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ABSTRACT

This work deals with non-intrusive load monitoring using a single
inexpensive device at the mains. We argue that very low sampling
rates (of 1 Hz) may suffice. This enables significant compression and
cheaper end-devices. There are challenges when operating at such
low sampling rates, of course. To achieve good appliance inference
performance we propose improved event detection, feature extrac-
tion, and inference algorithms. The inference algorithm exploits
state transition constraints and proposes the use of a maximum
likelihood sequence detection for improved performance.
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1 INTRODUCTION

Non-intrusive load monitoring (NILM) deals with the estimation of
individual appliance usages from observations of aggregate power
consumption. Prior algorithms assume availability of data sampled
at high sampling rates from, as of now, expensive smart meters.
This paper explores the feasibility of NILM using data sampled at
lower sampling rates. There are three motivations for doing this:
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we want a single smart meter device connected into the mains, a
cheap smart meter and data compression right at the source point.

Problem statement: Given the time-series data of aggregate
power consumption obtained from a single smart meter sampling
at a low rate of ~ 1Hz and installed in series with the mains supply,
infer the sequence of appliances’ ON/OFF states.

This inference problem is not straightforward because the low
sampling rate leads to some complications. Device signatures can
be tracked only at a much lower resolution. Moreover, multiple
events may have occurred during the relatively large 1s sampling
period.

Our methodology involves a series of steps — data processing,
event detection and feature extraction; learning of essential feature
parameters; and inference of appliance states.

1) We first preprocess a component of the signal, which is active
power, to suppress spikes and irregularities. This step results in a
waveform which is essentially a sequence of step changes in the
active power level and hence facilitates event detection.

2) We then use the first and second differences to detect changes
in the power level. Epochs with significant changes are marked
as events, and this constitutes the event detection step. Our event
detection algorithm offers robust performance in terms of both
precision and recall [4] values when compared with competing al-
gorithms operating at a much higher sampling rate. The results
are presented in Subsection 3.1. The highlight of our proposed
procedure is that we are able to detect more events for an acknowl-
edged challenging context as compared to the existing approaches
of [2, 3].

3) For extracting features corresponding to each event, where
change in active and reactive power levels (AP and AQ respectively)
are our features of interest, we use a clustering based approach
inspired by the method in [3]. This approach utilizes the shifts
in clusters on the (P, Q)-plane associated with the occurrence of
events.

4) For learning the feature parameters, we assume that the fea-
ture vectors corresponding to every appliance will form a cluster
over the (AP, AQ)-plane. A hierarchical approach, though currently
executed with some manual supervision, gives better performance
than a vanilla k-means clustering. We then proceed to compute
the mean and variance for each of the clusters to learn the noise
parameters associated with an appliance. For the sake of simplicity
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we assume points in each cluster to be Gaussian distributed with
mean as the cluster centers and independent noise components.

5) The mean and variance values of each appliance’s load are
then used to create a hidden Markov model for net instantaneous
consumption. A Viterbi algorithm then performs the maximum-
likelihood detection under the constraint that there is an alternation
of states, from ON to OFF to ON and so on, for simple devices. We
also force other reasonable constraints over state transitions that
limit switching of appliances to at the most two per event epoch.
This setup is capable of handling false alarms and missed detection
to an extent. We use this setup to predict appliance states for the
BLUED dataset.

This paper covers a part of work being carried out as a part
of a larger program which aims to provide households in a small
town called Aluva, Kerala, India, with some insight into their own
electricity consumption. Towards this, information related to the
ownership of appliances was obtained by a survey administered
on a subset of households and is used in a bottom up model to
disaggregate the total consumption into different components. For
an even a smaller subset, smart meters were installed in series
with the mains for capturing electric power consumption data at a
sampling rate of 1Hz. This work was motivated by our need to infer
appliance usage from the smart meter data. The knowledge gained
from such an inference, the survey data, and historical electricity
consumption data for each household are being used to disaggregate
total consumption into components for cooling, heating, lighting
etc. The findings of the larger program will be reported elsewhere.
Here we restrict attention to inferring appliance usage. See Section 3
for inference of appliance usage in BLUED dataset [2].

The remainder of this paper is organized as follows. In Section 2
we provide a detailed explanation of our working methodology
and the algorithms used for disaggregation. In Section 3 we pro-
vide a performance comparison of our algorithm with those in the
literature.

