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In this paper, we extend the notion of diagonally strictly concave functions and use it to provide a
sufficient condition for uniqueness of Nash equilibrium in some concave games. We then provide
an alternative proof of the existence and uniqueness of Nash equilibrium for a network resource
allocation game arising from the so-called Kelly mechanism by verifying the new sufficient con-
dition. We then establish that the equilibrium resulting from the differential pricing in the Kelly
mechanism is related to a normalised Nash equilibrium of a game with coupled strategy space.
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1. INTRODUCTION

Consider a game played by players where each player has to choose a portion of a pie, or some

divisible good. Playei chooses actions; € [0, 1]. The actions are constrained to satisfy

N
=1
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Playeri gets utility U;(a;) for his actiona;, and acts to maximise his utility, subject to the con-
straint in (1). Eaclt; is concave, strictly increasing, and continuously differentiable Byer

The above abstract game is widely applicable. The divisible good could stand for

(a) amount of research grant money withbeing the portion of the grant money claimed by the
ith participant;

(b) a communication resource like bandwidth withbeing fraction of time playeruses the chan-
nel;

(c) netinterferencéemperaturgl] with a; standing for the fraction playémwants as his in order
to ensure that he transmits at a desired high enough rate.

The utility function is typically concave and increasing in the action variable. The key feature of
this simultaneous action game is that the actions are coupled by the constraint that they should lie in
the set given by (1). Write = (a;,1 < i < N) or more simplya = (a;) for the action profile.

Ideally, a social planner who works in the interest of greater social good may wish to pick an
allocation vector N

a® € argmax {Z Ui(a;) | a SatiSfies(l)} . (2
=1

However, players can be strategic and can act to maximise their individual utilities. A Nash
equilibrium (NE) for the above game is an action profile satisfying the constraint (1) and such that no
player can strictly increase his utility by means of a unilateral deviation within the constraint set. The
set of Nash equilibria for the action-constrained game is (quite straightforwardly) found to be the set
of all action profilesz such that (1) is satisfied with equality.

When the system is decentralised, the social planner may not know the players’ utilities or the
worth of a portion of the resource for each player. In this case, Kelly [2] proposed a decentralised
mechanism in which each player submits a ‘bid'valingness-to-pay Let b, > 0 denote this bid
submitted by playet. The social planner then decides the unit pricand assigns to each player
a portion of the resource that is in proportion to his bid and inversely proportional to the unit price:
a; = b;/u. The social planner then collects a payment that equals the bid. Kelly [2] showed that
when each player chooses a bid that maximises his net utility given by

()

thereexists a good choice of the unit prigé that will enable playet to choose} = p*a, so that
the share of playeris o}, theith component of the system optimal vector in (2). In this mechanism,
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the social planner does nptice differentiatethe players, and the players are assumed to be price
takers, i.e., players do not anticipate the effect of their bids on the unit gorice

In a series of works, Hajek and Gopalakrishnan [3], Jodtzal. [4, 5, 6] considered an alternative
model where the players are price anticipating rather than price taking, and compete to maximise
their utility. The social planner then implements a mechanism (hencef@itih mechanisithat
apportions the pie in the fraction of the bids, i.e., with= (b;,1 < i < N), the ‘proportional’
allocation is as follows:

b.
a1<b) = NZ .
Zj:l b
Thisis then a new simultaneous action game where each player choosek aTiié net utility
of playeri is
bA
Vz<b) = Uz(az(b)) — bi = UZ‘ <NZ> — bi. (4)
Zj:l b

Underthe assumption that ea€hj is concave, strictly increasing, and continuously differentiable
overR ., and the right directional derivative @its finite, the resulting game is known to have a unique
NE. Further, the price anticipating nature of the players may resulsubaptimal Nash equilibrium
i.e.,> , U;(-) at the NE can be lower than the value at the optimum profile of (2). Indeed, Johari and
Tsitsiklis [4] showed that the proportional allocation mechanism leads to an efficiency loss of upto
25% of the social optimum value. To close this efficiency gapriee differentiationscheme was
proposed in [7]. Price differentiation is introduced by replacing the negative term in (4)/by
wherel /r; is the price differentiation factor for player The resulting mechanism will be called the
Kelly mechanism with price differentiatioffhe price differentiation results in a NE which is related
to a special type of equilibrium calletbrmalised Nash equilibriuras we show later in the paper.

