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Neural Dissimilarity Indices That Predict
Oddball Detection in Behaviour

Nidhin Koshy Vaidhiyan, S. P. Arun, and Rajesh Sundaresan, Senior Member, IEEE

Abstract— Neuroscientists have recently shown that images
that are difficult to find in visual search elicit similar patterns of
firing across a population of recorded neurons. The L1 distance
between firing rate vectors associated with two images was
strongly correlated with the inverse of decision time in behavior.
But why should decision times be correlated with L1 distance?
What is the decision-theoretic basis? In our decision theoretic
formulation, we model visual search as an active sequential
hypothesis testing problem with switching costs. Our analysis
suggests an appropriate neuronal dissimilarity index, which
correlates equally strongly with the inverse of decision time as
the L1 distance. We also consider a number of other possibilities,
such as the relative entropy (Kullback–Leibler divergence) and
the Chernoff entropy of the firing rate distributions. A more
stringent test of equality of means, which would have provided
a strong backing for our modeling, fails for our proposed
as well as the other already discussed dissimilarity indices.
However, test statistics from the equality of means test, when
used to rank the indices in terms of their ability to explain
the observed results, places our proposed dissimilarity index
at the top followed by relative entropy, Chernoff entropy, and
the L1 indices. Computations of the different indices require
an estimate of the relative entropy between two Poisson point
processes. An estimator is developed and is shown to have near
unbiased performance for almost all operating regions.

Index Terms— Action planning, active sensing, hypothesis test-
ing, relative entropy, relative entropy estimation, search prob-
lems, sequential analysis, visual search.

I. INTRODUCTION

WE INVITE the reader to participate in the following
visual search tasks. There are two search tasks on

page 4779. Find the oddball image in each of the two
configurations. Based on the time taken for each of the tasks,
identify which of the two is easier.

Among the two search tasks on page 4779, most subjects
find Task 1 the easier, and Task 2 the tougher. Visual search
performance, as measured by the time taken to find the oddball
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image, should depend on the “similarity” of the two images.
One has the natural hypothesis:

(H ) The more “dissimilar” the two images, the
shorter the time taken to find the oddball image.

To test such a hypothesis, one needs a quantifica-
tion of the notion of “dissimilarity” between two images.
Sripati and Olson [3] proposed one such measure based on
neuronal responses (to the images) in the inferotemporal (IT)
cortex of the macaque brain. They conducted experiments to
1) find the time taken by human subjects in visual search for
a number of image pairs, and 2) record neuronal responses
to the same images from the monkey IT cortex. They found
quantitative evidence in support of (H ) based on their notion
of dissimilarity. We now describe their experiments and recall
their findings to set the stage for this paper.

The experiments of Sripati and Olson [3] were the
following.1

1) Six human subjects were shown a picture as in Figure 1
on page 4779. Six images were placed at the vertices of a
regular hexagon, with one image being different from the
others. To be specific, let Ik and Il be two images. One
of these two was picked randomly with equal probability
and was placed at one of the six locations randomly, again
with equal probability. The other image was placed in the
remaining five locations. The subjects were required to
identify the correct half (left or right) of the plane where
the oddball image was located. The subjects were advised
to indicate their decision “as quickly as possible without
guessing” [3]. The time taken to make a decision2 after
the onset of the image was recorded. This experiment was
repeated on the same subject and across subjects. The
average reaction time across trials, denoted s(k, l), was
recorded. Thus s(k, l) is the estimate of the (symmetrised)
decision time to distinguish between Ik and Il . Similar
estimates were obtained for several pairs of images.

2) For capturing neuronal responses to images, Sripati
and Olson conducted a set of experiments on macaque
monkeys. See [3] for details. A single image Ik (respec-
tively, Il ) was displayed on the screen, and the neu-
ronal firings elicited by Ik (respectively, Il ) on a set of
IT neurons were recorded across multiple sessions.

1The neuronal and behavioral data used in this study was collected by one
of the authors (S. P. Arun) while he was at the laboratory of Prof. Carl Olson,
Carnegie Mellon University.

2A baseline motor reaction time, the time required to make a keypress
response, was estimated for each subject in a separate experiment. This was
then subtracted to get an estimate of the time to make a decision. See [3] for
details.
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Fig. 1. Task 1.

The neuronal representation of the image Ik was taken to
be the vector of average firing rates indexed by the neu-
rons. This is denoted Rk = (Rk(1), Rk(2), . . . , Rk(d)),
where d is the number of tapped neurons. Similarly, the
neuronal representation of image Il was estimated and
denoted as the vector Rl . The measure of dissimilarity
between the two images Ik and Il was then taken to be
the L1-distance normalised by the number of neurons:

‖Rk − Rl‖1 = 1

d

d∑

m=1

|Rk(m) − Rl(m)|. (1)

They obtained the scatter plot (s(k, l)−1, ‖Rk − Rl‖1)k,l

shown in Fig. 3, where (k, l) varied across image pairs,
and observed a remarkably high correlation (r = 0.95),
thereby providing evidence in support of a quantitative
version of (H ).

For a detailed discussion of how neural activity in monkey
visual cortex can be used to predict human search perfor-
mance, we refer the reader to [3], [4]–[6].

The experiments of Sripati and Olson [3] and Figure 3
suggest a natural question of interest to researchers in infor-
mation and decision theory. One does anticipate that s(k, l)
is negatively correlated with some notion of dissimilarity
between Rk and Rl , say diff(Rk, Rl). Figure 3 suggests

s(k, l) · ‖Rk − Rl‖1 = constant . (2)

However, we know of no decision theoretic basis for
diff(Rk, Rl) to be ‖Rk − Rl‖1. What is an appropriate
diff(Rk, Rl)?

Familiarity with Wald’s Sequential Probability Ratio
Test [7] immediately suggests that a relation like (2) should
arise, but with perhaps relative entropy,3 or its variant, in place
of ‖Rk − Rl‖1. A variant may be called for because of the
possibility of controlled actions. To see why, let us summarize
the decision problem in the form of a question:

One of the six images is odd. What would the
decision center of the brain do if it got observations
(firings of neurons) from the human analogue of the

3This refers to relative entropy of the probability measure of a set of
d Poisson point processes with rate vector Rk taken with respect to the
probability measure associated with rate vector Rl .

Fig. 2. Task 2.

Fig. 3. Scatter plot of (s(k, l)−1, ‖Rk −Rl‖1). Sripati and Olson [3] observed
a high correlation of 0.95 between the inverse of reaction time and their
proposed L1 distance between the neuronal firing vectors.

IT cortex, and could control the eye (to gaze at one
of the six objects)? The goal is to minimise the time
to decide the oddball image and its location, yet keep
errors within desired limits.

One can model this decision problem as a sequential
hypothesis testing problem with control. Naghshvar and Javidi,
earlier in [8] and more recently in [9], call such a problem
active sequential hypothesis testing (ASHT). ASHT suggests
a natural candidate that we shall propose for diff(Rk, Rl).
There is however one important modeling issue that we
wish to bring to the attention of the reader. Figure 3
shows that the average reaction times in the experiments
are between 250 ms and 1000 ms. However, it is known
that a switch in focus of gaze from one search location to
another4 has a cost per switch that ranges from tens of ms
to sometimes even higher than 100 ms [10]. To account for
this, we extend ASHT to a setting with switching costs,
and show that the diff(Rk, Rl) appropriate for the setting

4This rapid eye movement is called a saccade.
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TABLE I

CORRELATION WITH DIFFERENT INFORMATION MEASURES

without switching costs works equally well with switching
costs.

As with L1 distance, so with our proposed diff(Rk, Rl), and
indeed, with other natural dissimilarity indices like relative
entropy and Chernoff entropy,5 Table I indicates that all these
dissimilarity measures have similar high correlation with the
behavioural index.6 Given that all these dissimilarity indices
yield high correlation with the reaction times, does our pro-
posed diff candidate stand out in some way? It is certainly
grounded in a decision-theoretic framework as we shall soon
see. But is there some experimental evidence in favour of
our proposed diff candidate? We address this question as
well and propose a method to rank order the dissimilarity
measures in their ability to explain the experimental data of
Sripati and Olson [3].

A. Prior Work on the ASHT Model

Chernoff [11] studied ASHT in the context of designing
optimal experiments. His performance criterion was the total
cost of sampling, which is proportional to delay, plus a penalty
for false detection. Chernoff proposed a policy, the so-called
Procedure A, and showed its asymptotic optimality as the cost
of sampling went to zero. Procedure A maintains a posterior
distribution on the set of hypotheses and, at each instant,
selects actions according to the hypothesis with the highest
posterior probability.