2 METHODOLOGY

Our methodology involves five steps as indicated in the introduc-
tion. These are preprocessing, event detection, feature extraction,
parameter learning and inference. We shall discuss each of these
steps in detail in this section. Let us first briefly discuss a few ter-
minologies that will be extensively used in the sections ahead.

2.1 Terminology

(1) The appliance state of appliance i at time ¢, denoted a; (¢), is ei-
ther ON or OFF. The state (ON/OFF) of this appliance is encoded
as:

ai(t) € {0, 1} 1)
with 0 being OFF and 1 being ON. Multiple appliance states, as
in the case of a ceiling fan, can be handled with more states at
the expense of complexity.
The state of the system containing k appliances, at time t and
denoted by a(t), is the vector

a(t) = [ai(t), ax(0), ar] ot @

An event is said to have taken place when the state of the
system changes. This happens when at least one appliance
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state changes. This leads to change in observed power as can
be seen in Figure 1.

(4) Each event is associated with a set of features that characterizes
it. In this work, the amplitudes of changes in active and reactive
powers (AP and AQ respectively) are the features of interest.
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Figure 1: Example of events in presence of (a) minor fluctu-
ations, and (b) high amplitude fluctuations arising from the
operation of a washing machine.

2.2 Event Detection and preprocessing

An event leads to a change in aggregate power. This will also hap-
pen when an appliance switches to an intermediate state in case of
multistate appliances like a fan, electric iron, washing machine, etc.
The power consumption data is recorded by a logger at the rate
of 1 sample/second. At this sampling rate all events are captured
essentially as a step rise or fall in active power waveform. Fluctua-
tions, if any, will appear to ride on top of a step change as can be
observed from Figure 1. An event detection algorithm captures the
epochs where an appliance(s) switches states.

Event detection through clustering, as described by Barsim et
al. [3], uses the idea that if no new appliance is turned ON/OFF
the active and reactive power levels would not change. If a device
turns ON/OFF there will be change in corresponding power levels.
Of course, the observed power levels are noisy. What clustering
does is to obtain a scatter plot of active power and reactive power
indexed by time. The samples will be clustered around a location
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Figure 2: Results of preprocessing of the signal shown in
(a) Figure 1a; and (b) Figure 1b.

if no appliance changes state. A shift in location of clusters will
be observed in case of an event. Because the number of points are
more in clusters corresponding to steady states, it becomes possible
to ignore occasional spikes/surges and transients that last for a
small duration so that they are not captured as events. A couple
of samples corresponding to a spike or a transient will not form a
sufficiently large cluster to be considered as an event. The advantage
of this approach is that we are able to obtain average initial and final
values of active and reactive power corresponding to each event.
Also, we can obtain a reasonable estimate of time duration for the
power level to transit from one stable state to another stable state
upon occurrence of that event. On the other hand, there are some
limitations as well. If there are significant fluctuations in the signal
or if two events are located less than ~ 10 seconds apart from each
other in time the algorithm tends to miss them. Also, if there is an
appliance like washing machine running in the background, whose
operations produce high amplitude transitions in the background
(see Fig 1b), then events for appliances of less than 25W power
rating tend to be missed. On the other hand, as mentioned by Barsim
et.al in [3], this approach can handle sinusoidal steady states for a
6Hz sampling rate signal.

Our event detection approach detects a level change using first
and second differences. The central idea is that whenever there is
a step change, we should be able to observe a high magnitude of
the corresponding derivative (first difference) and change in the
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Figure 3: Illustration of event detection process: (a) an exam-
ple waveform with 3 events; (b) output of moving average
with Wy, = 5, (c) first difference, (d) first difference values
above a threshold of 2, (e) positive values from first differ-
ence of signal obtained in step 3d, (f) sign of values obtained
in step 3e; the impulses give the event locations.

sign of second derivative (second difference) due to the sigmoidal
nature of the active power samples. However, the implementation
requires preprocessing of the signal to suppress spikes and other
irregularities in the waveform. These are discussed in the self-
explanatory Algorithms 1 and 2 respectively. This step is helpful
because the original waveform is observed to contain fluctuations
and occasional surges of small duration. These could result from
the supplied power itself or due to operation of different appliances.
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Algorithm 1 Spike Suppression

