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In this paper, we extend the notion of diagonally strictly concave functions and use it to provide a

sufficient condition for uniqueness of Nash equilibrium in some concave games. We then provide

an alternative proof of the existence and uniqueness of Nash equilibrium for a network resource

allocation game arising from the so-called Kelly mechanism by verifying the new sufficient con-

dition. We then establish that the equilibrium resulting from the differential pricing in the Kelly

mechanism is related to a normalised Nash equilibrium of a game with coupled strategy space.
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1. INTRODUCTION

Consider a game played byN players where each player has to choose a portion of a pie, or some

divisible good. Playeri chooses actionsai ∈ [0, 1]. The actions are constrained to satisfy

N∑

i=1

ai ≤ 1. (1)
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Playeri gets utilityUi(ai) for his actionai, and acts to maximise his utility, subject to the con-

straint in (1). EachUi is concave, strictly increasing, and continuously differentiable overR+.

The above abstract game is widely applicable. The divisible good could stand for

(a) amount of research grant money withai being the portion of the grant money claimed by the

ith participant;

(b) a communication resource like bandwidth withai being fraction of time playeri uses the chan-

nel;

(c) net interferencetemperature[1] with ai standing for the fraction playeri wants as his in order

to ensure that he transmits at a desired high enough rate.

The utility function is typically concave and increasing in the action variable. The key feature of

this simultaneous action game is that the actions are coupled by the constraint that they should lie in

the set given by (1). Writea = (ai, 1 ≤ i ≤ N) or more simplya = (ai) for the action profile.

Ideally, a social planner who works in the interest of greater social good may wish to pick an

allocation vector

a∗ ∈ arg max

{
N∑

i=1

Ui(ai) | a satisfies(1)

}
. (2)

However, players can be strategic and can act to maximise their individual utilities. A Nash

equilibrium (NE) for the above game is an action profile satisfying the constraint (1) and such that no

player can strictly increase his utility by means of a unilateral deviation within the constraint set. The

set of Nash equilibria for the action-constrained game is (quite straightforwardly) found to be the set

of all action profilesa such that (1) is satisfied with equality.

When the system is decentralised, the social planner may not know the players’ utilities or the

worth of a portion of the resource for each player. In this case, Kelly [2] proposed a decentralised

mechanism in which each player submits a ‘bid’ orwillingness-to-pay. Let bi ≥ 0 denote this bid

submitted by playeri. The social planner then decides the unit priceµ and assigns to each player

a portion of the resource that is in proportion to his bid and inversely proportional to the unit price:

ai = bi/µ. The social planner then collects a payment that equals the bid. Kelly [2] showed that

when each player chooses a bid that maximises his net utility given by

Ui

(
bi

µ

)
− bi (3)

thereexists a good choice of the unit priceµ∗ that will enable playeri to chooseb∗i = µ∗a∗i , so that

the share of playeri is a∗i , theith component of the system optimal vector in (2). In this mechanism,
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the social planner does notprice differentiatethe players, and the players are assumed to be price

takers, i.e., players do not anticipate the effect of their bids on the unit priceµ.

In a series of works, Hajek and Gopalakrishnan [3], Johariet al. [4, 5, 6] considered an alternative

model where the players are price anticipating rather than price taking, and compete to maximise

their utility. The social planner then implements a mechanism (henceforthKelly mechanism) that

apportions the pie in the fraction of the bids, i.e., withb = (bi, 1 ≤ i ≤ N), the ‘proportional’

allocation is as follows:

ai(b) =
bi∑N

j=1 bj

.