Let us return to the Kelly mechanism defined by utilities (4). Notice that the bids (or actions) in
the decentralised mechanism are no longer coupled, but the utilities of the players are coupled. This
is reminiscent of the special class of games with coupled utilities and decoupled actions sets dealt
with in [8].

In another class of resource allocation problems cabteiting gamegplayers share a communi-
cation network to ship their demand (or traffic) from a source to a destination. The communication
network consists of several interconnected links which are capacity constrained, and cost on each link
depends on the total traffic on that link. As higher congestion implies higher delay or higher loss rate,
the players prefer to use a link that is less congested. The action space of each player is constrained in
these games as sum of flows across the links must equal its total demand. In [9], the authors studied
the amount of traffic sent by each player on each link at equilibrium assuming that the players aim to
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minimise their total cost. They establish existence and uniqueness of NE in routing games under the
assumption that the cost function of each player is convex in its flow and satisfies certain monotonic-
ity properties. Noting that this game can be studied as a game where each player aims to maximise
the negative of its cost function, this is again reminiscent of the special class of games with coupled
utilities and decoupled actions sets dealt with in Rosen’s work [8].

In [8], Rosen provided a general framework to study games where utility of each player is con-
cave and the action (strategy) space is convex and compact. His framework includes competitions
where not only utilities of the players are coupled, but also the action space of the players can be
coupled, hence covering a rich class of concave games. When the action space of the players are
coupled, a player is restricted to take only certain actions (a strict subset of his action space), given
the action profile of his opponents. To study the equilibrium behaviour of games in such generality,
Rosen introduced the concept of normalised Nash equilibrium (NNE). He established the existence
of NNE in these games, and further provided a sufficient condition cdikgbnal strict concavity
for uniqueness of NNE. In Rosen’s setting, NNE is same as the NE when the utilities of players are
coupled but the strategy spaces are independent of each other, i.e., each player can take any action
independent of his opponents. The problems studied by Hajek and Gopalakrishnan [3] andtJohari
al. [4] fall within the setting considered by Rosen in [8].

Our work was motivated by the following question. Could one apply Rosen’s result, with a
suitable modification to handle noncompactness of the action spaces, and prove the uniqueness of the
NE obtained by Hajek and Gopalakrishnan [3]? Could one provide a unified approach to establish
uniqueness of NE in network games, in particular, resource allocation and routing games?

Study of uniqueness of NE is important in network games. Besides its theoretical interest, unique-
ness of NE is of obvious importance in predicting network behaviour in equilibrium. Uniqueness of
NE is also of particular importance for network management, where regulating player behaviour in
a single equilibrium (using pricing, for example) is usually much easier than for several equilibria
simultaneously. For a survey on network games with unique NE see [10].

Though unigue NE in a game is favourable, in many games the NE may not be unique. Indeed,
there are games that possess infinitely many NE points; see [11]. This difficulty is overcome by
requiring that payoff functions satisfy some properties. In [12], it is shown that if the game admits
a potential functionthen the Nash equilbria are given by the local optima of the potential function.
Naturally, if the potential function has a unique optimum, it corresponds to the unique NE of the
game. Another requirement that ensures uniqueness of NE idotinénant diagonal propertyn
supermodular games [13]. Yet another test for uniqueness of NE in a game where action space of
the players is bounded and continuous is to verify that the best response of each plagtasdsual
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function (see [14] and [15, Th. 2]). In this paper, we provide another sufficient condition for the
existence of unique NE in concave games.

Our contributions are as follows:

We provide a generalisation dfagonal strict concavityDSC) property, and show that when
it is satisfied, unigueness of NE is guaranteed in concave games.

e We provide an example network resource allocation game where the proposed sufficient condi-
tion holds, but the DSC property is difficult to verify.

e We show that the NE in the Kelly mechanism with differential pricing is related to the NNE of
another game with coupled action space.

e \We provide a unified approach to establishing uniqueness of NE in resource allocation games
using the Rosen’s framework of concave games.

