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ABSTRACT
This work deals with non-intrusive load monitoring using a single

inexpensive device at the mains. We argue that very low sampling

rates (of 1 Hz) may suffice. This enables significant compression and

cheaper end-devices. There are challenges when operating at such

low sampling rates, of course. To achieve good appliance inference

performance we propose improved event detection, feature extrac-

tion, and inference algorithms. The inference algorithm exploits

state transition constraints and proposes the use of a maximum

likelihood sequence detection for improved performance.

CCS CONCEPTS
• Mathematics of computing → Cluster analysis; Maximum
likelihood estimation; • Computer systems organization→ Em-
bedded and cyber-physical systems;
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1 INTRODUCTION
Non-intrusive load monitoring (NILM) deals with the estimation of

individual appliance usages from observations of aggregate power

consumption. Prior algorithms assume availability of data sampled

at high sampling rates from, as of now, expensive smart meters.

This paper explores the feasibility of NILM using data sampled at

lower sampling rates. There are three motivations for doing this:
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we want a single smart meter device connected into the mains, a

cheap smart meter and data compression right at the source point.

Problem statement: Given the time-series data of aggregate

power consumption obtained from a single smart meter sampling

at a low rate of ∼ 1Hz and installed in series with the mains supply,
infer the sequence of appliances’ ON/OFF states.

This inference problem is not straightforward because the low

sampling rate leads to some complications. Device signatures can

be tracked only at a much lower resolution. Moreover, multiple

events may have occurred during the relatively large 1s sampling

period.

Our methodology involves a series of steps – data processing,

event detection and feature extraction; learning of essential feature

parameters; and inference of appliance states.

1) We first preprocess a component of the signal, which is active

power, to suppress spikes and irregularities. This step results in a

waveform which is essentially a sequence of step changes in the

active power level and hence facilitates event detection.

2) We then use the first and second differences to detect changes

in the power level. Epochs with significant changes are marked

as events, and this constitutes the event detection step. Our event

detection algorithm offers robust performance in terms of both

precision and recall [4] values when compared with competing al-

gorithms operating at a much higher sampling rate. The results

are presented in Subsection 3.1. The highlight of our proposed

procedure is that we are able to detect more events for an acknowl-

edged challenging context as compared to the existing approaches

of [2, 3].

3) For extracting features corresponding to each event, where

change in active and reactive power levels (∆P and ∆Q respectively)

are our features of interest, we use a clustering based approach

inspired by the method in [3]. This approach utilizes the shifts

in clusters on the (P ,Q)–plane associated with the occurrence of

events.

4) For learning the feature parameters, we assume that the fea-

ture vectors corresponding to every appliance will form a cluster

over the (∆P ,∆Q)–plane. A hierarchical approach, though currently

executed with some manual supervision, gives better performance

than a vanilla k-means clustering. We then proceed to compute

the mean and variance for each of the clusters to learn the noise

parameters associated with an appliance. For the sake of simplicity
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we assume points in each cluster to be Gaussian distributed with

mean as the cluster centers and independent noise components.

5) The mean and variance values of each appliance’s load are

then used to create a hidden Markov model for net instantaneous

consumption. A Viterbi algorithm then performs the maximum-

likelihood detection under the constraint that there is an alternation

of states, from ON to OFF to ON and so on, for simple devices. We

also force other reasonable constraints over state transitions that

limit switching of appliances to at the most two per event epoch.

This setup is capable of handling false alarms and missed detection

to an extent. We use this setup to predict appliance states for the

BLUED dataset.

This paper covers a part of work being carried out as a part

of a larger program which aims to provide households in a small

town called Aluva, Kerala, India, with some insight into their own

electricity consumption. Towards this, information related to the

ownership of appliances was obtained by a survey administered

on a subset of households and is used in a bottom up model to

disaggregate the total consumption into different components. For

an even a smaller subset, smart meters were installed in series

with the mains for capturing electric power consumption data at a

sampling rate of 1Hz. This work was motivated by our need to infer

appliance usage from the smart meter data. The knowledge gained

from such an inference, the survey data, and historical electricity

consumption data for each household are being used to disaggregate

total consumption into components for cooling, heating, lighting

etc. The findings of the larger program will be reported elsewhere.

Here we restrict attention to inferring appliance usage. See Section 3

for inference of appliance usage in BLUED dataset [2].

The remainder of this paper is organized as follows. In Section 2

we provide a detailed explanation of our working methodology

and the algorithms used for disaggregation. In Section 3 we pro-

vide a performance comparison of our algorithm with those in the

literature.