This is then a new simultaneous action game where each player chooses a bidbi. The net utility

of playeri is

Vi(b) := Ui(ai(b))− bi = Ui

(
bi∑N

j=1 bj

)
− bi. (4)

Underthe assumption that eachUi is concave, strictly increasing, and continuously differentiable

overR+, and the right directional derivative at0 is finite, the resulting game is known to have a unique

NE. Further, the price anticipating nature of the players may result in asuboptimal Nash equilibrium,

i.e.,
∑

i Ui(·) at the NE can be lower than the value at the optimum profile of (2). Indeed, Johari and

Tsitsiklis [4] showed that the proportional allocation mechanism leads to an efficiency loss of upto

25% of the social optimum value. To close this efficiency gap, aprice differentiationscheme was

proposed in [7]. Price differentiation is introduced by replacing the negative term in (4) bybi/ri,

where1/ri is the price differentiation factor for playeri. The resulting mechanism will be called the

Kelly mechanism with price differentiation. The price differentiation results in a NE which is related

to a special type of equilibrium callednormalised Nash equilibriumas we show later in the paper.

Let us return to the Kelly mechanism defined by utilities (4). Notice that the bids (or actions) in

the decentralised mechanism are no longer coupled, but the utilities of the players are coupled. This

is reminiscent of the special class of games with coupled utilities and decoupled actions sets dealt

with in [8].

In another class of resource allocation problems calledrouting gamesplayers share a communi-

cation network to ship their demand (or traffic) from a source to a destination. The communication

network consists of several interconnected links which are capacity constrained, and cost on each link

depends on the total traffic on that link. As higher congestion implies higher delay or higher loss rate,

the players prefer to use a link that is less congested. The action space of each player is constrained in

these games as sum of flows across the links must equal its total demand. In [9], the authors studied

the amount of traffic sent by each player on each link at equilibrium assuming that the players aim to
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minimise their total cost. They establish existence and uniqueness of NE in routing games under the

assumption that the cost function of each player is convex in its flow and satisfies certain monotonic-

ity properties. Noting that this game can be studied as a game where each player aims to maximise

the negative of its cost function, this is again reminiscent of the special class of games with coupled

utilities and decoupled actions sets dealt with in Rosen’s work [8].

In [8], Rosen provided a general framework to study games where utility of each player is con-

cave and the action (strategy) space is convex and compact. His framework includes competitions

where not only utilities of the players are coupled, but also the action space of the players can be

coupled, hence covering a rich class of concave games. When the action space of the players are

coupled, a player is restricted to take only certain actions (a strict subset of his action space), given

the action profile of his opponents. To study the equilibrium behaviour of games in such generality,

Rosen introduced the concept of normalised Nash equilibrium (NNE). He established the existence

of NNE in these games, and further provided a sufficient condition calleddiagonal strict concavity

for uniqueness of NNE. In Rosen’s setting, NNE is same as the NE when the utilities of players are

coupled but the strategy spaces are independent of each other, i.e., each player can take any action

independent of his opponents. The problems studied by Hajek and Gopalakrishnan [3] and Johariet

al. [4] fall within the setting considered by Rosen in [8].

Our work was motivated by the following question. Could one apply Rosen’s result, with a

suitable modification to handle noncompactness of the action spaces, and prove the uniqueness of the

NE obtained by Hajek and Gopalakrishnan [3]? Could one provide a unified approach to establish

uniqueness of NE in network games, in particular, resource allocation and routing games?

Study of uniqueness of NE is important in network games. Besides its theoretical interest, unique-

ness of NE is of obvious importance in predicting network behaviour in equilibrium. Uniqueness of

NE is also of particular importance for network management, where regulating player behaviour in

a single equilibrium (using pricing, for example) is usually much easier than for several equilibria

simultaneously. For a survey on network games with unique NE see [10].

Though unique NE in a game is favourable, in many games the NE may not be unique. Indeed,

there are games that possess infinitely many NE points; see [11]. This difficulty is overcome by

requiring that payoff functions satisfy some properties. In [12], it is shown that if the game admits

a potential function, then the Nash equilbria are given by the local optima of the potential function.

Naturally, if the potential function has a unique optimum, it corresponds to the unique NE of the

game. Another requirement that ensures uniqueness of NE is thedominant diagonal propertyin

supermodular games [13]. Yet another test for uniqueness of NE in a game where action space of

the players is bounded and continuous is to verify that the best response of each players is astandard
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function (see [14] and [15, Th. 2]). In this paper, we provide another sufficient condition for the

existence of unique NE in concave games.