The paper is organised as follows. In Section 2, we briefly introdéiegoerson concave games
studied by Rosen [8] and discuss the DSC property. In Section 3, we motivate the need to extend
the definition of the DSC property to establish uniqueness of NE by providing examples where DSC
property is difficult to verify. In Section 4, we generalise the Rosen’s work by providing a new suffi-
cient condition (based on DSC) to establish uniqueness of NE. In Section 5, we show its application
to the study of resource allocation problems. In Section 6, we make the connection between the Nash
equilibrium in the Kelly mechanism having differential pricing with the normalised Nash equilibrium
of another game with related but uncoupled utility functions and a coupled action set. We end the
paper with a concise summary and a brief discussion of future work in Section 7.

2. ROSEN S UNIQUENESSTHEOREM

In this section, we describe Rosen’s result on the sufficiency of diagonal strict concavity for unique-
ness of NE in a game with vector strategies. We first discuss the game where only the utilities are
coupled and then discuss the case where the strategy spaces of the players are also coupled. We first
set up some notation and state the assumptions.

Consider the followingV-person concave game. We describe the constraint set in the next para-
graph and the utility functions in the following paragraph.

Let A; = {b; € R™ hy(b;) > 0,k = 1,2,---, K;} denote bounded action set of player
whereR™: denotes the Euclidian plane of dimensian, and fork = 1,2,--- | K;, by, : R™ — R
is a concave and continuously differentiable functionRSf. Write, as beforep := (b;) for the
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action profile, wheré € A = S := [[Y, A; ¢ R™ with m = 32 m;. In this case, the action
spaceA is the rectangley, and we say action set of players anrthogonal The game is said to be
decoupled in the action setVe denote thgth component of the actial asb;;. More generally, we

will also consider acoupled constraint set = {b € R™, h;(b) > 0forj = 1,..., K} whereK

is a natural number ankl;, j = 1,..., K are concave and continuously differentiable functions on
R™. Whether the action set is orthogonal or coupled, we will assume that there ekists4athat

is strictly interior to every nonlinear constraint. This is a sufficient condition for the Kuhn-Tucker
constraint qualification.

Consider a family ofN coupled utility functions, where thih utility functionisV; : A — R.
V;(b) is assumed to be continuoustiand concave and continuously differentiabléjror a given
b_i = (b1,ba,- - ,bi—1,biy1,--- ,bn). Write V := (V;) for the family of utility functions.

For any scalar functiomy(b) we denote the gradient with respectitoas V,;«(b). Define a
mappingo : R™ x Rf — R, whereR . denotes the set of positive real numbers, as the weighted
sum of functiond” as follows:

N
o(b,r)y=> rVi(b), ri>0 Vi (5)
=1

The pseudogradientf o (b, r) for any given nonnegativeis defined as

r1V1V1(b)

’I“QVQVQ(Z)) (6)

L T'NVNVN(b) ]

Let G(b,r) denote the Jacobian with respectitef g(b,r). Note thatG(b,r) is a matrix of
dimensionm x m. We use the notation/’ to denote transpose of matr¥. For a vector-, we say
r > 0, respectively > 0, if each component is nonnegative, respectively strictly positive.

Definition 1 (Rosen [8] (p. 524)) — The functioa(-, r) is calleddiagonally strictly concave
(DSC) for a given- > 0 if for every distinct pain®, b! € A we have

(b1 — bo)t (g(bl,r) — g(bo,r)) < 0. (7)

When the players are interestednminimisingtheir respective convegostfunctions, the corre-
spondingo (-, ) is diagonally strictly conve¥f (7) holds with the opposite inequality.
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A sufficient condition for the familyy” to be diagonally strictly concave (convex) for a given
r > 0 is that the symmetric matrix
[G(b,r) + G (b,7)] €S)

is negative (positive) definite over the domairi8, Th. 6].
A. Equilibrium in Games with Decoupled Action Set

In this subsection we consider games with decoupled or orthogonal action setd, 5. In a
concaveN -person game with decoupled action set, a ptfint A is said to be a Nash equilibrium
(NE) if for everyi = 1,2,--- , N, we have

V(") = max Vi(bi, o2,).

Rosen established the following result.