There has been a flurry of recent activity extending Cher-
noff’s work in other directions. In a series of works, Naghshvar
and Javidi [8], [9], [12]–[14] studied ASHT from a Bayesian
cost minimization perspective. The total cost was the sum
of decision delay and a penalty for false detection. They
proposed policies, similar to Chernoff’s Procedure A, iden-
tified bounds on the total cost, and established their proposed
policies’ asymptotic optimality in the same asymptotic regime
as Chernoff’s.7 Nitinawarat et al. [15] studied active hypoth-

5Relative entropy and Chernoff entropy are possible candidates because of
the following. Consider a simple hypothesis testing problem where exactly
one of two images is displayed and the problem is to identify which. The
stopping version of the problem corresponds to Wald’s sequential hypothesis
testing. The expected stopping time to meet a certain error tolerance criteria
ε is roughly log(1/ε)/(relative entropy) [7]. When the decision is to be made
after a fixed number of samples, where the number of samples is fixed upfront
to meet a certain error tolerance criteria, the required number of samples is
roughly log(1/ε)/(Chernoff entropy).

6In Table I, correlation values are based on scatter plots arising from ordered
pairs of images. This explains why L1 correlation value in the table (obtained
from 24 points in the scatter plot) is marginally different from the correlation
indicated in Figure 3 (and obtained from 12 symmetrised points in the plot).

7They also consider the asymptotics where the number of hypotheses is
large. This is not of direct relevance to our study.

esis testing in fixed sample size and in sequential settings.
They also minimize decision delay subject to a constraint
on the conditional probability of false detection. When these
conditional probabilities of false detection are driven to zero,
the resulting asymptotic regime is the same as Chernoff’s.
In this asymptotic regime, they obtained results similar to those
of Chernoff’s but under milder assumptions. They also prove
a stronger asymptotic result based on the “risk associated with
a decision”. Nitinawarat and Veeravalli [16] extended ASHT
to Markovian observations and non-uniform costs on actions.
Recently, Cohen and Zhao [17] studied anomaly detection
from an ASHT perspective. They showed that, in their par-
ticular setting, a simple deterministic policy is asymptotically
optimal. This is in contrast to random policies advocated in the
other works. Further, for their particular setting, they showed
the asymptotic optimality of Chernoff’s policy under milder
assumptions. Srivastava et al. [18] studied the problem of
adaptive sensor selection in a binary hypothesis problem. They
showed that the optimal policy would put all mass on one
of the sensors and none on others. In [19] they extended
their study to multiple hypothesis testing problems, where they
optimized the sensor selection strategy for different objective
functions, namely, min-max detection time, average detection
time, etc. They proposed policies similar to Chernoff’s Pro-
cedure A. None of the above works consider switching costs
associated with a change in action.

B. Diffusion Models for Human Decision Making

Diffusion models have been used to understand human deci-
sion making in simple two alternative forced choice (TAFC)
tasks [20]–[23]. According to the diffusion models for a TAFC
task, the brain accumulates evidences against the two different
choices and a decision is made when the evidence crosses a
threshold. The evidence is modelled as a diffusion process with
positive drift in one case and a negative drift in the alternate
case. The threshold is chosen so as to satisfy the speed-
accuracy tradeoff. The larger the threshold, the more accurate
is the decision, but at the cost of increased decision delay.
The diffusion models match well with many experimental data
on TAFC tasks. Our approach is also based on the notion of
accumulation of evidences. But our ’active’ setting is more
general than the TFAC setting not only because we consider
multiple choices, but also because we can control the observa-
tion quality during the task and optimize costs associated with
switching of actions. Action planning is an important aspect
of our model. Intuitively, the decision maker should choose
observations such that the drift of the accumulated evidence
in favor of the correct choice is maximized. Our work differs
from the above works in that we provide a decision theoretic
analysis of the optimal action planning and the associated
drift.

C. Our Contribution

Broadly, our contribution is a reinterpretation of the exper-
imental results of Sripati and Olson [3] from a decision-
theoretic standpoint. The following highlight some specific
contributions.
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• We formulate the visual search problem as an ASHT
problem with switching costs. We show that a mod-
ification of Chernoff’s Procedure A, one that we call
Sluggish Procedure A, is asymptotically optimal even
with switching costs. Further, we show that the growth
rate of the total cost, as the probability of false detection
is driven to zero, can be made arbitrarily close to that
without switching costs.

• We propose a neuronal dissimilarity index for the diff
functional in lieu of the L1 distance between the two
vectors (Sripati and Olson’s proposed dissimilarity index
in [3]). Our proposed dissimilarity index is based on,
but is not the same as, the relative entropy between
two Poisson point processes with the specified firing rate
vectors.

• We test the goodness of this neuronal dissimilarity index
with respect to L1 by examining which comes closest to
satisfying

s(k, l) · diff(Rk, Rl) = constant, (3)

and which is farthest. We propose a comparison statistic
based on the “equality of means” testing. We use three
different equality of means tests to arrive at three different
statistics. The first is the familiar ANOVA’s F-statistic.
The second is natural too, and is the analogue of the
F-statistic associated with the family of Gamma distrib-
uted random variables instead of Gaussians. The Gamma
distribution, as we will later discuss, provides a better fit
for the delay data. The third is similar to the second, but
assumes a known shape parameter. All three methods’
rankings are consistent: our proposed dissimilarity index
comes out as the best, with relative entropy coming a
close second, in answer to the question: Which neural
dissimilarity measure based on firing rates would be
optimal from a decision-theoretic point of view? We must
however add a sobering note that all three equality of
means tests reject, in a rather spectacular fashion, the null
hypothesis of equal means in (3) at any reasonable level
of statistical significance. So we emphasise that the test
statistics are merely used to rank order the dissimilarity
measures.

• Our estimation of the proposed neuronal dissimilarity
index requires a near unbiased estimate of relative entropy
as an intermediate step. We suggest a procedure to arrive
at a nearly unbiased estimate. This maybe of independent
value.

D. Organisation

The rest of the paper is organised as follows. Section II
studies the ASHT problem with costs for switching actions.
Section III applies the results of Section II to the visual
search problem. Section IV develops the proposed neuronal
dissimilarity index and discusses its performance through
correlation studies and “equality of means” testing. Section V
provides some summarising conclusions. The proofs are rel-
egated to appendices A and B. Appendix C details the

technique used to get a near unbiased estimate of rela-
tive entropy of one Poisson point process with respect to
another.

II. THE ASHT ABSTRACTION

In this section, we describe our mathematical model for
visual search and collect all the relevant theoretical results. The
development will be somewhat abstract. But we shall relate
the model to visual search and shall apply the results to that
setting in Section III. The main contribution of this section
is the asymptotic growth rate of cost. In Section IV, we shall
see how this suggests an appropriate diff function for plugging
into (3).

A. The ASHT Model

1) The Model Description: Let us begin by setting up some
notation.

Let Hi , i = 1, 2, . . . , M denote the M hypotheses of which
exactly one, denoted H , holds true. In this section, we do
not assume a prior on the hypotheses. Let A be the set of
all possible actions which we take as finite: |A| = K < ∞.
Let X be the observation space. Let (Xn)n≥1 and (An)n≥1
denote the observation process and the control process respec-
tively. We write Xn for (X1, . . . , Xn) and similarly An for
(A1, . . . , An). We also write P(A) for the set of probability
distributions on A.

A policy π is a sequence of action plans that at time n
looks at the history Xn−1, An−1 and prescribes a composite
action that is either (stop, δ) or (continue, λ) as explained
next. If the composite action is (stop, δ), then the controller
stops taking further samples (or retires) and indicates δ as its
decision on the hypothesis; δ ∈ {1, 2, . . . , M}. If the composite
action is (continue, λ), the controller picks the next action
An according to the distribution λ ∈ P(A). Let τ (π) be the
stopping time

τ (π) := inf{n ≥ 1|An = (stop, ·)}.
Consider a policy π . Conditioned on action An and the true

hypothesis H , we assume that Xn is conditionally independent
of previous actions An−1 = (A1, A2, . . . , An−1), previous
observations Xn−1 = (X1, X2, . . . , Xn−1), and the policy.
Let qa

i be the conditional probability density function, with
respect to some reference measure μ, of the observation Xn

under action a when H = Hi . Let D(qa
i ‖qa

j ) denote the
relative entropy8 between the conditional probability measures
associated with the observations under hypothesis Hi and
under hypothesis H j , upon action a. Denote by unif(A) the
uniform distribution on A. Let qπ

i (xn, an) be the probability
density function of observations and actions (xn, an) till time n
under policy π , with respect to the common reference measure
μ⊗n ×unif(A)⊗n . Let Zπ

i (n) denote the log-likelihood process
of hypothesis Hi , i.e.,

Zπ
i (n) = log qπ

i

(
Xn, An). (4)

8By an abuse of notation, we use the densities of the probability measures
as the arguments of the relative entropy function.
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Going forward, for ease of notation, we drop the superscript π
while describing qπ

i , Zπ
i , and other variables, but their depen-

dence on the underlying policy should be kept in mind, and
the policy under consideration will be clear from the context.
Define Z(n) = (Z1(n), Z2(n), . . . , Z M (n)). Let Zi j (n) denote
the log-likelihood ratio (LLR) process of Hi with respect
to H j , i.e.,

Zi j (n) = Zi (n) − Z j (n)

= log
qi (Xn, An)

q j (Xn, An)

=
n∑

l=1

log
q Al

i (Xl)

q Al
j (Xl)

.

