr(t), r = 1, . . . , R).

C1: No reservoir goes dry: vr(t) ≥ 0 for each r and t.
C2: No reservoir overflows: vr(t) ≤ cr for each r and t.
C3: Each reservoir returns to its initial state after T stages:

vr(T ) = vr(0) for each r.

We have the following design variables at our disposal.

• The initial volumes in each reservoir

v(0) := (vr(0), r = 1, . . . , R).

We arbitrarily choose midnight as our reference zero time.

• The maximum flow rate at each valve and at each hour

a := (aj(t), j = 1, . . . , J, t = 1, . . . , T ),

where we have assumed a total of J valves.



Fig. 1. The Devanoor water network with ten metered areas, each with its reservoir. FCV stands for flow control valve.

We consistently use r to index a reservoir, j to index a valve,

and t to index time. There are R reservoirs, J valves, and T
stages in a period. We use a(t) to denote the maximum flow

rates at each valve, but at the indicated time t.
A configuration x is a particular setting of all the control

variables, that is, the initial states and the maximum flow rate

on all valves across the entire duration of a period. In symbols,

x = (v(0), a).
When we fix a configuration and follow the time evolution

of the states, a certain trajectory ensues. This trajectory is,

naturally, a function of the configuration. We make the fol-

lowing simplifying assumptions. Our cross validation, about

which we remark in section V, supports these assumptions.

A1: The transience in flows due to the hourly changes in the

maximum flow rate settings on the valves has minimal

impact on the flow rates. The new flow rates are assumed

to be instantaneously attained.

A2: The flow rates remain constant during the course of each

hour. In reality of course reservoir water levels change

during the course of the hour and may affect flow rates.

We assume this change is negligible.

A3: The inflow rate into the mass distribution tank is constant

and sufficient to meet Devanoor’s daily average demand.

The water balance equation at time t is then

vr(t+ 1) = vr(t) + qr(t)− ur(t), r = 1, . . . , R, (1)

where qr(t) is the inflow into reservoir r and ur(t) is the usage

from reservoir r during the tth hour. The quantity ur(t) comes

from the diurnal demand pattern of Fig. 2. We next discuss

the all important modeling of the inflows qr(t).

A. Modeling of the flows

The flow rates at any instant of time during the course of

an hour, and therefore qr(t) for a particular t, are complex

functions of the valve settings for that t, the water levels in

the reservoirs during that period, the water network itself,

its myriad parameters which include pipe dimensions, pipe

material, nature of junctions, etc. A serious modeling of this

will take us deep into the physics of hydraulic modeling, which

we shall “outsource”. We shall use a software toolkit called

EPANET5 as an oracle that shall tell us the physically realised

flow rates for any configuration. Indeed, we call EPANET on

an hourly basis with the settings and initial state for that hour

as input. These settings are derived from the configuration.

From the toolkit’s output, we compute the flow rates into each

reservoir, qr(t), r = 1, . . . , R, during that hour. Thus one may

write qr(t) = Φr(v(t), a(t)) for suitable Φr, r = 1, . . . , R.

One then views (1) as the driving equation for the system

dynamics with the control variables included in qr(t). We thus

have the state evolution equation:

vr(t+ 1) = vr(t) + Φr(v(t), a(t)) − ur(t),

r = 1, . . . , R, t = 0, . . . , T − 1. (2)

We next describe the use of this simplified oracle-based model.

B. An overview of the computational methodology

We are now in a position to describe our methodology.

Instead of meeting the indicated constraints C1 - C3 at all

times, we relax them and allow for deviations with a cost. Let

us first discuss the relaxations.
C1: When constraint C1 is violated, the reservoir has no

water to meet the demand and the flows may be different.

Our relaxation allows us to assume that the reservoir con-

tinues to meet demand, as if there is a secondary source of

replenishment for this reservoir, at a cost.
C2: When constraint C2 is violated, the reservoir overflows.

Our relaxation allows us to assume that the reservoir does not

lose the overflowed water, at a cost.
C3: When constraint C3 is violated, the system ends up

in a state different from the initial value, thereby affecting the

5EPANET is a public-domain, water distribution system modeling software
toolkit developed by the United States Environmental Protection Agency’s
(EPA) Water Supply and Water Resources Division.



diurnal pattern. Our relaxation permits this at a cost. In reality,

when this constraint is violated, an external agency should add

or remove water to bring the state back to its initial state.