Theorem1 (Rosen [8], Th. 2) —Assume that the constraint set is orthogonal, and thatr) is
DSC for some > 0. If an equilibrium point exists, then it is unique.

Rosen’s uniqueness theorem [8, Th. 2] was stated for compact domains, for which he also estab-
lished existence of a Nash equilibrium (Rosen [8, Th. 1]). But the proof works for any unbounded
domain, provided an equilibrium point exists. Rosen’s concept of equilibrium with coupled con-
straints is also known as variational equilibrium (see [16] and references therein). Rosen studies this
concept under the assumption that all players have common constraints. (A more general concept for
games with constraints that are not necessarily common is known as the generalised Nash equilibrium
- GNE, see [16, 17], and references therein).

B. Equilibrium in Games with Coupled Constraint Set

Now consider the coupled constraint set= {b € R™, h;(b) > 0,5 = 1,2,--- ,K}. To study
equilibrium in such concave games where both utilities and actions are coupled, Rosen introduced
the concept ohormalised Nash equilibriunNNE). The NNE is a special kind of NE where the
Lagrange multipliersacross players are interrelated. Formally, it is defined as follows.

Definition2 — Letb be a NE and letu?) > 0 be the associated Lagrange multipliers given by
the Kuhn-Tucker conditions at the NE. If tiie?) satisfyu? = X\/r; for some(r;) > 0 andX > 0,
thenb is called a normalised Nash equilibrium (NNE) for

Rosen established existence of NNE for every specified (r;) > 0 in concave games with
compact constraint sets. He also established a uniqueness result for the NNE, which we now state.

2TheLagrange multipliers are those associated with the equilibrium point and satisfy the Kuhn-Tucker conditions.
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Theorem2 (Rosen [8], Th.4) —Letr > 0 and leto (-, r) be diagonally strictly concave. If a NNE
for r exists, then it is unique.

We will return to use NNE later in Subsection 6 where we study NE in the Kelly mechanism with
differential pricing. We first discuss the need for extending the DSC property.

We close this section with the reiteration that the DSC property is a sufficient condition to es-
tablish uniqueness of NE in a concadeperson game. Many problems in network games, such as
Kelly's resource allocation problem [2], Tullock’s rent seeking problem [18], and routing games [9]
are concave games. However, the DSC property is either difficult to verify [19] or can be established
only in some special cases [9, Sec. 1ll.B]. We will see an example in the next section of a situation
where the DSC property is yet to be verified, and yet, the NE is known to be unique. In Section 5, we
will show how the extension of the DSC property in Section 4 applies to the example of Section 3.

3. AN EXAMPLE WHERE DSCIs UNVERIFIED

In this section, we provide an example of a concave game for which the DSC property is not yet
verified. We also demonstrate that Rosen’s sufficient condition for the DSC property fails. This will
then set the stage for an extension of the DSC property.

Consider the resource allocation problem defined by utility (4). We first observé;tkaiR
for all 7. By settingK; = 1, h;1(b;) = b;,i = 1,--- , N, this problem falls within the framework of
concave games. Also note that the linear terms in the utility function do not affect the DSC property.
So, we may focus on the modified family = (V;) where

b.
Vi(b) := U ( : ) 9)
Zj‘vzl bj
withoutthe linear term. Observe that
. } 1—10; b,
Vit) _ v (b /250 (10)
ab; Zj b Zj b

Considerthe setting of two playersy = 2. For anr > 0, with V' as in (9),0(+,r) is DSC if for
any pair(b{, b3) € R% and(bY,b9) € R?, we have

Ao (5o _ o (5o ) (C=shush  o-suis) "

wheres? = 80/(b) + b3) andB} = b}/ (bl + bd) fori =1, 2.



GENERALISINGDIAGONAL STRICT CONCAVITY PROPERTY 221

We have not been able to prove that there is an 0 such that (11) holds for distinét andb?,
even for the simple case whébi; )s are identity maps, i.e.,

b; b;
U; ! =, (12)
(Zj bj> Zj b
Further we have not been able to prove that the negation of the above statement holds, which would
establish that (-, r) is not DSC for any- > 0.