Algorithm 3 Event Detection

1: procedure SPIKESUPPRESSION(X)
J/ x is the input waveform

2: SignalLen « #Samples in x

3 for i < 10 do

/110 iterations of positive spike suppression

4: for j < SignalLen do
5 if x[j] > x[j — 1] AND x[j] > x[j + 1] then
6 x1[j] « x[l]*;‘[l*”
7: else
8: x1[j] < x[j]
9: X €& X1
10: fori < 10do
// 10 iterations of negative spike suppression
11: for j < SignalLen do
12: if x[j] < x[j — 1] AND x[j] < x[j + 1] then
13: x1[j] « w
14: else
15: x1[j] < x[j]
16: X e x1

17: return x

Algorithm 2 Suppression of Irregularities

1: procedure SUPPRESSIRREGULARITIES(x, W)
/I x is the input waveform.

// W is the window size, i.e. given a sample, the number of neighboring samples to be observed

2 SignalLen « #Samples in x
3: for j < SignalLen do
4: M; « %Zivzlx[j +i]
// Mean value of W samples on the right of 7! sample
5 My « %Z}le[i —1i]
// Mean value of W samples on the left of jt1l sample
6: if |x[j] — M1| < |x[j] — M| then
1/ Choose whichever out of My and My is closer to the /1 sample
7: x1[j] « My
8: else
9 x1[j] « Mz
10: X & x1

11: return x

Detecting events on the original waveform increases the number of
wrong detections or false discoveries. In Algorithm 1, ten iterations
each for suppression of positive and negative spikes are used. In
Algorithm 2, we allow W € {2,4} as choices of window size W.
Initially, a higher value of W is used which is then gradually reduced.
The number of iterations reduce along with the value of W. The
preprocessing step reshapes the waveform to appear mostly as a
series of step rise(s) or step fall(s) in power level. The effect of
preprocessing steps on the signal is illustrated in Figure 2 using the
example waveforms shown in Figure 1.

After preprocessing, the waveform is fed to the event detection
procedure described in Algorithm 3. Using this approach, it is pos-
sible to detect events separated in time by more than six seconds.
If the separation is any lesser, those events may be detected as a
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1: procedure EVENTDETECTION(x, Wia, APihresh)
// x is the input waveform
// Wma is moving average window size
1 AP{hresh is the threshold to detect change in active power level
// n represents time index

2: Eventldx « 0

// Create an empty set of event time indices

3 SignalLen « #Samples in x
4: T APipresh
: ma

// Normalized threshold power level change

5 for n < SignalLen do

. 1 Wha—1 .

6: g[n] « —WmaZl.:mOa x[n+i]
// Compute moving average

7: for n < SignalLen do

8: fIn] < lgln] —g[n—1]|
// Compute magnitude of first difference

9: for n < SignalLen do

10: frin]l < [f[n] - T+
// Apply threshold to values obtained from first difference

11: for n < SignalLen do

12: s(n] < [fr[n] - frln - 1]+
// Get positive values of the first difference of f

13: for n < SignalLen do

14: y[n] « sign(s[n] —s[n —1])
// First difference of s[n]

15: for n < SignalLen do

16: if y[n] == 1 AND y[n + 1] == 0 then

17: Eventldx < Eventldx U {n}

// Mark the time index where the value of ¢y changes from 1 to 0

18: return Eventldx

single event. The performance of the event detection algorithm
depends upon the threshold value used for declaring a change in
active power AP and upon the moving average window size W
used for smoothing. As per our observations, it is difficult to detect
level changes less than 12.5 Watts. Also, if there is an appliance like
washing machine running in the background, there is a possibility
of false alarms (false positives). The results of our event detection
algorithm are presented in Section 3.

Our event detection module does not give features for further
operation unlike the approach by Barsim et al. [3]. This is the
responsibility of a separate feature extraction module which is
described in the next subsection.

2.3 Feature Extraction: Clustering and a
Gaussian model for each appliance

The event detector identifies the epochs of significance where a
state change has been detected. In order to extract the features to be
used for the identification of appliances associated with the event,
we use an approach inspired by [3]. To capture the features, the
changes in active and reactive powers, AP and AQ, for an event
located at any time index n, we process twenty samples each of
active power and reactive power about index n using the approach
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of [3]. The features of interest for an event are taken to be the
changes in active and reactive powers AP and AQ respectively, that
result either from a switching ON/OFF of an appliance(s), or from
a change in state in case of a multistate appliance. Features for
different classes of appliances should form different clusters on the
(AP, AQ) - plane because each class of appliance offers a different
load in terms of impedance and hence consumes a certain complex
power. Even in case of a multistate appliance like refrigerator, a
cluster would appear for each multistate if data has been collected
for sufficiently long duration. In principle, one could treat each of
these clusters as a separate appliance. For each appliance we model
the (AP, AQ) as a random variable with the Gaussian distribution.
We must then learn the mean and variance for the (AP, AQ) of this
appliance. There are two ways in which these model parameters
are learnt.