Let Ei denote the conditional expectation and let Pi denote
the conditional probability measure under H = Hi . (More
formally, these should be represented Eπ

i and Pπ
i . But as done

above, we omit the superscript π .)
Given an error tolerance vector α = (α1, α2, . . . , αM ) with

0 < αi < 1, let �(α) be the set of policies

�(α) = {π : Pi (δ �= i) ≤ αi , ∀ i} .

These are policies that meet a specified tolerance for
the conditional probability of false detection. We define
‖α‖ := maxi αi .

We define λi to be the best mixed action that guards Hi

against its nearest alternative,9 i.e., λi ∈ P(A) such
that

λi := arg max
λ∈P(A)

[
min
j �=i

∑

a∈A
λ(a)D(qa

i ‖qa
j )

]
. (5)

If there are several maximizers, pick one arbitrarily. Further,
define

Di := max
λ∈P(A)

[
min
j �=i

∑

a∈A
λ(a)D

(
qa

i ‖qa
j

)]
. (6)

Let Ai j := {a ∈ A : D(qa
i ‖qa

j ) > 0}, the set of all actions
that can differentiate hypothesis Hi from hypothesis H j . Since
D(qa

i ‖qa
j ) = 0 ⇔ D(qa

j ‖qa
i ) = 0, we have Ai j = A j i .

2) Assumptions: Throughout, we make the following
assumptions.

(I) Ei

[(
log

qa
i (X)

qa
j (X)

)2
]

< ∞ ∀ i, j, a.

(IIa) Ai j �= ∅ ∀i, j such that i �= j , and

(IIb) β :=min
{∑

a∈Ai j
λk(a) | 1 ≤ i, j, k ≤ M, i �= j

}
>0.

Assumption (I) implies that D(qa
i ||qa

j ) < ∞, which
in turn ensures that no single observation can result in a
reliable decision. Assumption (I) is used in proving the
lower bound on the expected number of samples needed
to satisfy the tolerance criterion. This is also assumed by
Chernoff [11] and Nitinawarat et al. [15].

9This suffices because the probability of error is dominated by the nearest
alternative hypothesis.

Assumption (IIa) ensures that for any distinct i and j , there
is at least one control that can help distinguish the hypothe-
ses Hi from H j . If Ai j = ∅ for some i and j , it is impossible
to distinguish them from each other. Assumption (IIb) is
a stronger assumption than, and implies, Assumption (IIa).
Assumption (IIb) ensures that if actions are taken according to
any of the λk in (5) then, for any pair of hypotheses Hi and H j ,
there is a positive probability of choosing an action that can
discriminate the pair. We shall use Assumption (IIb) in the
achievability proofs of our policies. It allows for easier proofs
for our policies, and makes the presentation simpler. However
one can work with Assumption (IIa) as well, and construct
asymptotically optimal policies, with minor modifications to
our policies. We will describe the needed modifications later
in this section.

3) Switching Cost and Total Cost: The costs are as
follows.

Switching Cost: Let g(a, a′) denote the cost of switching
from action a to action a′. Throughout, we make the following
additional assumptions.
(III) g(a, a′) ≥ 0 ∀a, a′ ∈ A, g(a, a) = 0 ∀a ∈ A, and

gmax := maxa,a′ g(a, a′) < ∞.
The assumption in the middle says no switching incurs zero
cost. This assumption will play a crucial role towards our
eventual conclusion that switching costs do not matter in the
asymptotics considered in this paper.

Total cost: For a policy π ∈ �(α), the total cost C(π) is
taken to be the sum of the stopping time (delay) and the net
switching cost, i.e.,

C(π) := τ (π) +
τ (π)−1∑

l=1

g(Al, Al+1).

4) Asymptotics: We shall be interested in the asymptotics
of the minimum expected total cost Ei [C(π)], minimized
over policies in �(α), as ||α|| → 0. Note that there
are M such conditional expected total costs, one for each
hypothesis.

B. Results on the ASHT Model

We collect all the main results in this section. We first
identify a lower bound.

1) The Converse - Lower Bound: The following proposition
gives a lower bound on the conditional expectation of the
stopping time, given hypothesis H = Hi , for all policies
belonging to �(α).

Proposition 1: Assume (I). For each i , we have

lim‖α‖→0
inf

π∈�(α)

Ei [τ (π)]
| log ‖α‖| ≥ 1

Di
, (7)

where Di is given in (6).
Proof: Since only expected time to stop is considered,

proof of [11, Th. 2, p. 766] applies.
We then have the following corollary.
Corollary 2: Assume (I). For each i , we have

lim‖α‖→0
inf

π∈�(α)

Ei [C(π)]
| log ‖α‖| ≥ 1

Di
. (8)

Proof: With switching costs added, we have C(π) ≥
τ (π), and the corollary follows from Proposition 1.
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2) Achievability - A Modification to Chernoff’s
Procedure A: Chernoff [11] proposed a policy termed
Procedure A and showed that it has asymptotically optimal
expected decision delay. We now describe Procedure A.

Policy Procedure A: πP A(L)
Fix L > 0.
At time n:

• Let θ(n) = arg maxi Zi (n), the index with the largest log-
likelihood at the current time. Ties are resolved uniformly
at random.

• If Zθ(n), j (n) < log ((M − 1)L) for some j �= θ(n) then
An+1 is chosen according to λθ(n), i.e.,

Pr(An+1 = a) = λθ(n)(a). (9)

• If Zθ(n), j (n) ≥ log ((M − 1)L) for all j �= θ(n) then the
test retires and declares Hθ(n) as the true hypothesis.

We now describe a modified policy that comes arbitrar-
ily close to being asymptotically optimal in the presence
of switching costs. We introduce a switching parameter η,
0 < η ≤ 1, which determines the maximum transition rate
out of a given action. When η = 1, we will have the original
Procedure A. When η approaches zero, the rate of jumping
out of the current action approaches zero.

Policy Sluggish Procedure A: πS A(L, η)
Fix L > 0, 0 < η ≤ 1.
At time n:

• Let θ(n) = arg maxi Zi (n). Ties are resolved uniformly
at random.

• If Zθ(n), j (n) < log((M − 1)L) for some j �= θ(n) then
An+1 is chosen as follows.

– Generate Un+1, a Bernoulli(η) random variable, inde-
pendent of all other random variables.

– If Un+1 = 0, then An+1 = An .
– If Un+1 = 1, then generate An+1 according to

distribution λθ(n).

• If Zθ(n), j (n) ≥ log (M − 1)L, for all j �= θ(n), then the
test retires and declares Hθ(n) as the true hypothesis.

We also consider two variants of πS A(L, η) which are useful
in the analysis.

• Policy π i
S A(L, η): This is the same as πS A(L, η),

but stops only at decision i when min j : j �=i Zi j (n) ≥
log(L(M − 1)).

• Policy π̃S A(η): This is the same as πS A(L, η), but never
stops, and hence L is irrelevant.

Under a fixed hypothesis H = Hi , and the triplet of policies
(πS A(L, η), π i

S A(L, η), π̃S A(η)), it is easily seen that there
is a common underlying probability measure with respect
to which the processes (Xn, An)n≥1 associated with the
three policies are naturally coupled, with only the stopping
times being different. Under this coupling, the following are
true:

τ (π i
S A(L, η)) ≥ τ (πS A(L, η)),

{τ (πS A(L, η)) > n} ⊂ {τ (π i
S A(L, η)) > n}

⊂
{

min
j : j �=i

Zi j (n) < log(L(M − 1))

}
.