The above are interesting open questions because, on the one hand, we know that there exists a
unique (normalised) NE (for; = 1), and yet the Jacobian-based sufficient condition for DSC fails,
as we show next.

Propositionl — Let N = 2 and consider the family” = (V;) with (U;) as in (12). Then, for any
r >0, [G(b,r) + G(b,7)] for the family V' is not negative definite.

PrROOF: It suffices to consider # 0. Fix such anr and, without loss of generality, assume
r9 > 0. The second order derivatives 6f andV; are

02V (b1, ba) B —2by
31)% - (bl + 52)3
0?Va(by,b2) B —2b;
ob3 (b +b2)3
V(b by) _ bi—by  OVa(bi,bo)
0b10by (bl + b2)3 0by0by ’
and the symmetric matrix in (8) is given by
1 —2r1b by — b —
(Glbr) + G (o) = s e
(bl + b2) (bl — bg)(’l“l — 7’2) —2r9by
Now consider a bid; > 0 andby; = 0. We then have
T2 0 (CL - 1)
G(b, 1)+ GHb,1)] = —= ,
G, + G 0.0)] = 55 [ 1) o ]

wherea = r1/r2 > 0. The eigenvalues of this matrix ard +./1 + (a — 1)2and—1—+/1 + (a — 1)2.

Clearly the first of these is nonnegative foralk 0, and saG|[(b, r)+G*(b, r)] is not negative definite
onR?. |

We next provide a generalisation of DSC property in the following section and show that unique-
ness of NE is guaranteed if the new property holds. We verify the validity of the new sufficient
condition in the resource allocation problem with utilities as in (4).
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4. GENERALISED DIAGONAL STRICT CONCAVITY
In this section we generalise the notion of diagonally strictly concave functions. Its usefulness arises
from its application to the resource allocation problem with utilities as in (4).

We assume that the action space of each player has the same dimension, +ems = --- =
my := T, and that each player’s actions are nonnegative. The generalisation of the DSC property is
as follows.

Definition3 — Let Tj : ]RTN — R, be a nonnegative function fof = 1,2,--- ,m. The
functiono (-, r) is generalised diagonally strictly conca¢®&DSC) for a giverr > 0 if for every pair
b0, bt € RTN suchthat

(b5/T5(0°),1 < i < N,1<j<m) # (by/T;(b'), 1 <i<N,1<j<m),

we have

bl Bo. , ,
DY (Tjggl) - Tj(’;,O)) (Boh g - gan ) <o, a9
i j

For the case ofn = 1 when each player’s action is a nonnegative scalar, wrifirfgr 77, the
above condition simplifies to

1 0 g g
S (T?bl) - Ti’bo)> <T(b1)g‘bf (b)) — T(b%%(b%) <0.

If all T; were identically 1, we get back Rosen’s definition of diagonally strictly concave functions

given in (7). The generalisation here allows the functidhso be more general than the “identically
1" function. The generalisation is useful because we can leverage it to extract the following theorem.

The setting of the generalisation is one where the action sets are decdiiptediz for eachi,
andh;,(b;) = by, forallk = 1,2, --- | K;. Note that this setting covers the game with utilities (4).

Theorem3 — Assume that the family(-, ) is GDSC for some > 0. Assume further that if
T;(b) = 0 for someyj, thenb is not a NE for the game with utility functiori¥;). If a NE exists for
this game then it is unique up to scaling of the action componentgy

PROOF: The proof is a simple extension of Rosen’s proof of [8, Th. 2].#%b' ¢ RTN betwo

equilibrium points. Then for each=1,..., N, we have

b e argmbax{‘/;(bi,bl_i) b € RT} . 1=0,1.