2 METHODOLOGY
Our methodology involves five steps as indicated in the introduc-

tion. These are preprocessing, event detection, feature extraction,

parameter learning and inference. We shall discuss each of these

steps in detail in this section. Let us first briefly discuss a few ter-

minologies that will be extensively used in the sections ahead.

2.1 Terminology
(1) The appliance state of appliance i at time t , denoted ai (t ), is ei-

ther ON or OFF. The state (ON/OFF) of this appliance is encoded

as:

ai (t ) ∈ {0, 1} (1)

with 0 being OFF and 1 being ON. Multiple appliance states, as

in the case of a ceiling fan, can be handled with more states at

the expense of complexity.

(2) The state of the system containing k appliances, at time t and
denoted by a(t ), is the vector

a(t ) =
[
a1 (t ), a2 (t ), · · · ,ak (t )

]
∈ {0, 1}k (2)

(3) An event is said to have taken place when the state of the

system changes. This happens when at least one appliance

state changes. This leads to change in observed power as can

be seen in Figure 1.

(4) Each event is associated with a set of features that characterizes
it. In this work, the amplitudes of changes in active and reactive

powers (∆P and ∆Q respectively) are the features of interest.

(a)

(b)

Figure 1: Example of events in presence of (a) minor fluctu-
ations, and (b) high amplitude fluctuations arising from the
operation of a washing machine.

2.2 Event Detection and preprocessing
An event leads to a change in aggregate power. This will also hap-

pen when an appliance switches to an intermediate state in case of

multistate appliances like a fan, electric iron, washing machine, etc.

The power consumption data is recorded by a logger at the rate

of 1 sample/second. At this sampling rate all events are captured

essentially as a step rise or fall in active power waveform. Fluctua-

tions, if any, will appear to ride on top of a step change as can be

observed from Figure 1. An event detection algorithm captures the

epochs where an appliance(s) switches states.

Event detection through clustering, as described by Barsim et

al. [3], uses the idea that if no new appliance is turned ON/OFF

the active and reactive power levels would not change. If a device

turns ON/OFF there will be change in corresponding power levels.

Of course, the observed power levels are noisy. What clustering

does is to obtain a scatter plot of active power and reactive power

indexed by time. The samples will be clustered around a location
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(a)

(b)

Figure 2: Results of preprocessing of the signal shown in
(a) Figure 1a; and (b) Figure 1b.

if no appliance changes state. A shift in location of clusters will

be observed in case of an event. Because the number of points are

more in clusters corresponding to steady states, it becomes possible

to ignore occasional spikes/surges and transients that last for a

small duration so that they are not captured as events. A couple

of samples corresponding to a spike or a transient will not form a

sufficiently large cluster to be considered as an event. The advantage

of this approach is that we are able to obtain average initial and final

values of active and reactive power corresponding to each event.

Also, we can obtain a reasonable estimate of time duration for the

power level to transit from one stable state to another stable state

upon occurrence of that event. On the other hand, there are some

limitations as well. If there are significant fluctuations in the signal

or if two events are located less than ∼ 10 seconds apart from each

other in time the algorithm tends to miss them. Also, if there is an

appliance like washing machine running in the background, whose

operations produce high amplitude transitions in the background

(see Fig 1b), then events for appliances of less than 25W power

rating tend to bemissed. On the other hand, as mentioned by Barsim

et.al in [3], this approach can handle sinusoidal steady states for a

6Hz sampling rate signal.

Our event detection approach detects a level change using first

and second differences. The central idea is that whenever there is

a step change, we should be able to observe a high magnitude of

the corresponding derivative (first difference) and change in the

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Illustration of event detection process: (a) an exam-
ple waveform with 3 events; (b) output of moving average
withWma = 5, (c) first difference, (d) first difference values
above a threshold of 2, (e) positive values from first differ-
ence of signal obtained in step 3d, (f) sign of values obtained
in step 3e; the impulses give the event locations.

sign of second derivative (second difference) due to the sigmoidal

nature of the active power samples. However, the implementation

requires preprocessing of the signal to suppress spikes and other

irregularities in the waveform. These are discussed in the self-

explanatory Algorithms 1 and 2 respectively. This step is helpful

because the original waveform is observed to contain fluctuations

and occasional surges of small duration. These could result from

the supplied power itself or due to operation of different appliances.
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Algorithm 1 Spike Suppression