Policy πS A(L, η) is designed to stop only when the poste-
riors suggest a reliable decision. This is formalized now.

Proposition 3: Assume (I) and (IIb). For Policy πS A(L, η),
the conditional probability of error under hypothesis Hi is
upper bounded by Pi (δ �= i) ≤ 1/L .

See Appendix A.1 for a proof. As a consequence we have
πS A(L, η) ∈ �(α) if αi ≥ 1/L for every i .

We now state the time-delay performance of the policy
πS A(L, η).

Theorem 4: Assume (I) and (IIb). Consider the policy
πS A(L, η). The conditional expected time to make a decision,
for each i , satisfies

lim
L→∞

Ei [τ (πS A(L, η))]

log L
≤ 1

Di
. (10)

See Appendix A.2 for a detailed proof. This result will be
crucial because the policy πS A(L, η), despite its sluggishness
induced by η, remains asymptotically optimal when only the
stopping time τ (πS A(L, η)) is considered as cost. We now
leverage this to show that, if η is sufficiently small, πS A(L, η)
is near optimal when switching costs are also taken into
account.

Proposition 5: Assume (I), (IIb), and (III). Consider the
policy πS A(L, η). We then have, for each i ,

lim
L→∞ Ei

[
C(πS A(L, η))

log L

]
≤ 1

Di
+ gmaxη

Di
. (11)

Proof: We can write the following chain of inequalities.

Ei [C(πS A(L, η))]

= Ei

⎡

⎣τ (πS A(L, η)) +
τ (πS A(L ,η))−1∑

l=1

g(Al, Al+1)

⎤

⎦

≤ Ei [τ (πS A(L, η))] + gmax Ei

⎡

⎣
τ (πS A(L ,η))−1∑

l=1

1{Al �=Al+1 }

⎤

⎦

≤ Ei [τ (πS A(L, η))] + gmax Ei

⎡

⎣
τ (πS A(L ,η))−1∑

l=1

Ul+1

⎤

⎦

= Ei [τ (πS A(L, η))] + gmaxηEi [τ (πS A(L, η)) − 1]

≤ Ei [τ (πS A(L, η))] (1 + gmaxη). (12)

In the above chain, the second inequality follows from
Assumption (III). The penultimate equality holds because of
Wald’s equation [24]. Dividing by log L, letting L → ∞, and
using Theorem 4, we see that (11) holds.

3) Asymptotic Optimality: Corollary 2 and Proposition 5
show that, when the conditional probability of false detection
is driven to zero, the proposed policy πS A(L, η) has nearly the
same growth rate for cost as an asymptotically optimal policy
without switching costs. We now make the above statement
precise. The parameter η should be suitably chosen to get
sufficiently close to asymptotic optimality.

Theorem 6: Assume (I), (IIb), and (III). Consider a
sequence of vectors (α(n))n≥1, where α(n) is the nth tolerance
vector, such that limn→∞ ‖α(n)‖ = 0 and

lim
n→∞

‖α(n)‖
mink α

(n)
k

< B (13)



4784 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

for some B . Then, for each n, the policy πS A(Ln, η) with
log Ln = − log mink α

(n)
k belongs to �(α(n)). Furthermore,

for each i ,

lim
n↑∞ inf

π∈�(α(n))

Ei [C(π)]
log Ln

= lim
η↓0

lim
n↑∞

Ei [C(πS A(Ln, η))]
log Ln

= 1

Di
.

(14)
Proof: The fact that πS A(Ln, η) ∈ �(α(n)) is evident from

Proposition 3, and 1/Ln ≤ α
(n)
k , k = 1, 2, · · · , M . We then

have the following chain of inequalities:

1

Di
≤ lim

n↑∞ inf
π∈�(α(n))

Ei [C(π)]

| log ‖α(n)‖|
= lim

n↑∞ inf
π∈�(α(n))

Ei [C(π)]

log Ln

≤ lim
η↓0

lim
n↑∞

Ei [C(πS A(Ln, η))]

log Ln

≤ 1

Di
.

The first inequality follows from Corollary 2. The next equality
follows from the fact that

lim
n→∞

| log ‖α(n)‖|
log Ln

= 1,

which in turn is true due to the assumption (13). The third
inequality follows because πS A(Ln, η) is one specific policy
in �(αn). The last inequality follows from Proposition 5 after
letting η ↓ 0. Consequently, all inequalities must be equalities.

C. Discussion on Assumption (IIb)

Chernoff’s result on the asymptotic optimality of
Procedure A [11] was proved under a stronger assumption
than Assumption (IIb), namely, Chernoff required

D(qa
i ‖qa

j ) > 0 for all a and for all pairs i �= j . (15)

Assumption (IIb) ensures that, at all times, and for any
pair of hypotheses i and j , i �= j , there is a positive
probability of choosing an action that can distinguish the
two hypotheses. This suffices for Chernoff’s proofs to go
through. Specifically, we shall use Assumption (IIb) to prove
the exponential decay result in Proposition 13 of Appendix A.
Nitinawarat et al. [15] proposed a modified Procedure A that
sampled actions randomly at intervals �νl�l≥1, ν > 1, and
showed that their proposed policy is asymptotically optimal
under the weaker Assumption (IIa). The random sampling
enabled them to obtain a polynomial decay counterpart of
Proposition 13 of Appendix A. Recently, Cohen and Zhao [17]
showed the asymptotic optimality of Procedure A under the
weaker Assumption (IIa) for an active anomaly detection prob-
lem, which is a specific ASHT problem. We conjecture that
Chernoff’s Procedure A is asymptotically optimal under the
weaker Assumption (IIa) for all ASHT problems. A proof of
this claim has remained elusive. Nevertheless, policies whose
performances are provably arbitrarily close to the optimum
can be designed. We make the above claim precise in the next
proposition.

Proposition 7: Assume (I) and (IIa). Fix ε > 0. Then there
exists a sequence of policies {πε(L)} that satisfies πε(L) ∈
�( 1

L , 1
L , · · · , 1

L ) and

lim
L→∞ Ei

[
τ (πε(L))

log L

]
≤ 1

(1 − ε)Di
. (16)

We omit the proof because the needed modifications to the
proof of Theorem 4 are straightforward. Policy {πε(L)} can be
constructed as a variant of Procedure A that, at each instant n,
chooses an action according to unif(A) with probability ε or
according to (9) with probability (1 − ε). Note that, at each
time n, the modified policy {πε(L)} uses a randomisation on

the actions of the form λ̃θ(n) = (1 − ε)λθ(n) + εunif(A).
It can be shown that, under hypothesis Hi , θ(n) = i in
finite time with probability 1, and thereby the asymptotic log
likehood ratio rate between Hi and any other H j will be
lower bounded by (1 − ε)Di . Thus, at the cost of a small
penalty, we can design nearly asymptotically optimal policies
under the weaker Assumption (IIa). A similar argument holds
true with switching costs, just as Theorem 4 is extended
in Theorem 6, albeit with a corresponding but arbitrarily
small increase in the total cost. Again, we omit the proof
of this claim with switching costs. The conclusion is that
Assumption (IIa) suffices for the asymptotic growth rate to
be 1

Di
.

III. BACK TO VISUAL SEARCH

We now return to the visual search problem. In the visual
search task, a subject has to identify an oddball image from
amongst W images displayed on a screen (W = 6 in
Figures 1 - 2). For the purpose of modeling, we make the
following assumptions. The subject can focus attention on only
one of the W positions, and the field of view is restricted
to the image at that position alone. Further, we assume that
time is slotted10 and each slot is of duration T . The subject
can change the focus of his attention to any of the W image
locations, but only at the slot boundaries. A switch in focus of
attention (saccade) requires an integer number of slots for the
operation, and no sensing is possible during such a saccade.
The lost time during saccades are modeled as switching costs
(delays), and hence the total decision time is the sum of
sensing delay and switching delays. We assume that the subject
would have indeed found the exact location and identity of
the oddball image before mapping it to a “left” or “right”
decision. These are clearly oversimplifying assumptions, but
enable easier analysis and provide valuable insights.