Our contributions are as follows:

• We provide a generalisation ofdiagonal strict concavity(DSC) property, and show that when

it is satisfied, uniqueness of NE is guaranteed in concave games.

• We provide an example network resource allocation game where the proposed sufficient condi-

tion holds, but the DSC property is difficult to verify.

• We show that the NE in the Kelly mechanism with differential pricing is related to the NNE of

another game with coupled action space.

• We provide a unified approach to establishing uniqueness of NE in resource allocation games

using the Rosen’s framework of concave games.

The paper is organised as follows. In Section 2, we briefly introduceN−person concave games

studied by Rosen [8] and discuss the DSC property. In Section 3, we motivate the need to extend

the definition of the DSC property to establish uniqueness of NE by providing examples where DSC

property is difficult to verify. In Section 4, we generalise the Rosen’s work by providing a new suffi-

cient condition (based on DSC) to establish uniqueness of NE. In Section 5, we show its application

to the study of resource allocation problems. In Section 6, we make the connection between the Nash

equilibrium in the Kelly mechanism having differential pricing with the normalised Nash equilibrium

of another game with related but uncoupled utility functions and a coupled action set. We end the

paper with a concise summary and a brief discussion of future work in Section 7.

2. ROSEN’ S UNIQUENESSTHEOREM

In this section, we describe Rosen’s result on the sufficiency of diagonal strict concavity for unique-

ness of NE in a game with vector strategies. We first discuss the game where only the utilities are

coupled and then discuss the case where the strategy spaces of the players are also coupled. We first

set up some notation and state the assumptions.

Consider the followingN -person concave game. We describe the constraint set in the next para-

graph and the utility functions in the following paragraph.

Let Ai = {bi ∈ Rmi , hik(bi) ≥ 0, k = 1, 2, · · · , Ki} denote bounded action set of playeri,

whereRmi denotes the Euclidian plane of dimensionmi, and fork = 1, 2, · · · ,Ki, hik : Rmi → R
is a concave and continuously differentiable function onRmi . Write, as before,b := (bi) for the
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action profile, whereb ∈ A = S :=
∏N

i=1 Ai ⊂ Rm with m =
∑N

i=1 mi. In this case, the action

spaceA is the rectangleS, and we say action set of players areorthogonal. The game is said to be

decoupled in the action set. We denote thejth component of the actionbi asbij . More generally, we

will also consider acoupled constraint setA = {b ∈ Rm, hj(b) ≥ 0 for j = 1, . . . , K} whereK

is a natural number andhj , j = 1, . . . , K are concave and continuously differentiable functions on

Rm. Whether the action set is orthogonal or coupled, we will assume that there exists ab ∈ A that

is strictly interior to every nonlinear constraint. This is a sufficient condition for the Kuhn-Tucker

constraint qualification.

Consider a family ofN coupled utility functions, where theith utility function isVi : A → R.

Vi(b) is assumed to be continuous inb and concave and continuously differentiable inbi for a given

b−i = (b1, b2, · · · , bi−1, bi+1, · · · , bN ). Write V := (Vi) for the family of utility functions.

For any scalar functionα(b) we denote the gradient with respect tobi as∇iα(b). Define a

mappingσ : Rm × RN
+ → R, whereR+ denotes the set of positive real numbers, as the weighted

sum of functionsV as follows:

σ(b, r) =
N∑

i=1

riVi(b), ri ≥ 0 ∀ i. (5)

Thepseudogradientof σ(b, r) for any given nonnegativer is defined as

g(b, r) =




r1∇1V1(b)

r2∇2V2(b)
...

rN∇NVN (b)




. (6)

Let G(b, r) denote the Jacobian with respect tob of g(b, r). Note thatG(b, r) is a matrix of

dimensionm×m. We use the notationM t to denote transpose of matrixM . For a vectorr, we say

r ≥ 0, respectivelyr > 0, if each component is nonnegative, respectively strictly positive.