1: procedure SpikeSuppression(x )
// x is the input waveform

2: SignalLen← #Samples in x
3: for i < 10 do

// 10 iterations of positive spike suppression

4: for j < SignalLen do
5: if x[j] > x[j − 1] AND x[j] > x[j + 1] then
6: x1[j]← x [j]+x [j−1]

2

7: else
8: x1[j]← x[j]

9: x ← x1

10: for i < 10 do
// 10 iterations of negative spike suppression

11: for j < SignalLen do
12: if x[j] < x[j − 1] AND x[j] < x[j + 1] then
13: x1[j]← x [j]+x [j−1]

2

14: else
15: x1[j]← x[j]

16: x ← x1

17: return x

Algorithm 2 Suppression of Irregularities

1: procedure SuppressIrregularities(x ,W )

// x is the input waveform.

//W is the window size, i.e. given a sample, the number of neighboring samples to be observed

2: SignalLen← #Samples in x
3: for j < SignalLen do
4: M1 ←

1

W ΣWi=1
x[j + i]

// Mean value ofW samples on the right of j th sample

5: M2 ←
1

W ΣWi=1
x[j − i]

// Mean value ofW samples on the left of j th sample

6: if |x[j] −M1 | < |x[j] −M2 | then
// Choose whichever out ofM

1
andM

2
is closer to the j th sample

7: x1[j]← M1

8: else
9: x1[j]← M2

10: x ← x1

11: return x

Detecting events on the original waveform increases the number of

wrong detections or false discoveries. In Algorithm 1, ten iterations

each for suppression of positive and negative spikes are used. In

Algorithm 2, we allowW ∈ {2, 4} as choices of window size W.

Initially, a higher value ofW is usedwhich is then gradually reduced.

The number of iterations reduce along with the value ofW . The

preprocessing step reshapes the waveform to appear mostly as a

series of step rise(s) or step fall(s) in power level. The effect of

preprocessing steps on the signal is illustrated in Figure 2 using the

example waveforms shown in Figure 1.

After preprocessing, the waveform is fed to the event detection

procedure described in Algorithm 3. Using this approach, it is pos-

sible to detect events separated in time by more than six seconds.

If the separation is any lesser, those events may be detected as a

Algorithm 3 Event Detection

1: procedure EventDetection(x ,Wma,∆Pthresh)
// x is the input waveform

//Wma is moving average window size

// ∆P
thresh

is the threshold to detect change in active power level

// n represents time index

2: EventIdx← ∅

// Create an empty set of event time indices

3: SignalLen← #Samples in x

4: T ← ∆Pthresh
Wma

// Normalized threshold power level change

5: for n < SignalLen do
6: д[n]← 1

Wma

ΣWma−1

i=0
x[n + i]

// Compute moving average

7: for n < SignalLen do
8: f [n]← |д[n] − д[n − 1]|

// Compute magnitude of first difference

9: for n < SignalLen do
10: fT [n]← [f [n] −T ]+

// Apply threshold to values obtained from first difference

11: for n < SignalLen do
12: s[n]← [fT [n] − fT [n − 1]]+

// Get positive values of the first difference of fT

13: for n < SignalLen do
14: y[n]← sign(s[n] − s[n − 1])

// First difference of s[n]

15: for n < SignalLen do
16: if y[n] == 1 AND y[n + 1] == 0 then
17: EventIdx← EventIdx ∪ {n}

// Mark the time index where the value of y changes from 1 to 0

18: return EventIdx

single event. The performance of the event detection algorithm

depends upon the threshold value used for declaring a change in

active power ∆P and upon the moving average window sizeW
used for smoothing. As per our observations, it is difficult to detect

level changes less than 12.5 Watts. Also, if there is an appliance like

washing machine running in the background, there is a possibility

of false alarms (false positives). The results of our event detection

algorithm are presented in Section 3.

Our event detection module does not give features for further

operation unlike the approach by Barsim et al. [3]. This is the

responsibility of a separate feature extraction module which is

described in the next subsection.

2.3 Feature Extraction: Clustering and a
Gaussian model for each appliance

The event detector identifies the epochs of significance where a

state change has been detected. In order to extract the features to be

used for the identification of appliances associated with the event,

we use an approach inspired by [3]. To capture the features, the

changes in active and reactive powers, ∆P and ∆Q , for an event

located at any time index n, we process twenty samples each of

active power and reactive power about index n using the approach
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of [3]. The features of interest for an event are taken to be the

changes in active and reactive powers ∆P and ∆Q respectively, that

result either from a switching ON/OFF of an appliance(s), or from

a change in state in case of a multistate appliance. Features for

different classes of appliances should form different clusters on the

(∆P ,∆Q) – plane because each class of appliance offers a different

load in terms of impedance and hence consumes a certain complex

power. Even in case of a multistate appliance like refrigerator, a

cluster would appear for each multistate if data has been collected

for sufficiently long duration. In principle, one could treat each of

these clusters as a separate appliance. For each appliance we model

the (∆P ,∆Q) as a random variable with the Gaussian distribution.