If the image in the focused location is Ik , we assume
that a set of d neurons react accordingly to produce spike
trains. These constitute the observations. Specifically, these are
modeled as d independent Poisson point processes of duration
T with rates given by the components of the rate vector
Rk = (Rk(1), Rk(2), . . . , Rk(d)). More formally, let X be the
space of counting processes in [0, T ] with an associated σ -
algebra. Let μ1,T be the standard rate 1 Poisson point process
and let μ⊗d

1,T be its d-fold product measure. Let μRk ,T denote

10One could also consider an extension to the continuous-time setting. But
all essential ideas are best described in the slotted setting.
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the probability measure Pk , so that density of μRk ,T with
respect to μ⊗d

1,T is given by

fk := dμRk,T

dμ⊗d
1,T

,

with a similar definition for fl corresponding to image Il .
We now describe two possible settings. Case 2 will turn out

to be closer to the experiment of Sripati and Olson [3].
Case 1: The subject has knowledge that the oddball

image is Ik and that the distractors are Il . Since there are
W locations, and 1 ≤ i ≤ W, there are W hypotheses.

The visual search problem under Case 1 can be formulated
as an ASHT problem as follows.

• Hypotheses: Hi is the hypothesis that the oddball
image (Ik) is at location i , 1 ≤ i ≤ W .

• Actions: The subject may focus on any one of the
W locations, and so A = {1, 2, . . . , W }.

• Observations: The conditional probability density func-
tion qa

i of the observations, under hypothesis Hi and
when action a is chosen, is:

qa
i =

{
fk if a = i

fl if a �= i .

In words, under Hypothesis Hi , the oddball image is Ik and
is at location i . If the action is to focus on location i , i.e.,
a = i , then the subject views the oddball image Ik , and so
the observations have density fk . If a �= i , then the subject
views the distractor image Il , and so the observations have
density fl .

The relative entropies for the various combinations of
hypotheses pairs (i, j), with i �= j , and actions are as follows:

D(qa
i ‖qa

j ) =

⎧
⎪⎨

⎪⎩

D( fk‖ fl) a = i

D( fl‖ fk) a = j

0 a �= i , a �= j .

(17)

Proposition 8: For the setting of Case 1, the λi and Di

of (5) and (6), respectively, are as follows.
If D( fk‖ fl) > D( fl‖ fk)/(W − 1) then

λi (i) = 1, λi ( j) = 0 ∀ j �= i, and Di = D( fk‖ fl).

If D( fk‖ fl) < D( fl‖ fk)/(W − 1) then

λi (i) = 0, λi ( j) = 1

(W − 1)
∀ j �= i, and Di = D( fl‖ fk)

(W − 1)
.

If D( fk‖ fl) = D( fl‖ fk)/(W − 1) then

λi (i) = c, λi ( j) = 1 − c

(W − 1)
∀ j �= i, and any 0 ≤ c ≤ 1

and Di = D( fl‖ fk)

(W − 1)
.

Proof: We can upper bound Di as follows:

Di = max
λ∈P(A)

min
j �=i

∑

a∈A
λ(a)D(qa

i ‖qa
j ) (18)

= max
λ∈P(A)

min
j �=i

[λ(i)D( fk‖ fl) + λ( j)D( fl‖ fk)] (19)

= max
λ∈P(A)

[
λ(i)D( fk‖ fl ) + min

j �=i
λ( j)D( fl‖ fk)

]
(20)

≤ max
λ∈P(A)

[
λ(i)D( fk‖ fl) + 1 − λ(i)

W − 1
D( fl‖ fk)

]
(21)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D( fk‖ fl ) if D( fk‖ fl ) > D( fl‖ fk)
W−1 ,

by setting λ(i) = 1,

D( fk‖ fl ) if D( fk‖ fl ) = D( fl‖ fk)
W−1 ,

by setting λ(i) = c, 0 ≤ c ≤ 1,
D( fl‖ fk)

W−1 if D( fk‖ fl ) < D( fl‖ fk)
W−1 ,

by setting λ(i) = 0.

(22)

Here (19) follows from (17), (20) follows after taking the
minimisation inside, (21) follows because the minimum of a
set of numbers is upper bounded by their arithmetic mean,
and (22) follows by maximising the linear objective function
in (21). Finally, (21) can be made an equality by choosing
all λ j , j �= i to be identical. This proves the Proposition.

Thus, under Hi , to distinguish Hi from its nearest alter-
native, one either focuses only at the oddball location or at
any of the other locations with equal probability depending
on whether D( fk‖ fl ) > D( fl‖ fk)/(W − 1) or not.

Case 2: The subject has knowledge of the two competing
images Ik and Il , but does not know which of the two is the
oddball image.

This visual search problem can be formulated as
a 2W hypothesis testing problem as follows.

• Hypotheses:
Hi with i ≤ W : The oddball image is Ik and is at
location i . All other locations have image Il .
Hi with i > W : The oddball image is Il and is at
location i − W . All other locations have image Ik .

• Actions: The subject can focus on any one of the W
locations, and so A = {1, 2, · · · , W }.

• Observations: The conditional probability density func-
tion qa

i of the observations, under hypothesis Hi and
when action a is chosen, is:

qa
i =

{
fk i ≤ W , a = i

fl i ≤ W , a �= i

qa
i =

{
fl i > W , a = i − W

fk i > W , a �= i − W .

In words, under Hypothesis Hi with i ≤ W , the oddball
image is Ik and is at location i . If the action is to focus on
location i , i.e., a = i , then the subject views image Ik and
so the observations have density fk corresponding to Ik . The
outcome of other actions for this hypothesis are explained
similarly. An analogous description holds for outcomes of
actions under Hi when i > W .

The relative entropies for the various combinations of
hypotheses pairs (i �= j) and actions are as follows. The
expressions are self-explanatory.

(i) i ≤ W, j ≤ W : (23)

D(qa
i ‖qa

j ) =

⎧
⎪⎨

⎪⎩

D( fk‖ fl) a = i

D( fl‖ fk) a = j

0 a �= i , a �= j .

(24)

(i i) i ≤ W, j = i + W : (25)
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D(qa
i ‖qa

j ) =
{

D( fk‖ fl ) a = i

D( fl‖ fk) a �= i .
(26)

(i i i) i ≤ W, j > W, j �= i + W : (27)

D(qa
i ‖qa

j ) =

⎧
⎪⎨

⎪⎩

0 a = i

0 a = j − W

D( fl‖ fk) a �= i , a �= j − W .

(28)

(iv) For i > W , the expressions for j > W , j = i − W , or
j < W but j �= i − W are similar to (i), (i i), and (i i i) above,
respectively, but with fk and fl interchanged.

We now identify the structure of λi and Di for i =
1, 2, . . . , 2W . We refer the reader to Appendix B for a proof.

Proposition 9: Let W ≥ 3. Let i ≤ W . For the setting of
Case 2, the optimum λi and Di of (5) and (6), respectively,
are as follows. If D( fk‖ fl ) > D( fl‖ fk)/(W − 1) then

λi (i) = (W − 3)D( fl‖ fk)

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
,

λi ( j) = D( fk‖ fl )

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
∀ j �= i,

and

Di = (W − 2)D( fk‖ fl)D( fl‖ fk)

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
. (29)

If D( fk‖ fl) < D( fl‖ fk)/(W − 1) then

λi (i) = 0, λi ( j) = 1

(W − 1)
∀ j �= i, and Di = D( fl‖ fk)

(W − 1)
.

If D( fk‖ fl) = D( fl‖ fk)/(W − 1) then

λi (i) = c, for any 0 ≤ c ≤ W − 3

W − 2
,

λi ( j) = 1 − c

(W − 1)
∀ j �= i, and

Di = D( fl‖ fk)

(W − 1)
.

For i > W , λi and Di have the same structure as above, but
with fl and fk interchanged.

IV. PROPOSAL FOR A NEURONAL DISSIMILARITY INDEX

We now apply the results obtained in the previous section
to the data from the experiments of Sripati and Olson [3].
The visual search experiments of Sripati and Olson [3] on
human subjects correspond closely with Case 2 of the previous
section. Similar to Case 2, the subjects in the experiments had
no prior information on which of the two images Ik and Il was
the oddball image and which the distractor. But different from
Case 2, the subjects in the experiments had to learn about the
images Ik and Il on-the-go, while in Case 2 we assume that
the subject knows that the oddball and distractor images come
from the set {Ik, Il }. A more accurate modeling that takes the
learning aspect into account is available in [30]. Here, we shall
proceed with the Case 2 model.

Recall that T is the slot duration during which the subject
focuses attention on a particular image. First, we calculate
the relative entropy D( fk‖ fl) when fk and fl are densi-
ties of vector Poisson point processes of duration T with
rates Rk = (Rk(1), Rk(2), . . . , Rk(d)) and Rl = (Rl(1),

Rl(2), . . . , Rl(d)). Under the assumption that the neurons fire
independently with the specified rates,11 the relative entropy
decomposes into a sum:

D
(
μRk ,T ‖μRl ,T

)

= EμRk ,T

[
log

dμRk ,T

dμRl ,T

]

=
d∑

m=1

EμRk (m),T

[
log

dμRk(m),T

dμRl (m),T

]

= T
d∑

m=1

[
Rk(m) log

(
Rk(m)

Rl(m)

)
− Rk(m) + Rl(m)

]
,

where the term within square brackets in the last summation
is the relative entropy of the Poisson point processes with
rate Rk(m) taken with respect to another such process with
rate Rl(m).