In case we know the appliance label associated with each event,
we can collect all such samples and estimate the mean and variance
from the samples. This is the case with the BLUED dataset because
we know the appliance that caused event.

However, in most practical situations, we do not know the appli-
ance associated with (AP, AQ) for an event. This is the case in the
data collected by us in uncontrolled environment in some Kerala
households as part of our field trials. On these, we use a cluster-
ing algorithm to group events into different categories (clusters),
with each one to be treated as a different appliance entity. We use
a variation of k-means clustering on the (AP, AQ) feature vectors
associated with each event. Before feeding the feature vectors to the
k-means algorithm, every feature x; was normalized, and re-scaled
in the log domain using following transformation:

®)

This transformation, reminiscent of speech compression algorithms,
proved useful when high power appliances, that consume more
than 1000W of power, are used along with low power appliances
and there is a need to suppress the spread of features at high power
ranges. The bias term of 1 ensures that signs are preserved and
that the transformation is approximately linear for low values of

* .
x™ = sign(Xpormalized) - 108(1 + [Xnormalized!)-

Xnormalized-
We roughly cluster events by using a small value of k and then

look deeper into each cluster to see if further clustering could
be done within it. This hierarchical approach was found to yield
better clusters as compared to using a larger value of k right at the
beginning. While working with our own internal data set, which
contained lot of events with less than 100W of change in power
levels, our approach yielded better clustering. If a cluster appeared
to have been wrongly split into multiple parts, those parts were
manually grouped together as one. Once clustering is completed,
mean and variance for each cluster are estimated and are taken to
be the learnt model parameters. Figure 5 in Section 3 shows the
results of clustering using this approach on a real dataset.

2.4 Appliance Inference using a hidden
Markov model
To improve upon the clustering results which so far did not take into

account the ON/OFF state-matching, we model the states of the sys-
tem and the total consumption observations using a hidden Markov
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model and deploy the Viterbi algorithm for a maximum-likelihood
sequence detection of appliance states. There are approaches that
use HMMs [1, 6-8, 10] for disaggregation. Instead of modeling indi-
vidual appliances using HMMs [1, 7, 8], we model the entire system
and infer states of this system when events occur. Our final goal
is to use this inference for disaggregation. In a low sampling rate
setting we also have to deal with compound events. We extend the
HMM approach by allowing more than one appliance to change
state in a one second window.

The observed state for the Viterbi algorithm is the aggregate
power consumption consisting of both active and reactive powers
at an event e;. The hidden states are all the possible 2k combinations
of states of the k appliances a(t). Given observations, we must find
out that sequence of hidden states which best explains the sequence
of actual observations of aggregate power Y (). We shall discuss
this approach in detail in this section.

Section 2.2 and 2.3 provide us with information about cluster

centers which includes cluster mean p’ = [,ulig ,uég]T and cluster
[O' Ii; o IQ] ! for an appliance/ cluster i. As-
suming each cluster represents an appliance, suppose we have k
appliances denoted as A1, Az, - - -, Ag_1, A, the state of appliance i
at time t is a;(t) as defined in Section 2.1. The state of the system is
a(t) = [al(t), a(t),---, ak(t)], as defined in Section 2.1. Let S be

the set of all possible states; |S| = 2k,

The mean of the total consumed complex power in system state
Sj is the algebraic sum of the means of the appliances that are ON
(a;i(t) = 1) in state S;. This is given by:

standard deviation o; =

k
AS) = Zai(flsj)ﬂi ,

i=0

©

. qT
where A(S) = [Af; AZ’]

for state Sj, and a; (tS;) = 1if a;(t) = 1 for state S;.