We must then learn the mean and variance for the (∆P ,∆Q) of this

appliance. There are two ways in which these model parameters

are learnt.

In case we know the appliance label associated with each event,

we can collect all such samples and estimate the mean and variance

from the samples. This is the case with the BLUED dataset because

we know the appliance that caused event.

However, in most practical situations, we do not know the appli-

ance associated with (∆P ,∆Q) for an event. This is the case in the

data collected by us in uncontrolled environment in some Kerala

households as part of our field trials. On these, we use a cluster-

ing algorithm to group events into different categories (clusters),

with each one to be treated as a different appliance entity. We use

a variation of k-means clustering on the (∆P ,∆Q) feature vectors
associated with each event. Before feeding the feature vectors to the

k-means algorithm, every feature xi was normalized, and re-scaled

in the log domain using following transformation:

x⋆ = sign(x
normalized

) · log(1 + |x
normalized

|). (3)

This transformation, reminiscent of speech compression algorithms,

proved useful when high power appliances, that consume more

than 1000W of power, are used along with low power appliances

and there is a need to suppress the spread of features at high power

ranges. The bias term of 1 ensures that signs are preserved and

that the transformation is approximately linear for low values of

x
normalized

.

We roughly cluster events by using a small value of k and then

look deeper into each cluster to see if further clustering could

be done within it. This hierarchical approach was found to yield

better clusters as compared to using a larger value of k right at the

beginning. While working with our own internal data set, which

contained lot of events with less than 100W of change in power

levels, our approach yielded better clustering. If a cluster appeared

to have been wrongly split into multiple parts, those parts were

manually grouped together as one. Once clustering is completed,

mean and variance for each cluster are estimated and are taken to

be the learnt model parameters. Figure 5 in Section 3 shows the

results of clustering using this approach on a real dataset.

2.4 Appliance Inference using a hidden
Markov model

To improve upon the clustering results which so far did not take into

account the ON/OFF state-matching, we model the states of the sys-

tem and the total consumption observations using a hidden Markov

model and deploy the Viterbi algorithm for a maximum-likelihood

sequence detection of appliance states. There are approaches that

use HMMs [1, 6–8, 10] for disaggregation. Instead of modeling indi-

vidual appliances using HMMs [1, 7, 8], we model the entire system

and infer states of this system when events occur. Our final goal

is to use this inference for disaggregation. In a low sampling rate

setting we also have to deal with compound events. We extend the

HMM approach by allowing more than one appliance to change

state in a one second window.

The observed state for the Viterbi algorithm is the aggregate

power consumption consisting of both active and reactive powers

at an event ei . The hidden states are all the possible 2
k
combinations

of states of the k appliances a(t ). Given observations, we must find

out that sequence of hidden states which best explains the sequence

of actual observations of aggregate power
¯Y (t ). We shall discuss

this approach in detail in this section.

Section 2.2 and 2.3 provide us with information about cluster

centers which includes cluster mean µi =
[
µiP µiQ

]T
and cluster

standard deviation σi =
[
σ iP σ iQ

]T
for an appliance/ cluster i. As-

suming each cluster represents an appliance, suppose we have k
appliances denoted as A1,A2, · · · ,Ak−1

,Ak , the state of appliance i
at time t is ai (t ) as defined in Section 2.1. The state of the system is

a(t ) =
[
a1 (t ),a2 (t ), · · · ,ak (t )

]
, as defined in Section 2.1. Let S be

the set of all possible states; |S | = 2
k
.

The mean of the total consumed complex power in system state

Sj is the algebraic sum of the means of the appliances that are ON

(ai (t ) = 1) in state Sj . This is given by:

∆(Sj ) =

k∑
i=0

ai (t |Sj )µi , (4)

where ∆(Sj ) =
[
∆
Sj
P ∆

Sj
Q

]T
is the mean active and reactive power

for state Sj , and ai (t |Sj ) = 1 if ai (t ) = 1 for state Sj .
We assume that each event results in a noisy observation whose

variance is the estimated variance of the corresponding appliance’s

state change. Suppose there are N detected events. The objective is

to find that best possible sequence of system states (a(0),a(1), · · · ,
a(N )) which best explains the sequence of observations

¯Y = (Y (0),
Y (1), · · · ,Y (N )) as described below. The state transitions allow

toggling of multiple appliances in an event epoch (up to 2) but

imposes the constraint of two consecutive ON’s or OFF’s are not

possible. Let t be index of an event under consideration.