Definition 1 (Rosen [8] (p. 524)) — The functionσ(·, r) is calleddiagonally strictly concave

(DSC) for a givenr ≥ 0 if for every distinct pairb0, b1 ∈ A we have

(
b1 − b0

)t (
g(b1, r)− g(b0, r)

)
< 0. (7)

When the players are interested inminimisingtheir respective convexcost functions, the corre-

spondingσ(·, r) is diagonally strictly convexif (7) holds with the opposite inequality.
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A sufficient condition for the familyV to be diagonally strictly concave (convex) for a given

r ≥ 0 is that the symmetric matrix

[G(b, r) + Gt(b, r)] (8)

is negative (positive) definite over the domainA [8, Th. 6].

A. Equilibrium in Games with Decoupled Action Set

In this subsection we consider games with decoupled or orthogonal action sets, i.e.,A = S. In a

concaveN -person game with decoupled action set, a pointb0 ∈ A is said to be a Nash equilibrium

(NE) if for everyi = 1, 2, · · · , N , we have

Vi(b0) = max
bi∈Ai

Vi(bi, b
0
−i).

Rosen established the following result.

Theorem1 (Rosen [8], Th. 2) —Assume that the constraint set is orthogonal, and thatσ(·, r) is

DSC for somer > 0. If an equilibrium point exists, then it is unique.

Rosen’s uniqueness theorem [8, Th. 2] was stated for compact domains, for which he also estab-

lished existence of a Nash equilibrium (Rosen [8, Th. 1]). But the proof works for any unbounded

domain, provided an equilibrium point exists. Rosen’s concept of equilibrium with coupled con-

straints is also known as variational equilibrium (see [16] and references therein). Rosen studies this

concept under the assumption that all players have common constraints. (A more general concept for

games with constraints that are not necessarily common is known as the generalised Nash equilibrium

- GNE, see [16, 17], and references therein).

B. Equilibrium in Games with Coupled Constraint Set

Now consider the coupled constraint setA = {b ∈ Rm, hj(b) ≥ 0, j = 1, 2, · · · ,K}. To study

equilibrium in such concave games where both utilities and actions are coupled, Rosen introduced

the concept ofnormalised Nash equilibrium(NNE). The NNE is a special kind of NE where the

Lagrange multipliers2 across players are interrelated. Formally, it is defined as follows.

Definition2 — Let b be a NE and let(u0
i ) ≥ 0 be the associated Lagrange multipliers given by

the Kuhn-Tucker conditions at the NE. If the(u0
i ) satisfyu0

i = λ/ri for some(ri) > 0 andλ ≥ 0,

thenb is called a normalised Nash equilibrium (NNE) forr.

Rosen established existence of NNE for every specifiedr = (ri) > 0 in concave games with

compact constraint sets. He also established a uniqueness result for the NNE, which we now state.

2TheLagrange multipliers are those associated with the equilibrium point and satisfy the Kuhn-Tucker conditions.
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Theorem2 (Rosen [8], Th.4) —Letr > 0 and letσ(·, r) be diagonally strictly concave. If a NNE

for r exists, then it is unique.

We will return to use NNE later in Subsection 6 where we study NE in the Kelly mechanism with

differential pricing. We first discuss the need for extending the DSC property.

We close this section with the reiteration that the DSC property is a sufficient condition to es-

tablish uniqueness of NE in a concaveN -person game. Many problems in network games, such as

Kelly’s resource allocation problem [2], Tullock’s rent seeking problem [18], and routing games [9]

are concave games. However, the DSC property is either difficult to verify [19] or can be established

only in some special cases [9, Sec. III.B]. We will see an example in the next section of a situation

where the DSC property is yet to be verified, and yet, the NE is known to be unique. In Section 5, we

will show how the extension of the DSC property in Section 4 applies to the example of Section 3.

3. AN EXAMPLE WHERE DSC IS UNVERIFIED

In this section, we provide an example of a concave game for which the DSC property is not yet

verified. We also demonstrate that Rosen’s sufficient condition for the DSC property fails. This will

then set the stage for an extension of the DSC property.