We assume that each event results in a noisy observation whose
variance is the estimated variance of the corresponding appliance’s
state change. Suppose there are N detected events. The objective is
to find that best possible sequence of system states (a(0), a(1),- - -,
a(N)) which best explains the sequence of observations Y = (Y(0),
Y(1),---,Y(N)) as described below. The state transitions allow
toggling of multiple appliances in an event epoch (up to 2) but
imposes the constraint of two consecutive ON’s or OFF’s are not
possible. Let t be index of an event under consideration.

We model the aggregate power consumption recorded in the

logger at event-index ¢ to be Y (t) = [P(t) Q(t)] T, where

is the mean active and reactive power

k
YO =Y0)+ > (i +e)@(t) - ait’ 1), ()

1<t'<t i=1

with P(t) = observed aggregate active power at index ¢,
Q(t) = observed aggregate reactive power at index t,
{i = mean active and reactive power consumption of appliance i,
€;(t) = residual mean noise vector corrupting the power profile
of appliance i represented as a Gaussian random variable,
a;i(t) = state of appliance i at event index t.
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The aggregate power consumption (5) can also be written as

k
Y(t)=Y(-1)+ Z(ﬂi +€i(t))(ai(t) —ai(t -1)). (6
i=1

24.1 Assumptions. The following assumptions have been made
while modeling the system using a Hidden Markov Model (HMM):

(1) At most two appliances are turned ON/OFF at a time, i.e., each
event shall correspond to a change of appliance state a;(t) for
at most two appliances. In the BLUED dataset there are 39
compound events (two events occurring together at the same
time-stamp at the 1 Hz resolution) out of 865 events, and no
triple events on Phase A. There were 2 compound triple events
out of 1513 events on Phase B. So at most two state changes
per event seems to be a good assumption.

No appliance(s) can have multiple states. They can have exactly
two states (ON/OFF) corresponding to 1/0 respectively. This is
clearly a simplifying assumption. The approach can be extended
to appliances with multiple states under certain constraints.
We have discussed the multi-state modelling of refrigerator in
Section 3.

Each appliance has a Gaussian distributed power demand given
by N (ui, o;) where p; and o; are respectively the mean and
the standard deviation of appliance i.

The distribution (modelled as a Gaussian) of the changes in
the active and reactive powers for switching an appliance from
0 — 1 and from 1 — 0 are identical except for a sign change.

2.4.2 Data Requirements. We use the traditional Viterbi algo-
rithm [5] that takes into account the transition probabilities of a
time-homogeneous Markov chain, emission probabilities and initial
probabilities. We can also exploit time-of-use information by using
a time-varying transition matrix. For example, change in aggregate
power consumption at night (sleeping hours) is more likely due to
a refrigerator than other appliances with similar characteristics. A
morning sequence of resistive loads is more likely to be a toaster or
a water heater and less likely to be an electric iron. The following
data is required to run the algorithm:

(1) Transition Probabilities: The transition probability is defined
as tjj = probability of transition from state i — j. In order
to exploit the constraint that consecutive ON or consecutive
OFF’s of the same appliance(s) are not possible, we modify the
transition matrix to accommodate this constraint. Taking an
assumption that at most [ = 2 appliances can toggle states
corresponding to a single event (as discussed in Section 2.4.1),
we will essentially have p number of possible states to transit
into from any given state. We calculate p as follows,

-2

The transition probabilities to these p states are based on es-
timates from the BLUED dataset, and are 0 for the remaining
2K — p states. But this could be updated to more general t; j in
future implementations. Note that we can consider higher val-
ues of | and make the model more general. The value [ = 2 was
chosen based on the observations on the BLUED dataset. The
dimensions of the transition matrix T (t) are |T(t)| = 2k x 2k

™)
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The transition matrix will also take into account any misdetec-
tion of events that might occur due to the inefficiencies of either
the event detection or the feature extraction algorithms. This is
because the probability of being in the same state is non-zero,
and for small changes in active and reactive power, the emission
probabilities corresponding to the appliance state changes will
be small suggesting that the change may be noise. The transi-
tion matrix can incorporate the time of the day. We can also
enhance the matrix by making use of time of use information.
Emission Probabilities: The values of a Gaussian PDF (probability
density function) for the observation Y(t), centered at the mean
of the system state given by (4), are referred to as emission
probabilities. The observed state (o) is a continuous variable.
We discretize it into steps of size 1 Watt each ranging from 0
to 2000 Watts making it |O| = 2000 possible observed states.
The matrix is given by matrix E = eg; (0;) = state observation
likelihood of observation o; given current system state S;. The

@

dimensions for E are |E| = 2% x |O|. The emission probability
for a system state Sj corresponding to an observed aggregate
power consumption of Y(t) would be given as the value of
the PDF N(A(SJ), O'(Sj)). When we consider both active and
reactive power as our observations, we modify the emission
probabilities as the product of emission probabilities obtained
form both active and reactive power observations. This is under
the assumption that active and reactive powers changes are
independent random variables.