Additionally, we impose a new cost for frequent changes

to the maximum flow rate settings on the valves. The total

cost is then a function of the configuration. We next choose

a configuration that minimises the overall cost. This tries to

keep the violations to C1 - C2 and the number of changes to

the settings to a minimum. For the minimising configuration,

we then evaluate the trajectory and recognise that it meets the

hard constraints C1 and C2, and gets us close to meeting C3.

IV. COMPONENTS OF OUR METHOD

We now describe the components of our method and the

many design choices motivated by common sense.

A. Choice of cost functions

Given a particular configuration x = (v(0), a) which

specifies the initial state of the reservoirs and the valve controls

on each valve and each time period, given a particular diurnal

demand pattern u = (ur(t), r = 1, . . . , R, t = 1, . . . , T ),
the state evolution is given by (2). For this configuration, the

following incremental costs are incurred.

(a) The cost of violating the constraint C1 and C2 at time

period t on reservoir r is f12(vr(t); cr), where we take

f12(ν; c) = w12(c) ·

∣

∣

∣

∣

ν

c
−

1

2

∣

∣

∣

∣

α

, α ≥ 1;

ν is a candidate volume and c is a candidate reservoir capacity.

This is a convex function of ν (for each fixed c) that penalises

any deviation of the reservoir state away from half its capacity.

The weight w12(c) provides a weighting based on the capacity

of the reservoir. There are of course many other penalty

functions. One could also have a separate weight function for

each reservoir, depending on the criticality of the reservoir.

But there is enough flexibility made available by the choice

of α that the above appears to be sufficient for our purposes.

(b) The cost of violating C3, of not returning to the initial

state at the end of a period, on reservoir r is given by

f3(vr(T ), vr(0); cr), where we take

f3(ν
′, ν; c) = w3(c) ·

∣

∣

∣

∣

ν′ − ν

c

∣

∣

∣

∣

β

, β ≥ 1;

ν is a candidate initial volume, ν′ is a candidate final volume,

and c is a candidate reservoir capacity. The weighting function

w3(c) provides a capacity dependent weight. This (jointly con-

vex in (ν, ν′) for fixed c) penalty function could also depend

on the reservoir with perhaps critical reservoirs having a higher

weight. For Devanoor, we do not require this generality. The

weighting function w3(c) also tells us how this cost compares

with the cost of violating the constraints C1 and C2.

(c) Let amax,j be the maximum flow rate across valve j.

The cost of changing this setting on a particular valve j at

time t+ 1 is f4(aj(t+ 1), aj(t); amax,j), where we take

f4(a
′, a; amax) = w4(amax) ·

∣

∣

∣

∣

a′ − a

amax

∣

∣

∣

∣

,

where, on a candidate valve, a is a maximum flow rate

setting in some slot, a′ is the changed setting in the following

slot, and amax is the maximum possible flow rate setting.

Again, w4(amax) is some weighting function that depends

on maximum flow rate amax across the valve. This penalty

function has a sharp transition at a′ = a that encourages the

algorithm to choose a′ = a as much as possible, yet keeping

the penalty function convex. This is reminiscent of ‘lasso’

regression [7] in machine learning. Sharper penalty functions

are possible, but at the expense of convexity.

The overall cost of a configuration is taken to be

F (x) =

T−1
∑

t=0

R
∑

r=1

f12(vr(t); cr) +

R
∑

r=1

f3(vr(T ), vr(0); cr)

+

T−1
∑

t=0

J
∑

j=1

f4(aj(t+ 1), aj(t); amax,j),

where vr(t) are obtained from the state evolution (2). In the

last term, aj(T ) is defined to be aj(0).
While each of the component functions above are convex

in their arguments (for fixed c or amax as appropriate), the

overall function may not be a convex function of the config-

uration. This is because of the possible, in greater generality,

nonconvex dependence of Φr on the configuration. Our choice

of convex penalty functions is to ensure that any nonconvexity,

if it arises, is due to Φr. See also the discussion in Section V.

B. The search for a good configuration

We explore the search space via a simple gradient descent

method. We first estimate a gradient and choose its negative

as the direction of a move. We then perform a line search to

identify the best step size. Finally, we make a noisy update,

roughly as per the chosen direction and step size. These steps

are carried out iteratively. We shall use n to denote the iteration

index. Asympotically, the update matches the suggested step

size and direction. Details follow.