In Case 2, if the number of locations W = 6, if Ik is
the oddball image, if Il is the distractor image, and if
D
(
μRk ,T ‖μRl ,T

)
> D

(
μRl ,T ‖μRk ,T

)
/(W − 1) which is the

case when D
(
μRl ,T ‖μRk ,T

)
is close to D

(
μRk ,T ‖μRl ,T

)
,

then from Proposition 9 we have

Dkl = 4D(μRk ,T ‖μRl ,T )D(μRl ,T ‖μRk ,T )

5D(μRk ,T ‖μRl ,T ) + 3D(μRl ,T ‖μRk ,T )
. (30)

Similarly, if Il is the oddball image, if Ik is the distractor
image, and if D

(
μRl ,T ‖μRk ,T

)
> D

(
μRk ,T ‖μRl ,T

)
/(W −1),

we have

Dlk = 4D(μRl ,T ‖μRk ,T )D(μRk ,T ‖μRl ,T )

5D(μRl ,T ‖μRk ,T ) + 3D(μRk ,T ‖μRl ,T )
. (31)

Let us normalize Dkl per unit time and per neuron and denote
it D̃kl :

D̃kl = 1

dT
Dkl . (32)

The subset of experimental data gathered by Sripati and
Olson that we use in our analysis consisted of the following.

1) Neuronal firing rate vectors were obtained from the
IT cortex of rhesus macaque monkeys for twenty four images.
The number of neurons ranged from 78 to 174, the variation
was due to experimental constraints. But the sets of neurons
tapped were identical for images that were to be paired in
the decision time experiments on human subjects, which we
describe next.

2) Decision time statistics for detection of the oddball
image were obtained from experiments on human subjects.
For oddball image Ik and distractors Il , data was collected as
follows. Six subjects participated and each was shown twelve
stimuli. In each stimulus, the oddball location was picked
uniformly at random from the W = 6 locations. The decision

11As the tapped neurons constituted a sparse sampling of the neurons of
the infero-temporal cortex, we assume that the neurons spike independently
of each other. The independence assumption enables easy computation of
the neuronal metric. That the numerical predictions made with this assump-
tion match up with the experimental data suggests that the independence
assumption is a good one. From a conceptual stand-point, however, the basic
theoretical results of the paper continue to hold even without the independence
assumption.
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Fig. 4. The observed behavioural dissimilarity index versus the proposed neuronal dissimilarity index (D̃) and the L1-neuronal index.

time were averaged across various subjects and across stimuli
instances to get s(k, l). The first argument k stands for the
oddball image Ik .

Recall from Case 2 that Hi , when i ≤ W = 6, is the
hypothesis that the oddball image is Ik and the distractor
images are Il . Taking a cue from Theorem 6, assuming a
sufficiently stringent error tolerance vector of (α, α, . . . , α)
for α sufficiently small, and assuming nearly optimal decision
making, we predict that

Ei [C(π)] ≈ log(1/α)

Dkl
,

where C(π) models the total decision time, the sum of sensing
delay and switching delays. Averaging across i = 1, . . . , W ,
i.e., averaging across all those stimuli where Ik is the oddball
image and Il is the distractor, we get

E[C(π) | Ik is the oddball and Il is the distractor]
≈ log(1/α)

Dkl

= (1/dT ) log(1/α)

D̃kl
,

or in other words

s(k, l) · D̃kl ≈ constant .

For i > W = 6, one similarly has

s(l, k) · D̃lk ≈ constant .

This naturally leads to the proposal

diff(Rk, Rl) = D̃kl . (33)

A. Correlation Study

The behavioural dissimilarity index for an ordered pair of
images (k, l) is the inverse s(k, l)−1 of the average decision
time s(k, l), and gives an indication of the speed of discrimi-
nation. In Figure 4, we plot the behavioural dissimilarity index
s(k, l)−1 against the proposed neuronal dissimilarity index D̃kl

and against the L1 dissimilarity index for various ordered
pairs (k, l). We observe a strong correlation of 0.94 for D̃kl

TABLE II

CORRELATION WITH DIFFERENT NEURONAL DISSIMILARITY INDICES

which is the same as the correlation between the behavioural
dissimilarity index and the L1 distance ||Rk − Rl ||1.

Now that we have discovered that our proposed neuronal
dissimilarity index and the L1 index are both equally well-
correlated with the behavioural dissimilarity index, it is nat-
ural to ask if there is some basis to choose one over the
other. The point that our proposed dissimilarity index has a
“microscopic basis” (grounded in decision theory and based
on the ASHT framework) that explains the “macroscopic
observations” (speed of discrimination) is certainly in our
favour. But there are other related dissimilarity indices such as
relative entropy (KL) and Chernoff entropy that have similar
correlation with the behavioural dissimilarity index. Table II
summarises the correlations (second column) along with their
p-values (third column). It is therefore natural to ask if a finer
examination of the experimental data can help us identify the
“best” among these neuronal indices. We shall pursue this in
the next subsection and shall propose a method to rank order
the indices in terms of their ability to explain the experimental
data.

A more basic question, and one that is motivated by our
expectation that s(k, l) ·diff(Rk, Rl) = constant , is whether it
is more appropriate to correlate s(k, l) versus diff(Rk, Rl)

−1

as opposed to what is done in Figure 4 which correlates
s(k, l)−1 versus diff(Rk, Rl). Table II reports these correla-
tions (fourth column) along with the corresponding p-values
(fifth column), and Figure 5 provides the correlation plot. The
new correlations, though high, are lower than those reported
in the second column.
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Fig. 5. The observed decision time versus the inverse of the proposed neuronal index (1/D̃) and the inverse of the L1-neuronal index.

We do not have a clear-cut answer on which of the two
scatter plots –

(s(k, l), diff(Rk, Rl)
−1) or (s(k, l)−1, diff(Rk, Rl)) (34)

– and the corresponding correlations is more appropriate.
However, recall that Pearson’s test for rejecting the null
hypothesis that a bivariate normal has independent components
is that the correlation statistic r arising from independent and
identically distributed samplings of the bivariate normal has
|r | exceeding a threshold. Given that s(k, l) is the arithmetic
mean of n = 72 experimentally measured decision time,
when centred and scaled, s(k, l) is likely to be closer to
normal than its inverse. We therefore believe the correlation
of (s(k, l), diff(Rk, Rl)

−1), the one that leads to lower corre-
lations, is more appropriate. The indicated p-values, shown in
Figures 4 and 5 and in Tables I and II, are the probabilities
that the correlation statistic equals or exceeds the indicated
observed levels when the null hypothesis is true (independent
components).

B. Model Testing via Three “Equality of Means” Tests

In Section I, we posed the question of identifying a suitable
diff function that satisfies

s(k, l) · diff(Rk, Rl) = constant . (35)

In the previous section, we modeled visual search as an ASHT
problem and proposed the diff given in (33), denoted D̃. How-
ever, we also saw that the candidates L1, Chernoff entropy,
relative entropy, and D̃, all yielded high correlation with the
behavioural dissimilarity index. We now address the question
of which of these dissimilarity indices best explain the data.

Our methodology is as follows. Consider a fixed diff(Rk, Rl)
function. Let us test the new null hypothesis:

(H0) : E[C(π) | Ik is the oddball and Il is the distractor ]
× diff(Rk, Rl) = constant,

where C(π) is the decision time for a fixed error tolerance
on the ordered image pair (Ik , Il). The decision time data
across subjects and across multiple stimuli that have Ik as the
oddball and Il as the distractor images constitute one group

associated with the ordered pair (k, l). H0 hypothesises that
the diff-scaled means is constant across groups. Let us identify
the diff indices for which the corresponding null hypothesis is
accepted for a desired significance level. If the test passes for
diff(Rk, Rl) = D̃kl , then there is significant evidence that the
data is well-explained by our theory.

To perform this test, we must do the following for each diff
candidate.

• Identify a test statistic T (diff) for testing equality of
means of the diff-scaled decision times. Note each diff
leads to a separate hypothesis test.

• Accept or reject the corresponding null hypothesis for a
desired level of significance.