Initial Probabilities: We assume the trellis to begin at a particular
time-stamp say 00:00 hrs and calculate the frequency distribu-
tion of all appliance states at that particular time-stamp, over
several days, thus giving us the initial probability distribution

®)

#S;

I=P(Sj) = D’

®)
where

#S; = number of times the state of system is S; at 00:00hrs;
#D = number of days over which I is calculated.

The time of the day for calculating I is chosen to be a time of
minimum household activity in order to reduce initial inference
errors. The size of I is |I| = 2¥.

2.4.3 Maximum likelihood sequence detection. The traditional
Viterbi algorithm [5] is applied on the set of hidden-states to ex-
tract the most likely sequence a(0), a(1), - - -, a(N) corresponding
to a sequence of observed total consumption Y (0), Y(1), ..., Y(N),
where N is the number of observations in the sequence.

Recall the constraint of no two consecutive ONs of OFFs for
a single appliance and the constraint that the maximum number
of appliances changing states at an event is two. We have used (-)
to represent the dot product and (®) to represent element wise
multiplication. See Algorithm 4.

Most NILM algorithms take into account only the active power
while running a hidden Markov model. Appliances having a very
similar distribution in the active power co-ordinate but distinct
distributions across the reactive power co-ordinate can be disag-
gregated more effectively by using both active and reactive power
change observations.
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Algorithm 4 Inference Engine

1: procedure INFER(ObsStat of len N, TransProb T, InitProb I,
EmissProb E) return best path

2

3: Intialization :

4 for each state s from 1 to 2¥

5: trellis[s,1] « I[s] = E[s, 1]

6: backpointer[s, 1] « 1

7:

8: Recursion:

9 for each observation ¢ from 1 to N

10: for each state s from 1 to 2%

11 \gnagé trellis[s,t] « trellis[s,t — 1] - E[t] © T(t)
S

12: argmax backpointer(s, t] « trellis[s,t — 1] = T(t)
VseS

13:

14: Termination:

15: return backtrace path by following the states back from

backpointer[sp, N]

In order to accommodate multistate appliances, such as the re-
frigerator, we take each possible state to be a separate virtual appli-
ance. We must then allow two or more simultaneous transitions to
handle transitions.Then OFF — mustistate 1 — multistate 2 —
OFF, will be interpreted as, OFF — virtual appliance 1 ON —
virtual appliance 2 ON — both virtual appliances 1 and 2 turned
OFF.

3 RESULTS

To benchmark our framework’s performance, we applied it to the
BLUED dataset [2]. This contains current and voltage values sam-
pled at 12000Hz. This dataset was used because it is fully labeled in
terms of event epochs and the corresponding appliances. Since our
low sampling rate framework involves the sampling rate of 1Hz, we
used current and voltage samples from the dataset to compute the
1 second-averaged active and reactive powers. The resulting data
was used for event detection, feature extraction and as input to the
Viterbi Algorithm for appliance state detection. In the following
subsections we present and discuss the results. Let us mention in
passing that the BLUED dataset has missing current and voltage
samples for two durations totaling to 71 seconds thereby resulting
in aloss of 5 events on phase B. There are also instances where more
than one event take place within a one second duration. We treat
each these as a compound event. The summary of single, multiple
and lost events is presented in Table 1. Our results are based on the
events corresponding to observed signal (power) sampled at 1 Hz.

3.1 Event Detection

Due to our preprocessing step, it is not be possible to mark precisely
an event’s epoch. We must allow some error margin. Let the actual
and detected event locations be denoted by T,¢tual and Tyetected
respectively. Let the error margin be k samples. Then the time
difference (AT = Tyetected — Tactual) it seconds between an actual
and detected event satisfies:

-k <AT <k
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Let us now recall a few standard definitions related to performance
of the event detection algorithm:

(1) When an event is detected within +k of the location where it is
actually present in the signal, the result is a True Positive (TP).

(2) When no event is detected within +k of a location where there
is no event, the result is a True Negative (TN).