Step 1: Estimation of the gradient. The configuration is

made of variables for initial reservoir states (R variables) and

variables for the maximum flow rate on each valve in each

stage of a period (JT variables). Let K = R+JT be the total

number of variables which we index by k. The kth component

of the gradient is estimated as

(∇F (x))k =
F (. . . , xk + ε, . . . )− F (. . . , xk − ε, . . . )

2ε
,

where ε is a small constant.

Consider the computation of F (. . . , xk + ε, . . . ). This is

the cost of a new configuration (. . . , xk + ε, . . . ) that is

different from x in only one variable. We calculate the new

state trajectory, via several calls to the EPANET toolkit for

hourly flow rate computation, and then compute the new cost

function associated with this changed configuration. A similar

computation is done for F (. . . , xk − ε, . . . ). The gradient

is then estimated as per the formula. Some computational

savings can be obtained by reducing the number of calls to

the EPANET toolkit if ε is small and we are willing to ignore



TABLE II
CONSTANT FLOW RATE SETTINGS ON VALVES.

Valves/Reservoirs Max-flow rate (ℓps) Demand (ℓps)
Tippu Park 37.53 37.4

N. R. Mohalla II 14.42 14.4
Veeranagere 30.25 28.1

Rajendra Nagar I 39.46 39.6
Rajendra Nagar II 34.02 34.0

Rajiv Nagar II 19.50 19.6
Kesare 14.40 14.4

the effect of small changes to the reservoir water levels, but

we will not elaborate these ideas here.

Step 2: Line search. We now perform an inexact line search

to determine the length of the move along the direction

opposite to the gradient d := ∇F (x). An exact line search

would choose a multiplier λ⋆ such that

λ⋆ = argmin
λ>0

F (x− λd).

An inexact line search replaces this with an iterative procedure:

start with an aggressive value, say 1; then decrease in a

geometric sequence until F (x − λd) < F (x) − cλ|d|, where

c is a design constant. Let L be the number of decreases in

this geometric sequence. Call the finally chosen λ of this step

2 as λn, where n is the iteration index.

Step 3: Noisy gradient descent. To avoid traps at local

minima, we perturb the move with a random Gaussian noise

vector. Each component of this noise has variance βn =
1/(n + 1)γ where 0.5 < γ ≤ 1. This choice ensures that
∑

n βn = ∞ and
∑

n β
2
n < ∞. The former ensures sufficient

exploration capability and the latter ensures that the added

noise is of finite variance and can be averaged out. This choice

is typical in stochastic approximation algorithms [8].

With x(0) as the initial iterate, the sequence of iterates is

x
(n+1) = x

(n) − λn∇F (x(n)) + βnzn, n ≥ 0

where (zn, n ≥ 0), with each zn ∈ R
K , is independent and

identically distributed (iid) across n. The components of zn

themselves are iid with the standard normal distribution.

TABLE III
MAXIMUM FLOW RATE SETTINGS ON VALVES.

Time
Maximum flow rate settings (ℓps)

Rajiv Nagar I N. R. Mohalla I Bademakan

00:00 49.89 57.05 11.54
01:00 - 9.02 -
02:00 - 57.05 -
03:00 79.86 - -
06:00 109.30 - -
07:00 - 89.18 80.64
08:00 - - 11.54
09:00 - 57.02 -
10:00 79.86 - -

C. Implementation

Our implementation of the above algorithm is in the C

programming language. The framework makes frequent calls

to the EPANET toolkit for the hydraulic modeling6. While

our description of the algorithm assumed synchronous, in

particular hourly, demands and maximum flow rate settings

on valves, the actual implementation handles asynchronous

arrival of demand information and asynchronous changes to

the valve settings. This is to enable interfacing with a real-

time system. The asynchronous handling of tasks (changes in

valve settings, changes in demands, etc.) is executed via a job

scheduler that uses a time-based priority-queue data structure.

V. RESULTS AND DISCUSSION

We chose the weight functions with w12(c) = c, w3(c) =
24c. This could be justified as follows. Larger the capacity of

the tank, the greater the weight. Also, the factor 24 ensures that

the penalty for not returning to the initial state is treated on par

with the penalty for the reservoirs overflowing or underflowing

during the course of the day. We chose α = β = 2 to fix

the cost functions f12 and f3. We further chose the weight

w4(aj,max) = 500, a constant. We arrived at these after several

trials and a large weight for w4 appeared essential to realise

a sparse solution, but a systematic exploration of the space of

these parameters remains to be done.