We model the aggregate power consumption recorded in the

logger at event-index t to be Y (t ) =
[
P (t ) Q (t )

]T
, where

Y (t ) = Y (0) +
∑

1≤t ′≤t

k∑
i=1

(µi + ϵi (t
′)) (ai (t

′) − ai (t
′ − 1)), (5)

with P (t ) = observed aggregate active power at index t ,
Q (t ) = observed aggregate reactive power at index t ,
µi = mean active and reactive power consumption of appliance i ,
ϵi (t ) = residual mean noise vector corrupting the power profile

of appliance i represented as a Gaussian random variable,

ai (t ) = state of appliance i at event index t.
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The aggregate power consumption (5) can also be written as

Y (t ) = Y (t − 1) +
k∑
i=1

(µi + ϵi (t )) (ai (t ) − ai (t − 1)). (6)

2.4.1 Assumptions. The following assumptions have been made

while modeling the system using a Hidden Markov Model (HMM):

(1) At most two appliances are turned ON/OFF at a time, i.e., each

event shall correspond to a change of appliance state ai (t ) for
at most two appliances. In the BLUED dataset there are 39

compound events (two events occurring together at the same

time-stamp at the 1 Hz resolution) out of 865 events, and no

triple events on Phase A. There were 2 compound triple events

out of 1513 events on Phase B. So at most two state changes

per event seems to be a good assumption.

(2) No appliance(s) can have multiple states. They can have exactly

two states (ON /OFF ) corresponding to 1/0 respectively. This is

clearly a simplifying assumption. The approach can be extended

to appliances with multiple states under certain constraints.

We have discussed the multi-state modelling of refrigerator in

Section 3.

(3) Each appliance has a Gaussian distributed power demand given

by N (µi ,σi ) where µi and σi are respectively the mean and

the standard deviation of appliance i .
(4) The distribution (modelled as a Gaussian) of the changes in

the active and reactive powers for switching an appliance from

0→ 1 and from 1→ 0 are identical except for a sign change.

2.4.2 Data Requirements. We use the traditional Viterbi algo-

rithm [5] that takes into account the transition probabilities of a
time-homogeneous Markov chain, emission probabilities and initial
probabilities. We can also exploit time-of-use information by using

a time-varying transition matrix. For example, change in aggregate

power consumption at night (sleeping hours) is more likely due to

a refrigerator than other appliances with similar characteristics. A

morning sequence of resistive loads is more likely to be a toaster or

a water heater and less likely to be an electric iron. The following

data is required to run the algorithm:

(1) Transition Probabilities: The transition probability is defined

as ti j = probability of transition from state i → j . In order

to exploit the constraint that consecutive ON or consecutive

OFF’s of the same appliance(s) are not possible, we modify the

transition matrix to accommodate this constraint. Taking an

assumption that at most l = 2 appliances can toggle states

corresponding to a single event (as discussed in Section 2.4.1),

we will essentially have p number of possible states to transit

into from any given state. We calculate p as follows,

p =
l∑

m=0

(
k

m

)
. (7)

The transition probabilities to these p states are based on es-

timates from the BLUED dataset, and are 0 for the remaining

2
k − p states. But this could be updated to more general ti j in
future implementations. Note that we can consider higher val-

ues of l and make the model more general. The value l = 2 was

chosen based on the observations on the BLUED dataset. The

dimensions of the transition matrixT (t ) are |T (t ) | = 2
k × 2

k
.

The transition matrix will also take into account any misdetec-

tion of events that might occur due to the inefficiencies of either

the event detection or the feature extraction algorithms. This is

because the probability of being in the same state is non-zero,

and for small changes in active and reactive power, the emission

probabilities corresponding to the appliance state changes will

be small suggesting that the change may be noise. The transi-

tion matrix can incorporate the time of the day. We can also

enhance the matrix by making use of time of use information.

(2) Emission Probabilities: The values of a Gaussian PDF (probability
density function) for the observation Y (t ), centered at the mean

of the system state given by (4), are referred to as emission
probabilities. The observed state (ot ) is a continuous variable.
We discretize it into steps of size 1 Watt each ranging from 0

to 2000 Watts making it |O | = 2000 possible observed states.