(3) When an event is detected within +k of a location where none
is present in the signal, the result is a False Positive (FP).

(4) When an event is not detected within +k of the location of an

event, the result is a False Negative (FN).

Recall describes the completeness of detection. It is the ratio

of number of events detected correctly to the number of actual

events present. It is defined as

®)

TP
= )
TP + FN
Precision describes the correctness of detection. It is a ratio of
number of events detected correctly to the number of detected
events. It is defined as

Recall =

(6)

TP
Precision = ———. (10)
TP + FP
(7) F-measure score is defined as
Precision - Recall
F-measure = 2 (11)

Precision + Recall |

We use Recall and Precision to evaluate the performance of event
detection. Higher values of Recall and Precision indicate better
performance. We have especially aimed at achieving comparable
and high values for both Precision and Recall for phase A as well as
for the challenging phase B of the BLUED dataset. Also, the error
between the detected and actual event time indices should be as
small as possible. The values of precision and recall correspond to
the scenario where an event is said to be detected if it falls within
+3 samples (seconds) of the actual event index.

Our Event detection depends on two parameters — Moving Aver-
age Window size (Wia), and the Threshold (APypyegh ) for detecting
change in active power level. Figure 4 shows plots for Precision and
Recall as one parameter is varied while the other is kept fixed. We
studied the variation of Precision and Recall with Wy, and APy pesh-
We considered different error margins as well for identification of
an event. As seen in Table 2, for APy esn = 16W and Wi, = 4 we
get high values of Precision and Recall for both the phases. For
APihresh = 10W and Wia = 4, the performance on Phase A data is
optimized.

We compare our results with those of approaches presented in
references [2] and [3]; see Table 2. We reiterate that our sampling
rate is 1Hz against the 60Hz sampling rate in both [2] and [3]. As
mentioned before, we use an error margin of 3 samples between
detected and actual event indices. For Phase A, even with the best
parameters, the performance of our algorithm at 1Hz sampling
rate is inferior in terms of Recall and slightly inferior in terms of
Precision. However, our approach performs better for both Recall
and Precision values on the more challenging Phase B data. The
robustified parameters affect the performance on Phase A, but only
marginally while providing a huge improvement on Phase B. If one
were to maximise the worst precision and recall values across the
two phases, our framework fares better than those in [2] and [3].
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Figure 4: Performance analysis plots for different error margins (k). For Phases A and B respectively—(a) and (c) show variation
versus APy resh keeping Wi, = 4 samples; (b) and (d) show variation versus Wy, keeping APy, esh = 16 Watts.

Table 1: Total events present in 1Hz sampled power data from BLUED dataset

Phase #Single | #Compound #Events #Events within | Total Events | Total Events
events (1) | events (2) | (3) = (1) + (2) | lost samples (4) (3) - (4) in Dataset
A 826 39 865 0 865 904
B 1460 58 1518 5 1513 1578

3.2 Appliance Labelling using HMM

For the results, we have evaluated two approaches (see Table 3)
on the BLUED dataset. First, keeping the transition probabilities
to be constant for all the p possible states (A). Second, giving time
independent transition probabilities according to the probability of
an event corresponding to an appliance, based on their frequency
distribution (B). We obtained better results in (B) as compared to
(A). A time-varying transition matrix will be taken up in future
work. We will discuss in detail the performance of (B) in this section.
Performance evaluation with time-varying transition matrix is left
as future work since this requires analysis of some additional survey
data that we have on activities of individuals during the course of
a typical day.

The BLUED dataset contains some appliance labels which corre-
spond to unknown appliances. Also the computational complexity
of the algorithm for even 14 clusters/ appliances is quite high. For
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simplicity we attached all the unknown appliances to a single la-
bel and fed it into the Viterbi algorithm. The performance of the
inference engine was evaluated under the following three settings.

The first set of results for disaggregation on Phase A were ob-
tained after relabelling the unknown appliances to a single label.
This keeps the number of appliances down to k = 10. Of the 904
events on Phase A, 616 are corresponding to the refrigerator, which
is a major contributor to the accuracy on the overall dataset. Re-
frigerator is taken as a single appliance even though it has multiple
states (see later for a refinement). The accuracy (49.2%) is affected
to a large extent because of large variances of the unknown appli-
ances and the fact that only active power was used in calculations.
Most of the events in this case were being attributed to the label
of unknown appliances because of the huge variance. The results
have been summarized in Table 3.