The resulting solution configuration under the chosen pa-

rameters is summarised in Tables II-III. Table II indicates

the maximum flow rate settings on valves (leading to the

indicated reservoirs) that could do with just one constant

setting. As pointed out earlier, some reservoirs do not have

enough capacity to meet the sustained demand during peak

hours. Enough inflow must be maintained in the pipes leading

to these reservoirs, and to enable this, the maximum flow

rates must be carefully modulated across time on some valves.

The valves and the corresponding reservoirs that need such a

modulation are indicated in Table III. As can be seen from the

table, only three valves need to be controlled across time. Two

of the valves need four changes7. The valve controlling the

flow into the Bademakan reservoir requires only two changes.

To cross-validate our solution, we use the EPANET multi-

species extension toolkit which provides an extended twenty

four hour simulation of the proposed configuration. Our pro-

posed configuration in Tables II-III provides a near-feasible

solution. The top subplot in Fig. 3 shows the fractional

occupancy of the tanks (with reference to capacity). This

roughly follows the diurnal usage pattern, but with a lead.

None of the tanks overflow for the proposed configuration.

None goes below 20% occupancy. Thus constraints C1 and C2

are met at all times of the day on all reservoirs. All reservoirs

return close to their initial states, with the maximum difference

normalised by the reservoir capacity being ±2%.

We can at best control the maximum flow rate through a

valve. The actual flow rate may be lower than the configured

62KT + L calls/iteration without the optimisations indicated in Step 1.
7Treat 57.05ℓps for the post-midnight hour at the N. R. Mohalla II valve

as 57.02ℓps, the setting prior to the midnight hour.
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Fig. 3. The top figure indicates the water levels in the reservoirs, including the mass distribution tank, over time. The bottom figure provides the flow rates
in the valves over time. There are 11 valves; ten of these lead to reservoirs, and the eleventh is FCV 3 given in Fig. 1.

maximum8. It may also fluctuate during the period. The bottom

subplot in Fig. 3 indicates the realised flow rates at a ten-

minute time resolution. Some pipes have zero flow rate for

certain periods9. But our framework could be extended to

include an additional cost function to reduce such occurrences.

We close this paper with some additional remarks.

1. The main advantage of our methodology is that we obtain

a configuration using a fully automated procedure. Our sim-

ulation ran for 134,000 iterations on K = 275 variables and

took four hours with no optimisations on a standard desktop

machine10. With optimisations and distributed computation,

we believe our method can be scaled to the level of a city.

2. One way to implement our proposal is via automated

actuation of the FCVs. Our current proposal is of an open loop

nature. As a logical next step, we plan to forecast demand [9]

and close the loop to respond online to real demands.

3. Our method searched the space of “maximum flow

rates” and used the EPANET tool as an oracle that identified

8The maximum flow rate in all but two of the valves in Table II is just
over the average demand. Since the reservoirs return close to the original
state, the realised flow rates must be lower. Note that Rajendra Nagar I and
Rajiv Nagar II have smaller configured flow rates than the daily average. The
corresponding reservoirs will suffer a small deficit at the end of each period.
As another example of realised flow rates being lower than the configured
maximum, note that the searched maximum setting for the Bademakan valve
in Table III is 80.64ℓps between 07:00 - 08:00 hrs. But the realised flow rate is
approximately 40ℓps. Interestingly, the permissible limit, taking the diameter
and the maximum velocity into account, is about 44ℓps. The maximum setting
is well above this permissible maximum because our implementation ignored
the per valve maximum flow rate setting. This can be easily fixed.

9Bademakan encounters zero flow rate twice, during 05:00 - 07:00 hrs and
during 08:00 - 11:00 hrs. Rajiv Nagar II encounters zero flow rate during
07:00 - 08:00 hrs to help fill the Bademakan reservoir and prepare for the
impending zero inflow into that reservoir from 08:00 - 11:00 hrs.

10Intel Core i5-4440 CPU at 3.10GHz × 4, 7.5 GB RAM, base system
openSUSE 13.2 (Harlequin) (x86 64) 64 bit.

the water network behaviour for a particular configuration.

One could potentially explore the space of flow rates across

valves. This is a convex optimisation problem with perhaps

faster convergence. However, we may arrive at configurations,

desired flow rates, that are physically infeasible. Instead, the

search in the space of “maximum flow rate” controls and the

use of EPANET ensured that the flows were always feasible.
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