7
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By the Kuhn-Tucker necessary conditions, for each 1,..., N, and forl = 0, 1, there exist
Lagrange muItipIiermﬁ € R sothat

B> 0 (14)

ub > 0 (15)

(u)'b; = 0 (16)
;Z@6+%j::0 j=1,2,---,m. (17)

By assumptionT;(b) = 0 for some; implies thatb is not an equilibrium point, and hence
T;(b") > 0 for all j andl = 0, 1. Multiply the last equation above I§;(b') and subtract the equation
for I = 0 from the equation fof = 1 to get

oV; oV;
730) (G 0+l ) = 0% (500 ) =
) v]

Now multiply by ; (b}j/Tj(bl) - b?j/Tj(bO)), sum overj, and then sum ove to get

bl o, . .
;n¥ <Tj{é1) o Tj(llj)o)> <Tj(b1)g[§z (bl) - E(bo)%(b0)>

0

bl
+ Zﬁ' Z (T](Zlil) - Tj(b0)> (Tj(bl)uij - Tj(bo)u?j) =0. (18)

The second term, usinquéj = ( for each, is
(Y 0 1, TO%) 1 o
_ 0 4,1 bl ) <
> (Zmheb 2 tet) <0

for eachi, and as a consequence the first term in (18) must be nonnegative to make the sum zero.
But, by the assumption of GDSC, this is possible only wheAiT; (1°) = b;;/T;(b") for all i, j. This
establishes uniqueness up to scaling of the action compone(it§ by [ |

5. APPLICATION TO RESOURCEALLOCATION GAMES

We now go back to the study of resource allocation problems of Hajek and Gopalakrishnan [3] and
Johari and Tsitsiklis [4]. The action variable of each player is a scalarfi.es, 1. We consider a
generalisation of the utility functiol; of (4). For a fixedr = (r;) with r; > 0 for everyi, define

b; b;
Vi(b) = U 2 (19)
®) (Zjvzl bj) T
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Recall thatl /r; is the price differentiation factor for playeiin the Kelly mechanism with price
differentiation. We verify that the GDSC property holds for the associated') under a suitable
choice ofT.

Theorem4 — Letr > 0 and consider th¢V;) of (19). LetT'(b) = >, b;. Theno(-,r) is GDSC.

PROOF: Observe thadV;/0b; is

aV; b 1=bi/22;0\ 1
an = (zjb])( 0 )‘ 20

andso, withjs = b/T'(b), we get

oV
0b;

riT(b) = (b) = :U; (Bi) (1 = Bi) — T(b).

We now verify the GDSC property of(-, ). Take any’, b! € RY and formg! = v'/T(b!) for
[ = 0,1. The left-hand side of (13) is then

> riB =AW (B)) (1= B)) = Uf (87) (1= 50) = (T (") = T0) Y (8] — 5.

K3 3

The second term is zero sin@éf) sums to 1 for bothh = 0, 1. The first term is strictly negative
for distinctt?, b!. To see this observe that — z)U!(z) = W/(z), whereW;(z) := (1 — z)U;(z) +
fo“"” Ui(z)dz. SinceW; is obviously increasing, concave, and a continuously differentiable function,
the family W = (W;) yield ow (-, r), which is (5) withWW; in place ofV;, that is DSC forr. This
proves the claim that the first term is negative, and proof of the theorem is complete. |

Let us now leverage this result to get a proof of uniqueness of NE for the Kelly mechanism with
price differentiation.

Corollary1 — Letr > 0. The game defined by decoupled action Msand utility functionsV;
given by (19) has a unique NE. In particular, with= 1 for all 4, the game with utility function%;
given by (4) has a unique NE.

PROOF: We prove the result in the following sequence of simple steps.

Stepl (Compact action spaces) The action space of each player can be restricted to a compact
rectangular set. Fix player The net utility of playeti is U;(a;) —b; /r;. SinceUs; is strictly increasing,
we haveU;(a;) < U;(1) for any allocation to playei. If playeri places a bid strictly larger than
b .= r;U;(1), his aggregate utility is strictly negative, regardless of the allocation. Hence he has
no incentive to place a bid larger th&fi**, and his action set is effectively reduced to the bounded
and closed intervgD, b]"**].
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Step2 (Existence of equilibrium) : By Step 1, the action space of each player is a compact and
convex subset dR .. The action sets are decoupled. Existence of a NE follows by Rosen’s [8,Th. 1].

Step3 (T'(b) > 0) : A b with T'(b) = 0 cannot be an equilibrium. Indeed(b) = >, b; = 0
implies thath; = 0 for all . But then player 1 can increase his bid to a small vafue (0, b7"**],
get the entire good, and pay a negligible amourit ¢, and strictly improve his net utility.