Let τk,l( j) be the j th sample in the group indexed by (k, l).
Let n denote the common number of samples in each group,
and let g be the number of groups. The experimental data of
Sripati and Olson had 24 groups and 72 samples per group;
n = 72 and g = 24. The number of samples in each group
was identical.

1) Test 1 - Oneway ANOVA: : The one-way analysis of
variance (ANOVA) statistic [25] is often used to test equality
of means across groups when the samples are Gaussian and
when the variances across groups are the same. This test is
known to be robust to the Gaussian assumption. It is also
known to be robust to the equality of variances assumption
so long as the number of samples is the same across groups
[26, p.243]. As we will soon see, we neither have Gaussianity
nor equality of variances across groups. But since the number
of samples is the same across the groups, we may still use the
oneway ANOVA test.

Let Tk,l ( j) := τk,l ( j)·diff(Rk, Rl). Write the sample means,
the mean across groups, and the pooled variance as follows.

T̄k,l = 1

n

n∑

j=1

Tk,l( j),

¯̄T = 1

g

∑

(k,l)

T̄k,l ,

S2
p = 1

g(n − 1)

∑

(k,l)

n∑

j=1

(Tk,l( j) − T̄k,l)
2.



VAIDHIYAN et al.: NEURAL DISSIMILARITY INDICES THAT PREDICT ODDBALL DETECTION IN BEHAVIOUR 4789

TABLE III

EQUALITY OF MEANS TEST. VARIOUS STATISTICS

Note that these depend on the diff index under consideration.
The oneway ANOVA test [25, p.533] is as follows: Reject H0
(associated with the diff under consideration) if

T (diff) :=

∑

(k,l)

n
(

T̄k,l − ¯̄T
)2

S2
p

> (g − 1)Fg−1,g(n−1),α,

where α is the desired significance level and Fg−1,g(n−1),α is
the corresponding threshold.12

Look at the second and third columns of Table III. The
first row contains the value of the ANOVA statistic with
diff(Rk, Rl) = D̃kl and the corresponding p-value. The
p-value is so small that we must summarily reject the null
hypothesis H0 associated with diff = D̃ (for, say, a typical
significance level of 5%). The situation is the same for the
other dissimilarity indices, as can be seen from the remaining
rows of Table III. In each test, the null hypothesis is rejected
for, say, the typical 5% significance level.

Observe that the values of T (D̃), T (KL), and T (Chernoff)
are close to each other while T (L1) is significantly larger.
This suggests that one could use T (·) to rank the different
dissimilarity measures in their ability to explain the observed
data. The oneway ANOVA statistic suggests the ranking

D̃ > KL > Chernoff > L1. (36)

We shall return to this observation after trying out two other
refinements of the equality of means test.

2) Equality of Means for Gamma Distributions: We began
with the oneway ANOVA statistic because it is known to be
robust to the Gaussian assumption. We checked for Gaussian-
ity anyway. Lilliefor’s test for Gaussianity is a variation on the
Kolmogorov-Smirnov test when the null hypothesis does not
specify the parameters of the Gaussian distribution. None of
the 24 groups of data passed the test of Gaussianity at the 5%
significance level.

We next looked for features in the data that may suggest
other distributions. First, the decision times are positive ran-
dom variables. Next, Figure 6 shows the standard deviation
versus the mean decision time for the 24 image pairs. Observe
the linear relation, with y = 0.61x being the best linear
fit. A class of distributions on R+ whose standard deviation
is a linear function of its mean is the family of Gamma
distributions with a fixed shape parameter. The Gamma density

12The threshold at which the cdf of the F-distribution with (g−1, g(n−1))
degrees of freedom equals 1 − α.

Fig. 6. Standard deviation of the decision times versus mean decision times,
across image pairs.

Fig. 7. Superposition of CDF of GLRT statistic under the Gamma assumption
for the equality of means test. Each CDF consists of 1000 sample points.
Each CDF corresponds to a random instance of mean and shape parameter.
Mean was uniformly sampled from [0.2,1.2]. Shape parameter was uniformly
sampled from [2,5]. Each sample point consisted of 24 groups, and 72 samples
per group, same as that for the experimental data for decision times. The
indicated intervals for mean and shape were based on the experimental data.

with shape parameter s and scale m is

(m�(s))−1(x/m)s−1e−x/m .

The mean is ms and the standard deviation is m
√

s so that
standard deviation to mean ratio is 1/

√
s. The slope of 0.61

in Figure 6 suggests a shape parameter of 1/(0.61)2 = 2.7.
The Kolmogorov-Smirnov test on the data against Gamma
distributions with shape parameter 2.7 and mean set to the
sample mean accepts 18 of the 24 image pairs and rejects 6
out of 24 image pairs at 5% significance level. This suggests
that Gamma is a better fit to the data than Gaussian.

We conducted a generalised likelihood ratio test (GLRT) for
equality of means under the Gamma assumption, and under
a constant shape parameter assumption. This corresponds to
an “equality of scales” test; Shiue et al. [27] suggest a
statistic analogous to the oneway ANOVA but for Gamma
distributions. In Figure 7 we plot the CDF of the GLRT
statistic under the null hypothesis and under equal mean and
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equal shape parameter assumptions. Note that the CDF of this
statistic is robust to the shape parameter.

In column 4 of Table III we provide the GLRT statistics
for the decision time data. If we compare the GLRT statistics
from Table III against GLRT CDF in Figure 7, we observe
that the statistics is well beyond the 5% significance point.
Again, we must summarily reject each of the equality of means
hypotheses. Indeed, each GLRT statistic is off the chart in
Figure 7. However, direct ordering of the statistics suggests
the ranking (36), the same as that obtained with ANOVA.

3) Equality of Means for Gamma Distributions With a Fixed
and Known Shape Parameter: Consider the setting where
the shape parameter is known to be s across the groups.
The GLRT for equality of means under this setting can be
straightforwardly shown to be s log(AM/GM) where AM and
GM are the arithmetic and geometric means across groups
defined as follows:

AM = ¯̄T = 1

g

∑

(k,l)

T̄k,l and GM =
⎛

⎝
∏

(k,l)

T̄k,l

⎞

⎠
1/g

.

The last column of Table III shows this statistic for the various
dissimilarity measures. Yet again, the statistics are off the
chart (CDF not plotted) with so small p-values that the null
hypothesis of equality of means must be rejected. Once again,
direct ordering of statistics suggests the ranking (36).

4) A Lesser Goal - Ranking: We saw that all three equality
of means tests reject all four dissimilarity measures. In retro-
spect, this might have been anticipated. If the test associated
with D̃ had passed, that would have been a spectacular
confirmation of our theory, which we really did not expect due
to the crudeness of our modeling. Nevertheless, the equality
of means test statistic provides a means to check which of the
four dissimilarity measures best explains the data.

A little thought will inform us that all three equality
of means tests check how clustered the sample means are,
across various groups. This is clearest in the third equality
of means test (for Gamma distributions with a known and
common shape parameter across groups) where the statistic is
a monotone function of the ratio AM/GM. The test passes if
AM/GM is small, that is if the group means are close to each
other, and fails if it is large.

The columns of Table III corresponding to each test statistic
suggest that the data points are most clustered under D̃ scaling
and least clustered with L1 scaling. The ranking is as in (36).

Let us note D̃, KL, and Chernoff are close to each other, and
L1 a distant fourth. Indeed, the vector (T̄(k,l)/

¯̄T )(k,l) associated
with the L1 dissimilarity measure majorised ( [28, Defn.A.1])
the other three. There was no such ordering among D̃, KL,
and Chernoff.

V. DISCUSSION

We modelled the visual search task of Sripati and Olson [3]
as an active sequential hypothesis testing problem (ASHT).
We extended the ASHT results of Chernoff [11] to the
case with switching costs. We showed that adding switching
costs does not affect the asymptotic growth rate of the total
cost, provided ‘no switching’ incurs ‘zero cost’. This is an

interesting result in itself that may have wider applicability
in sleep-wake cycling scenarios with switching costs where a
change in the state of a node attracts a cost, but ‘no switching’
incurs ‘zero cost’. See [29] for a result along these lines.

The ASHT model suggests a dissimilarity index between
pairs of images. The inverse of the asymptotic growth rate
of the total cost in the ASHT model is proposed as a
dissimiliarity index between pairs of images. We derived
expressions for computing the proposed dissimilarity index for
the specific search task considered by Sripati and Olson [3].
The proposed dissimilarity index is a function of the neuronal
firing rates elicited by the images in the infero temporal
cortex of macaque monkeys.