Consider the resource allocation problem defined by utility (4). We first observe thatbi ∈ R+

for all i. By settingKi = 1, hi1(bi) = bi, i = 1, · · · , N , this problem falls within the framework of

concave games. Also note that the linear terms in the utility function do not affect the DSC property.

So, we may focus on the modified familyV = (Vi) where

Vi(b) := Ui

(
bi∑N

j=1 bj

)
(9)

without the linear term. Observe that

∂Vi(b)
∂bi

= U ′
i

(
bi∑
j bj

) (
1− bi/

∑
j bj∑

j bj

)
. (10)

Considerthe setting of two players;N = 2. For anr > 0, with V as in (9),σ(·, r) is DSC if for

any pair(b1
1, b

1
2) ∈ R2

+ and(b0
1, b

0
2) ∈ R2

+, we have

∑

i

ri


β1

i


∑

j

b1
j


− β0

i


∑

j

b0
j







(
(1− β1

i )U ′
i(β

1
i )∑

j b1
j

− (1− β0
i )U ′

i(β
0
i )∑

j b0
j

)
< 0, (11)

whereβ0
i = b0

i /(b0
1 + b0

2) andβ1
i = b1

i /(b1
1 + b1

2) for i = 1, 2.
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We have not been able to prove that there is anr > 0 such that (11) holds for distinctb1 andb0,

even for the simple case when(Ui)s are identity maps, i.e.,

Ui

(
bi∑
j bj

)
=

bi∑
j bj

. (12)

Further, we have not been able to prove that the negation of the above statement holds, which would

establish thatσ(·, r) is not DSC for anyr > 0.

The above are interesting open questions because, on the one hand, we know that there exists a

unique (normalised) NE (forri ≡ 1), and yet the Jacobian-based sufficient condition for DSC fails,

as we show next.

Proposition1 — LetN = 2 and consider the familyV = (Vi) with (Ui) as in (12). Then, for any

r > 0, [G(b, r) + Gt(b, r)] for the familyV is not negative definite.

PROOF : It suffices to considerr 6= 0. Fix such anr and, without loss of generality, assume

r2 > 0. The second order derivatives ofV1 andV2 are

∂2V1(b1, b2)
∂b2

1

=
−2b2

(b1 + b2)3

∂2V2(b1, b2)
∂b2

2

=
−2b1

(b1 + b2)3

∂2V1(b1, b2)
∂b1∂b2

=
b1 − b2

(b1 + b2)3
= −∂V2(b1, b2)

∂b2∂b1
,

and the symmetric matrix in (8) is given by

[G(b, r) + Gt(b, r)] =
1

(b1 + b2)3

[
−2r1b2 (b1 − b2)(r1 − r2)

(b1 − b2)(r1 − r2) −2r2b1

]
.

Now consider a bidb1 > 0 andb2 = 0. We then have

[G(b, r) + Gt(b, r)] =
r2

(b1)2

[
0 (a− 1)

(a− 1) −2

]
,

wherea = r1/r2 ≥ 0. The eigenvalues of this matrix are−1+
√

1 + (a− 1)2 and−1−
√

1 + (a− 1)2.

Clearly the first of these is nonnegative for alla ≥ 0, and soG[(b, r)+Gt(b, r)] is not negative definite

onR2
+. ¥

We next provide a generalisation of DSC property in the following section and show that unique-

ness of NE is guaranteed if the new property holds. We verify the validity of the new sufficient

condition in the resource allocation problem with utilities as in (4).
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4. GENERALISED DIAGONAL STRICT CONCAVITY

In this section we generalise the notion of diagonally strictly concave functions. Its usefulness arises

from its application to the resource allocation problem with utilities as in (4).

We assume that the action space of each player has the same dimension, i.e.,m1 = m2 = · · · =
mN := m, and that each player’s actions are nonnegative. The generalisation of the DSC property is

as follows.