The matrix is given by matrix E = eSj (ot ) = state observation

likelihood of observation ot given current system state Sj . The

dimensions for E are |E | = 2
k × |O |. The emission probability

for a system state Sj corresponding to an observed aggregate

power consumption of Y (t ) would be given as the value of

the PDF N (∆(Sj ) ,σ (Sj ) ). When we consider both active and
reactive power as our observations, we modify the emission

probabilities as the product of emission probabilities obtained

form both active and reactive power observations. This is under

the assumption that active and reactive powers changes are

independent random variables.

(3) Initial Probabilities: We assume the trellis to begin at a particular

time-stamp say 00:00 hrs and calculate the frequency distribu-

tion of all appliance states at that particular time-stamp, over

several days, thus giving us the initial probability distribution

I = P (Sj ) =
#Sj

#D
, (8)

where

#Sj = number of times the state of system is Sj at 00:00hrs;
#D = number of days over which I is calculated.
The time of the day for calculating I is chosen to be a time of

minimum household activity in order to reduce initial inference

errors. The size of I is |I | = 2
k .

2.4.3 Maximum likelihood sequence detection. The traditional
Viterbi algorithm [5] is applied on the set of hidden-states to ex-

tract the most likely sequence a(0),a(1), · · · ,a(N ) corresponding
to a sequence of observed total consumption Y (0),Y (1), ...,Y (N ),
where N is the number of observations in the sequence.

Recall the constraint of no two consecutive ONs of OFFs for

a single appliance and the constraint that the maximum number

of appliances changing states at an event is two. We have used (·)

to represent the dot product and (⊙) to represent element wise

multiplication. See Algorithm 4.

Most NILM algorithms take into account only the active power

while running a hidden Markov model. Appliances having a very

similar distribution in the active power co-ordinate but distinct

distributions across the reactive power co-ordinate can be disag-

gregated more effectively by using both active and reactive power

change observations.
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Algorithm 4 Inference Engine

1: procedure Infer(ObsStat of len N , TransProb T , InitProb I ,
EmissProb E) return best path

2:

3: Intialization :

4: for each state s from 1 to 2
k

5: trellis[s, 1]← I [s] ∗ E[s, 1]

6: backpointer [s, 1]← 1

7:

8: Recursion:
9: for each observation t from 1 to N
10: for each state s from 1 to 2

k

11: max

∀s ∈S
trellis[s, t]← trellis[s, t − 1] · E[t] ⊙ T (t )

12: argmax

∀s ∈S
backpointer [s, t]← trellis[s, t − 1] ∗T (t )

13:

14: Termination:
15: return backtrace path by following the states back from

backpointer [sF ,N ]

In order to accommodate multistate appliances, such as the re-

frigerator, we take each possible state to be a separate virtual appli-

ance. We must then allow two or more simultaneous transitions to

handle transitions.Then OFF → mustistate 1 → multistate 2 →

OFF, will be interpreted as, OFF → virtual appliance 1 ON →

virtual appliance 2 ON → both virtual appliances 1 and 2 turned

OFF.

3 RESULTS
To benchmark our framework’s performance, we applied it to the

BLUED dataset [2]. This contains current and voltage values sam-

pled at 12000Hz. This dataset was used because it is fully labeled in

terms of event epochs and the corresponding appliances. Since our

low sampling rate framework involves the sampling rate of 1Hz, we

used current and voltage samples from the dataset to compute the

1 second-averaged active and reactive powers. The resulting data

was used for event detection, feature extraction and as input to the

Viterbi Algorithm for appliance state detection. In the following

subsections we present and discuss the results. Let us mention in

passing that the BLUED dataset has missing current and voltage

samples for two durations totaling to 71 seconds thereby resulting

in a loss of 5 events on phase B. There are also instances where more

than one event take place within a one second duration. We treat

each these as a compound event. The summary of single, multiple

and lost events is presented in Table 1. Our results are based on the

events corresponding to observed signal (power) sampled at 1 Hz.

3.1 Event Detection
Due to our preprocessing step, it is not be possible to mark precisely

an event’s epoch. We must allow some error margin. Let the actual

and detected event locations be denoted by T
actual

and T
detected

respectively. Let the error margin be k samples. Then the time

difference (∆T = T
detected

−T
actual

) in seconds between an actual

and detected event satisfies:

−k ≤ ∆T ≤ k

Let us now recall a few standard definitions related to performance

of the event detection algorithm:

(1) When an event is detected within ±k of the location where it is

actually present in the signal, the result is a True Positive (TP).