Step4 (Uniqueness up to scaling) In Step 2, we verified that a NE exists. In Step 3, we verified
that ab with 7'(b) = 0 cannot be an equilibrium. In Theorem 4, we verified that for every 0,
o(-,r)is GDSC. By Theorem 3 the NE is unique up to scaling/lfy).

Step5 (Uniqueness). The NE is unique ifT'(b) is unique for the equilibrium. By Step 3, there is
a player who places a positive bid. Without loss of generality, let this player be 1.6Thet. With
B =b/T(b), we must then have
0— oVi(b)

0by

It follows thatT'(b) is unique and so, by Step 4, the equilibrium is unique.

= Ul(B)(1 = B1)/T(b) — 1/r1.

This completes the proof of the corollary. [ |
6. NORMALISED NASH EQUILIBRIUM AND DIFFERENTIAL PRICING

Consider the game defined by the utility in (19). The veétgy is price differentiation vector in the

Kelly mechanism [7]. In this section, we show that equilibrium in the game with price differentiation
can be interpreted as the normalised Nash equilibrium of another game with coupled constraints, the
game with which we began this paper, for weights.

Recall the coupled action set given by

A:{a:(ai):Zaizl}

introduced at the beginning of this paper. Consider the game defined by the family of utility functions
Wi A — ]R+ .
Wi(a) = Us(ag)(1 — a5) + / Ui(2)dz, (21)
0

whereU;(-) is concave, continuously differentiable and strictly increasing function. Note that the
above utility does not depend on the actions of the other players. The interaction in the game is only
through the constraint set. In the proof of Theorem 4 we arguedih@l is a concave, increasing

and continuously differentiable function ¢ 1], and the correspondingy (-, ) formed with (W;)
satisfies the DSC property for any> 0. Then, by Theorem 2, the family’; has a unique normalised
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Nash equilibrium for each > 0. Let (a}) denote the normalised Nash equilibrium for a given 0.
By the Kuhn-Tucker conditions, there exista & 0 such that

oW (a*) B
TZTCL,L - /\ - 0
foreachi = 1,..., N, or, equivalently,
oUi(a}) A
) i S A 22
(1-a) =5, == =0 (22)

foreachi =1,...,N.

Now, consider the coupled utility decoupled action set game defined by (19). By Theorem 4 and
Corollary 1, this game has a unique Nash equilibrium. (k€9 denote the unique Nash equilibrium
and defing: = Zj z; > 0. By the optimality conditions, for each= 1,2, - -- N, there existsy; > 0

* 1 ¥ 1
(1) (s - o) - o
257 i (2 5)? Ti

Assume(r;) are such that:; > 0 for eachi = 1,2,---,N. Then,~; = 0 for eachi =

such that

1,2,--- , N. Multiplying both sides by, we have

o4 %)(1—%)—“:0 (24)
(Zj j 2.%5) i
If we definea = z/ Zj z7, we see that both (24) and (22) are identical whtk= 1. Thus, the

normalised Nash equilibrium corresponding-tm the game defined by utilities (21) maximises the
equilibrium utilities in the Kelly mechanism with price differentiation vector

7. CONCLUDING REMARKS

In this paper we applied Rosen’s framework of concave games to establish uniqueness of Nash equi-
librium in resource allocation games. First, we provided the example of the Kelly mechanism where
diagonal strict concavity (DSC), which is a sufficient condition for uniqueness of Nash equilibrium

in Rosen’s framework, is not yet verified, and yet the game is known to have unique Nash equilib-
rium. We then provided a sufficient condition, as a generalisation of the DSC property, to establish
the uniqueness of Nash equilibrium. Our generalisation exploits the structure of utilities to establish
uniqueness of Nash equilibrium.

Further, applying Rosen’s framework to study Kelly mechanism with differential pricing, we
showed that the resulting Nash equilibrium of the game is the normalised Nash equilibrium of another
game where strategy space is coupled.
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Rosen developed a dynamic model to study stability in concave games. He showed that when
DSC property holds the system is globally asymptotically stable, and starting from any point the
system converges to the unique Nash equilibrium. It would be of interest to see if a similar stability
results hold under the new GDSC property.
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