Definition 3 — Let Tj : RmN
+ → R+ be a nonnegative function forj = 1, 2, · · · ,m. The

functionσ(·, r) is generalised diagonally strictly concave(GDSC) for a givenr ≥ 0 if for every pair

b0, b1 ∈ RmN
+ suchthat

(
b0
ij/Tj(b0), 1 ≤ i ≤ N, 1 ≤ j ≤ m

) 6= (
b1
ij/Tj(b1), 1 ≤ i ≤ N, 1 ≤ j ≤ m

)
,

wehave

∑

i

ri

∑

j

(
b1
ij

Tj(b1)
− b0

ij

Tj(b0)

)(
Tj(b1)

∂Vi

∂bij
(b1)− Tj(b0)

∂Vi

∂bij
(b0)

)
< 0. (13)

For the case ofm = 1 when each player’s action is a nonnegative scalar, writingT for T1, the

above condition simplifies to

∑

i

ri

(
b1
i

T (b1)
− b0

i

T (b0)

)(
T (b1)

∂Vi

∂bi
(b1)− T (b0)

∂Vi

∂bi
(b0)

)
< 0.

If all Tj were identically 1, we get back Rosen’s definition of diagonally strictly concave functions

given in (7). The generalisation here allows the functionsTj to be more general than the “identically

1” function. The generalisation is useful because we can leverage it to extract the following theorem.

The setting of the generalisation is one where the action sets are decoupled,Ki = m for eachi,

andhik(bi) = bik, for all k = 1, 2, · · · ,Ki. Note that this setting covers the game with utilities (4).

Theorem3 — Assume that the familyσ(·, r) is GDSC for somer > 0. Assume further that if

Tj(b) = 0 for somej, thenb is not a NE for the game with utility functions(Vi). If a NE exists for

this game then it is unique up to scaling of the action components by(Tj).

PROOF : The proof is a simple extension of Rosen’s proof of [8, Th. 2]. Letb0, b1 ∈ RmN
+ betwo

equilibrium points. Then for eachi = 1, . . . , N , we have

bl
i ∈ arg max

bi

{
Vi(bi, b

l
−i) | bi ∈ Rm

+

}
, l = 0, 1.
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By the Kuhn-Tucker necessary conditions, for eachi = 1, . . . , N , and forl = 0, 1, there exist

Lagrange multipliersul
i ∈ Rm

+ sothat

bl
i ≥ 0 (14)

ul
i ≥ 0 (15)

(ul
i)

tbl
i = 0 (16)

∂Vi

∂bij
(bl) + ul

ij = 0 j = 1, 2, · · · ,m. (17)

By assumption,Tj(b) = 0 for somej implies thatb is not an equilibrium point, and hence

Tj(bl) > 0 for all j andl = 0, 1. Multiply the last equation above byTj(bl) and subtract the equation

for l = 0 from the equation forl = 1 to get

Tj(b1)
(

∂Vi

∂bij
(b1) + u1

ij

)
− Tj(b0)

(
∂Vi

∂bij
(b0) + u0

ij

)
= 0.

Now multiply by ri

(
b1
ij/Tj(b1)− b0

ij/Tj(b0)
)

, sum overj, and then sum overi, to get

∑

i

ri

∑

j

(
b1
ij

Tj(b1)
− b0

ij

Tj(b0)

) (
Tj(b1)

∂Vi

∂bij
(b1)− Tj(b0)

∂Vi

∂bij
(b0)

)

+
∑

i

ri

∑

j

(
b1
ij

Tj(b1)
− b0

ij

Tj(b0)

)
(
Tj(b1)u1

ij − Tj(b0)u0
ij

)
= 0. (18)

The second term, usingul
ijb

l
ij = 0 for eachi, is

−
∑

j

(
Tj(b1)
Tj(b0)

b0
iju

1
ij +

Tj(b0)
Tj(b1)

b1
iju

0
ij

)
≤ 0

for eachi, and as a consequence the first term in (18) must be nonnegative to make the sum zero.