We next removed all the events corresponding to the unknown
appliances in order to keep the clusters confined. We were now left
with k = 9 appliance clusters. The refrigerator is again treated as
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Figure 5: The outcome of hierarchical clustering mentioned in Section 2.3. (a), (b), (c) and (d) show the same scatter plot at
different zoom levels to illustrate how hierarchical k-means clustering enabled us to separate out points into different clusters.

This can be best viewed in color.

Table 2: Comparison of event detection performance. Algorithm 3 results have been ob-
tained using parameters (APg,resh, Wina) = | (16W, 4), ¥(10W, 4)

Approach Authors (Algorithm 3) [2] [3,9]
i 1Hz
Sampling Rate 60Hz | 60Hz
Robust Values' | Phase A Optimized*
Recall 86.01% 88.55% 98.16% | 98.41%
A | Precision 97.36% 96.76% 97.94% | 99.43%
F-measure 0.913 0.925 0.980 0.989
Phase
Recall 83.48% 88.83% 70.40% | 70.48%
B | Precision 89.83% 68.39% 87.29% | 88.97%
F-measure 0.865 0.773 0.779 0.787

a single appliance with large variance. The accuracy in this case
improved to 62.8%.

We now discuss the multiple states of the refrigerator. We found
three peaks from plotting the histogram for the changes in active
power of the refrigerator. These were located around 42, 85 and
126W. Hence, we split the original cluster for refrigerator into 3
subclusters corresponding to the 3 peaks on the histogram. Similar,
was the case with bathroom upstairs lights which had 2 subclusters
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centered around 63 and 126W. Since, the clusters centered at 126W
for both refrigerator and bathroom upstairs lights were too close to
be differentiated, we incorporated the effect of reactive power com-
ponent into the model, by introducing a factor for reactive power
in the calculation of emission probabilities. The accuracy obtained
after this splitting into k = 9 + 2 + 1 = 12 clusters yielded a low
accuracy of 52.1%. This was because of the fact that due to splitting
of clusters, the variance for these clusters was dramatically reduced
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Table 3: Performance of appliance inference using HMM on Phase A

Accuracy(%)
Data #Clusters | #Events
A B
Unknown appliances relabelled 10 865 25.2 | 49.24
Unknown appliances removed 9 764 40.31 | 62.82
Refrigerator and bathroom lights split 12 764 32.6 | 52.09
Refrigerator and bathroom lights split; o = 0.02u 12 764 88.2 | 89.39
Refrigerator and bathroom lights split;
12 764 7.4 22.25
(Constraint: No compound event)

and many refrigerator events were being incorrectly inferred as
other appliances that had high variances.

The variance estimation for the appliances in the BLUED datasets
was too noisy for most appliances except for the refrigerator and
bathroom lights because of the lower number of points in clusters of
other appliances leading to statistically insignificant second-order
statistics. So we next experimented with o; being set as o; = 0.02y;,
by observing similar behaviour for clusters of fridge and bathroom
light clusters. The standard deviation is observed to be ~ 2% of
the mean. This model cuts out the noise in the estimation of the
standard deviation. The resulting accuracy was 89.4% which is quite
promising.

Also, as can be seen in Table 3, the accuracy is very low if
the model operates under the constraint of absence of compound
events.

4 SUMMARY AND FUTURE WORK

Our event detection algorithm is robust to noise as it has performed
significantly better on the challenging Phase B of the BLUED dataset
which is a lot more noisy compared to Phase A. This better per-
formance is when compared to the existing methods of [2, 3]. The
Viterbi algorithm takes into account toggling of multiple appliances.
Its performance is significantly affected in case of huge variance in
observed changes in active and reactive power levels. This therefore
requires good estimates of variances or appropriate models (such
as o; = 0.02y;) for better performance. But in case of clean clusters
the algorithms performs exceptionally well.

Our study suggests that 1Hz sampling rate is good enough. This
enables us to make the end device very cheap and efficient in terms
of storage and communication.

Methods to improve the performance of event detection proce-
dure to detect more low power appliances would be useful, par-
ticularly when fluctuations are large. Two approaches are being
explored by our group. First, identification and incorporation of
more features would help in disambiguating between appliances of
similar power ratings. Second, time-of-use is an important infor-
mation which can help in identifying an appliance.
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