(2) When no event is detected within ±k of a location where there

is no event, the result is a True Negative (TN).
(3) When an event is detected within ±k of a location where none

is present in the signal, the result is a False Positive (FP).

(4) When an event is not detected within ±k of the location of an

event, the result is a False Negative (FN).

(5) Recall describes the completeness of detection. It is the ratio

of number of events detected correctly to the number of actual

events present. It is defined as

Recall =
TP

TP + FN

. (9)

(6) Precision describes the correctness of detection. It is a ratio of

number of events detected correctly to the number of detected

events. It is defined as

Precision =
TP

TP + FP

. (10)

(7) F-measure score is defined as

F-measure = 2

(
Precision · Recall

Precision + Recall

)
. (11)

We use Recall and Precision to evaluate the performance of event

detection. Higher values of Recall and Precision indicate better

performance. We have especially aimed at achieving comparable

and high values for both Precision and Recall for phase A as well as

for the challenging phase B of the BLUED dataset. Also, the error

between the detected and actual event time indices should be as

small as possible. The values of precision and recall correspond to

the scenario where an event is said to be detected if it falls within

±3 samples (seconds) of the actual event index.

Our Event detection depends on two parameters – Moving Aver-

age Window size (Wma), and the Threshold (∆P
thresh

) for detecting
change in active power level. Figure 4 shows plots for Precision and

Recall as one parameter is varied while the other is kept fixed. We

studied the variation of Precision and Recall withWma and ∆Pthresh.
We considered different error margins as well for identification of

an event. As seen in Table 2, for ∆P
thresh

= 16W andWma = 4 we

get high values of Precision and Recall for both the phases. For

∆P
thresh

= 10W andWma = 4, the performance on Phase A data is

optimized.

We compare our results with those of approaches presented in

references [2] and [3]; see Table 2. We reiterate that our sampling

rate is 1Hz against the 60Hz sampling rate in both [2] and [3]. As

mentioned before, we use an error margin of 3 samples between

detected and actual event indices. For Phase A, even with the best

parameters, the performance of our algorithm at 1Hz sampling

rate is inferior in terms of Recall and slightly inferior in terms of

Precision. However, our approach performs better for both Recall

and Precision values on the more challenging Phase B data. The

robustified parameters affect the performance on Phase A, but only

marginally while providing a huge improvement on Phase B. If one

were to maximise the worst precision and recall values across the

two phases, our framework fares better than those in [2] and [3].
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(a) (b)

(c) (d)

Figure 4: Performance analysis plots for different errormargins (k ). For Phases A and B respectively–(a) and (c) show variation
versus ∆Pthresh keepingWma = 4 samples; (b) and (d) show variation versusWma keeping ∆Pthresh = 16 Watts.

Table 1: Total events present in 1Hz sampled power data from BLUED dataset

Phase

#Single

events (1)

#Compound

events (2)

#Events

(3) = (1) + (2)

#Events within

lost samples (4)

Total Events

(3) − (4)

Total Events

in Dataset

A 826 39 865 0 865 904

B 1460 58 1518 5 1513 1578

3.2 Appliance Labelling using HMM
For the results, we have evaluated two approaches (see Table 3)

on the BLUED dataset. First, keeping the transition probabilities

to be constant for all the p possible states (A). Second, giving time

independent transition probabilities according to the probability of

an event corresponding to an appliance, based on their frequency

distribution (B). We obtained better results in (B) as compared to

(A). A time-varying transition matrix will be taken up in future

work. We will discuss in detail the performance of (B) in this section.

Performance evaluation with time-varying transition matrix is left

as future work since this requires analysis of some additional survey

data that we have on activities of individuals during the course of

a typical day.

The BLUED dataset contains some appliance labels which corre-

spond to unknown appliances. Also the computational complexity

of the algorithm for even 14 clusters/ appliances is quite high. For

simplicity we attached all the unknown appliances to a single la-

bel and fed it into the Viterbi algorithm. The performance of the

inference engine was evaluated under the following three settings.

The first set of results for disaggregation on Phase A were ob-

tained after relabelling the unknown appliances to a single label.

This keeps the number of appliances down to k = 10. Of the 904

events on Phase A, 616 are corresponding to the refrigerator, which

is a major contributor to the accuracy on the overall dataset. Re-

frigerator is taken as a single appliance even though it has multiple

states (see later for a refinement). The accuracy (49.2%) is affected

to a large extent because of large variances of the unknown appli-

ances and the fact that only active power was used in calculations.