But, by the assumption of GDSC, this is possible only whenb0
ij/Tj(b0) = b1

ij/Tj(b1) for all i, j. This

establishes uniqueness up to scaling of the action components by(Tj). ¥

5. APPLICATION TO RESOURCEALLOCATION GAMES

We now go back to the study of resource allocation problems of Hajek and Gopalakrishnan [3] and

Johari and Tsitsiklis [4]. The action variable of each player is a scalar, i.e.,m = 1. We consider a

generalisation of the utility functionVi of (4). For a fixedr = (ri) with ri > 0 for everyi, define

Vi(b) = Ui

(
bi∑N

j=1 bj

)
− bi

ri
. (19)
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Recall that1/ri is the price differentiation factor for playeri in the Kelly mechanism with price

differentiation. We verify that the GDSC property holds for the associatedσ(·, r) under a suitable

choice ofT .

Theorem4 — Let r > 0 and consider the(Vi) of (19). LetT (b) =
∑

i bi. Thenσ(·, r) is GDSC.

PROOF : Observe that∂Vi/∂bi is

∂Vi

∂bi
(b) = U ′

i

(
bi∑
j bj

) (
1− bi/

∑
j bj∑

j bj

)
− 1

ri
, (20)

andso, withβ = b/T (b), we get

riT (b)
∂Vi

∂bi
(b) = riU

′
i (βi) (1− βi)− T (b).

We now verify the GDSC property ofσ(·, r). Take anyb0, b1 ∈ RN
+ and formβl = bl/T (bl) for

l = 0, 1. The left-hand side of (13) is then

∑

i

ri(β1
i − β0

i )(U ′
i

(
β1

i

)
(1− β1

i )− U ′
i

(
β0

i

)
(1− β0

i ))− (T (b1)− T (b0))
∑

i

(β1
i − β0

i ).

The second term is zero since(βl
i) sums to 1 for bothl = 0, 1. The first term is strictly negative

for distinctb0, b1. To see this observe that(1− x)U ′
i(x) = W ′

i (x), whereWi(x) := (1− x)Ui(x) +∫ x
0 Ui(z)dz. SinceWi is obviously increasing, concave, and a continuously differentiable function,

the familyW = (Wi) yield σW (·, r), which is (5) withWi in place ofVi, that is DSC forr. This

proves the claim that the first term is negative, and proof of the theorem is complete. ¥

Let us now leverage this result to get a proof of uniqueness of NE for the Kelly mechanism with

price differentiation.

Corollary 1 — Letr > 0. The game defined by decoupled action setsRN
+ and utility functionsVi

given by (19) has a unique NE. In particular, withri = 1 for all i, the game with utility functionsVi

given by (4) has a unique NE.

PROOF : We prove the result in the following sequence of simple steps.

Step1 (Compact action spaces): The action space of each player can be restricted to a compact

rectangular set. Fix playeri. The net utility of playeri isUi(ai)−bi/ri. SinceUi is strictly increasing,

we haveUi(ai) ≤ Ui(1) for any allocation to playeri. If player i places a bid strictly larger than

bmax
i := riUi(1), his aggregate utility is strictly negative, regardless of the allocation. Hence he has

no incentive to place a bid larger thanbmax
i , and his action set is effectively reduced to the bounded

and closed interval[0, bmax
i ].
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Step2 (Existence of equilibrium) : By Step 1, the action space of each player is a compact and

convex subset ofR+. The action sets are decoupled. Existence of a NE follows by Rosen’s [8,Th. 1].

Step3 (T(b) > 0) : A b with T (b) = 0 cannot be an equilibrium. Indeed,T (b) =
∑

i bi = 0

implies thatbi = 0 for all i. But then player 1 can increase his bid to a small valueb′1 ∈ (0, bmax
1 ],

get the entire good, and pay a negligible amount ofb′1/r1, and strictly improve his net utility.

Step4 (Uniqueness up to scaling): In Step 2, we verified that a NE exists. In Step 3, we verified

that ab with T (b) = 0 cannot be an equilibrium. In Theorem 4, we verified that for everyr > 0,

σ(·, r) is GDSC. By Theorem 3 the NE is unique up to scaling byT (b).

Step5 (Uniqueness): The NE is unique ifT (b) is unique for the equilibrium. By Step 3, there is

a player who places a positive bid. Without loss of generality, let this player be 1. Thenb1 > 0. With

β = b/T (b), we must then have

0 =
∂V1(b)

∂b1
= U ′

1(β)(1− β1)/T (b)− 1/r1.

It follows thatT (b) is unique and so, by Step 4, the equilibrium is unique.

This completes the proof of the corollary. ¥

6. NORMALISED NASH EQUILIBRIUM AND DIFFERENTIAL PRICING

Consider the game defined by the utility in (19). The vector(ri) is price differentiation vector in the

Kelly mechanism [7]. In this section, we show that equilibrium in the game with price differentiation

can be interpreted as the normalised Nash equilibrium of another game with coupled constraints, the

game with which we began this paper, for weights(ri).

Recall the coupled action set given by

A =

{
a = (ai) :

∑

i

ai = 1

}

introduced at the beginning of this paper. Consider the game defined by the family of utility functions

Wi : A → R+

Wi(a) = Ui(ai)(1− ai) +
∫ ai

0
Ui(z)dz, (21)

whereUi(·) is concave, continuously differentiable and strictly increasing function. Note that the

above utility does not depend on the actions of the other players. The interaction in the game is only

through the constraint set. In the proof of Theorem 4 we argued thatWi(·) is a concave, increasing

and continuously differentiable function on[0, 1], and the correspondingσW (·, r) formed with(Wi)

satisfies the DSC property for anyr > 0. Then, by Theorem 2, the familyWi has a unique normalised
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Nash equilibrium for eachr > 0. Let (a∗i ) denote the normalised Nash equilibrium for a givenr > 0.

By the Kuhn-Tucker conditions, there exists aλ ≥ 0 such that

ri
∂Wi(a∗)

∂ai
− λ = 0

for eachi = 1, . . . , N , or, equivalently,

(1− a∗i )
∂Ui(a∗i )

∂ai
− λ

ri
= 0 (22)

for eachi = 1, . . . , N .

Now, consider the coupled utility decoupled action set game defined by (19). By Theorem 4 and

Corollary 1, this game has a unique Nash equilibrium. Let(x∗i ) denote the unique Nash equilibrium

and defineµ =
∑

j x∗j > 0. By the optimality conditions, for eachi = 1, 2, · · ·N, there existsγi > 0

such that

U ′
i

(
x∗i∑
j x∗j

) (
1∑
j x∗j

− x∗i
(
∑

j x∗j )2

)
− 1

ri
+ γi = 0 (23)

Assume(ri) are such thatx∗i > 0 for eachi = 1, 2, · · · , N . Then, γi = 0 for eachi =

1, 2, · · · , N . Multiplying both sides byµ, we have

U ′
i

(
x∗i∑
j x∗j

) (
1− x∗i∑

j x∗j

)
− µ

ri
= 0 (24)

If we definea∗i = x∗i /
∑

j x∗j , we see that both (24) and (22) are identical withλ = µ. Thus, the

normalised Nash equilibrium corresponding tor in the game defined by utilities (21) maximises the

equilibrium utilities in the Kelly mechanism with price differentiation vectorr.

7. CONCLUDING REMARKS

In this paper we applied Rosen’s framework of concave games to establish uniqueness of Nash equi-

librium in resource allocation games. First, we provided the example of the Kelly mechanism where

diagonal strict concavity (DSC), which is a sufficient condition for uniqueness of Nash equilibrium

in Rosen’s framework, is not yet verified, and yet the game is known to have unique Nash equilib-

rium. We then provided a sufficient condition, as a generalisation of the DSC property, to establish

the uniqueness of Nash equilibrium. Our generalisation exploits the structure of utilities to establish

uniqueness of Nash equilibrium.

Further, applying Rosen’s framework to study Kelly mechanism with differential pricing, we

showed that the resulting Nash equilibrium of the game is the normalised Nash equilibrium of another

game where strategy space is coupled.
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Rosen developed a dynamic model to study stability in concave games. He showed that when

DSC property holds the system is globally asymptotically stable, and starting from any point the

system converges to the unique Nash equilibrium. It would be of interest to see if a similar stability

results hold under the new GDSC property.
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