Most of the events in this case were being attributed to the label

of unknown appliances because of the huge variance. The results

have been summarized in Table 3.

We next removed all the events corresponding to the unknown

appliances in order to keep the clusters confined. We were now left

with k = 9 appliance clusters. The refrigerator is again treated as
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(a) (b)

(c) (d)

Figure 5: The outcome of hierarchical clustering mentioned in Section 2.3. (a), (b), (c) and (d) show the same scatter plot at
different zoom levels to illustrate how hierarchical k-means clustering enabled us to separate out points into different clusters.
This can be best viewed in color.

Table 2: Comparison of event detection performance. Algorithm 3 results have been ob-
tained using parameters (∆Pthresh,Wma) = † (16W , 4), ‡ (10W , 4)

Approach Authors (Algorithm 3) [2] [3, 9]

1Hz

Sampling Rate

Robust Values
†

Phase A Optimized
‡

60Hz 60Hz

Recall 86.01% 88.55% 98.16% 98.41%

Precision 97.36% 96.76% 97.94% 99.43%A

F-measure 0.913 0.925 0.980 0.989

Recall 83.48% 88.83% 70.40% 70.48%

Precision 89.83% 68.39% 87.29% 88.97%

Phase

B

F-measure 0.865 0.773 0.779 0.787

a single appliance with large variance. The accuracy in this case

improved to 62.8%.

We now discuss the multiple states of the refrigerator. We found

three peaks from plotting the histogram for the changes in active

power of the refrigerator. These were located around 42, 85 and

126W. Hence, we split the original cluster for refrigerator into 3

subclusters corresponding to the 3 peaks on the histogram. Similar,

was the case with bathroom upstairs lights which had 2 subclusters

centered around 63 and 126W. Since, the clusters centered at 126W

for both refrigerator and bathroom upstairs lights were too close to

be differentiated, we incorporated the effect of reactive power com-

ponent into the model, by introducing a factor for reactive power

in the calculation of emission probabilities. The accuracy obtained

after this splitting into k = 9 + 2 + 1 = 12 clusters yielded a low

accuracy of 52.1%. This was because of the fact that due to splitting

of clusters, the variance for these clusters was dramatically reduced
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Table 3: Performance of appliance inference using HMM on Phase A

Data #Clusters #Events

Accuracy(%)

A B

Unknown appliances relabelled 10 865 25.2 49.24

Unknown appliances removed 9 764 40.31 62.82

Refrigerator and bathroom lights split 12 764 32.6 52.09

Refrigerator and bathroom lights split; σ = 0.02µ 12 764 88.2 89.39

Refrigerator and bathroom lights split;

(Constraint: No compound event)

12 764 7.4 22.25

and many refrigerator events were being incorrectly inferred as

other appliances that had high variances.

The variance estimation for the appliances in the BLUED datasets

was too noisy for most appliances except for the refrigerator and

bathroom lights because of the lower number of points in clusters of

other appliances leading to statistically insignificant second-order

statistics. So we next experimented with σi being set as σi = 0.02µi ,
by observing similar behaviour for clusters of fridge and bathroom

light clusters. The standard deviation is observed to be ∼ 2% of

the mean. This model cuts out the noise in the estimation of the

standard deviation. The resulting accuracy was 89.4% which is quite

promising.

Also, as can be seen in Table 3, the accuracy is very low if

the model operates under the constraint of absence of compound

events.

4 SUMMARY AND FUTUREWORK
Our event detection algorithm is robust to noise as it has performed

significantly better on the challenging Phase B of the BLUED dataset

which is a lot more noisy compared to Phase A. This better per-

formance is when compared to the existing methods of [2, 3]. The

Viterbi algorithm takes into account toggling of multiple appliances.

Its performance is significantly affected in case of huge variance in

observed changes in active and reactive power levels. This therefore

requires good estimates of variances or appropriate models (such

as σi = 0.02µi ) for better performance. But in case of clean clusters

the algorithms performs exceptionally well.

Our study suggests that 1Hz sampling rate is good enough. This

enables us to make the end device very cheap and efficient in terms

of storage and communication.

Methods to improve the performance of event detection proce-

dure to detect more low power appliances would be useful, par-

ticularly when fluctuations are large. Two approaches are being

explored by our group. First, identification and incorporation of

more features would help in disambiguating between appliances of

similar power ratings. Second, time-of-use is an important infor-

mation which can help in identifying an appliance.
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