Correlation study indicated that the proposed index is as
good as L1 and other dissimilarity measures such as the
Chernoff entropy and the relative entropy (KL). Equality of
means testing indicated that the equality of means hypothesis
should be rejected, and this can be done with overwhelming
confidence.

Equality of means testing procedure is perhaps a rather
stringent test. What would be an appropriate test if, say, we can
leave one group out? Does our proposed neuronal dissimilarity
index pass such a less stringent test? Can we leave two groups
out? Which two? We do not yet have a principled way to
address these questions and instead decided to stick to the
strictest test.

The statistics associated with the equality of means testing,
however, suggested a ranking of the dissimilarity measures.
We proposed three different statistics. Each measures the
spread across groups of the group sample means. One of
them is the familiar AM/GM ratio. The ranking was consistent
across the three different statistics. Our proposed index was
ranked first, relative entropy (KL divergence) and Chernoff
entropy were a close second and third, and L1 was a somewhat
distant fourth.

The decision times were tested for the Gamma distribution
and the test passed for two-third of the groups. The shape
parameter for the distributions of delay, estimated via the
method of moments, was close to 3.

In our work, we took only valid trials, i.e., those where the
decisions made by the subjects were correct. We also assumed
that the error probability tolerance were the same across
subjects. It would be interesting to model speed-accuracy
tradeoffs and see how they vary across individuals. It would
also be interesting to explore how they vary for a single subject
under different incentive settings.

Extension of ASHT to the case when no prior information
is available about the images, where the subject has to actively
learn Rk and Rl on-the-fly, is an interesting problem that we
have addressed in a related paper [30].

APPENDIX A
PROPERTIES OF LOG-LIKELIHOOD RATIO

PROCESSES UNDER πS A(L, η)

We will now show some desirable properties of the log-
likelihood ratio processes under the policy πS A(L, η). These
properties are analogous to those of classical sequential
hypothesis testing, but their analyses are more involved
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because actions introduce 1) dependency in the log-likelihood
ratio increments, and 2) the increments are no longer iden-
tically distributed. The properties we will establish will be
useful in forthcoming proofs.

Define �Z j i(n) = Z j i(n) − Z j i(n − 1). We then have
�Z j i(n) = −�Zi j (n). Here, �Z j i(n) is the increment in
the process associated with the log-likelihood ratio of H j

with respect to Hi at time n. We now show that under
Assumptions (I) and (IIb), and under policy πS A(L, η), the
log-likelihood ratio processes are well behaved in the follow-
ing sense: the log-likelihood ratio of the true hypothesis Hi

with respect to any other hypothesis H j has a positive drift.
This will be made precise in Proposition 13. Towards that, we
first establish the following lemmas.

Lemma 10: Assume (I) and (IIb). Fix i , j such that j �= i .
Let a ∈ Ai j . We then have, for all 0 < s < 1,

ρa
i j (s) := Ei

[
es�Z ji (n)|An = a

]
< 1 ∀n. (37)

Proof: The following sequence of inequalities hold:

Ei

[
es�Z ji (n)|An = a

]

=
∫

x∈X

(
qa

j (x)

qa
i (x)

)s

qa
i (x)dx

=
∫

x∈X

(
qa

j (x)
)s (

qa
i (x)

)1−s
dx

<

(∫

x∈X
qa

j (x)dx

)s (∫

x∈X
qa

j (x)dx

)1−s

(38)

= 1.

The strict inequality in (38) follows from Hölder’s inequality
and the fact that a ∈ Ai j implies qa

i and qa
j are not linearly

related.
The above result was obtained by conditioning on the action

An to lie in the desirable set Ai j . The result is independent of
the underlying policy, because when conditioned on the current
action An , the observation is independent of the policy.

Recall that π̃S A(η) is the non-stopping variant of πS A(L, η).
Further, recall from Assumption (IIb) that we have β =
min

{∑
a∈Ai j

λk(a) | 1 ≤ i, j, k ≤ M, i �= j
}

> 0. Now we

show that, under Assumption (IIb) and policy π̃S A(η), a
similar result holds, but without conditioning on the action
An . First, let us define

ρi j (s) := ηβ

(
max

a∈Ai j

ρa
i j (s)

)
+ (1 − ηβ). (39)

The fact that ρi j (s) < 1 is evident from Lemma 10.
Lemma 11: Assume (I) and (IIb). Consider the policy

π̃S A(η). Fix i . We then have, for all 0 < s < 1,

Ei

[
es�Z ji (n)|Xn−1, An−1

]
≤ ρi j (s) < 1 ∀n,∀ j �= i.

Proof: The following sequence of inequalities hold as
described after the last inequality.

Ei

[
es�Z ji(n)|Xn−1, An−1

]

= Ei

[
Ei

[
es�Z ji(n)|Xn−1, An−1, An

]
|Xn−1, An−1

]

=
∑

a∈A
Pi (An = a|Xn−1 An−1)Ei

[
es�Z ji(n)|An = a

]
(40)

≤ Pi (An ∈ Ai j |Xn−1 An−1) max
a∈Ai j

Ei

[
es�Z ji (n)|An = a

]

+ (1 − Pi (An ∈ Ai j |Xn−1 An−1)) (41)

≤ ηβ

(
max

a∈Ai j

ρa
i j (s)

)
+ (1 − ηβ)

< 1. (42)

Equality (40) holds because conditioned on An = a, �Zi j (n)
is independent of the remaining history. Inequality (41) holds
because, when a /∈ Ai j , we have �Zi j (n) ≡ 0. The
penultimate inequality is a consequence of the fact that, under
πS A(L, η), one will choose an action a ∈ Ai j with probability
at least ηβ.

We now proceed to show an inequality analogous to
the Chernoff bound for the log-likelihood ratio. In classical
sequential hypothesis testing, due to independence of samples
across time, the expectation of the likelihood ratio can be
split as the product of the expectation of the likelihood ratio
increments, as follows:

Ei

[
es Z ji (n)

]
=

n∏

k=1

Ei

[
es�Z ji (n)

]
.

The same decomposition is not valid in ASHT because actions
introduce dependency in the likelihood ratio increments across
time. However, we can obtain an upper bound of the product
form.

Lemma 12: Assume (I) and (IIb). Consider policy π̃S A(η).
Fix i . We then have, for all 0 < s < 1,

Ei

[
es Z ji (n)

]
≤ (ρi j (s))

n ∀n, ∀ j �= i.
Proof: Once again, we proceed through the chain of

inequalities all of which are now self-evident:

Ei

[
es Z ji (n)

]

= Ei

[
Ei

[
es Z ji (n−1)es�Z ji(n)|Xn−1, An−1

]]

= Ei

[
es Z ji (n−1) Ei

[
es�Z ji(n)|Xn−1, An−1

]]

= ρi j (s)Ei

[
es Z ji (n−1)

]
(from Lemma 11)

≤ (ρi j (s))
n,

where the last inequality follows by induction.
We now show an exponential decay property of the log-

likelihood process which primarily stems from the antic-
ipated negative drift in Z j i(n) for j �= i . Let us
alert the reader that in the following Proposition we deal
with Zi j (n) = −Z j i(n).

Proposition 13: Assume (I) and (IIb). Consider policy
π̃S A(η). Fix i . There exist constants CK > 0 and γ > 0
such that

Pi

(
min
j �=i

Zi j (n) ≤ K

)
< CK e−γ n. (43)

CK is independent of i , but γ may depend on i .
Proof: This follows from the previous lemmas via the

following :

Pi

(
min
j �=i

Zi j (n) ≤ K

)
= Pi

(
max
j �=i

Z j i(n) ≥ −K

)
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≤
∑

j �=i

Pi
(
Z j i(n) ≥ −K

)
(44)

≤
∑

j �=i

es K Ei

[
es Z ji (n)

]
(45)

≤ es K
∑

j �=i

(ρi j (s))
n (46)

≤ es K · (M − 1) · max
j �=i

(ρi j (s))
n

= CK e−γ n,

where max j �=i ρi j (s) = e−γ , and CK = Mes K . The inequality
in (44) is due to the union bound, the inequality in (45) is due
to Chernoff’s bound with 0 < s < 1, and the inequality in (46)
is due to Lemma 12.

We now show that under the hypothesis H = Hi , the θ(n)
process eventually settles at i . Indeed we show something
stronger. Let us define

Ti := inf{n : θ(n′) = i, ∀n′ ≥ n}, (47)

the time at which θ(n) meets its eventuality of settlement at i .
This random variable has a tail that decays exponentially fast,
as shown next.

Lemma 14: Assume (I) and (IIb). Consider policy π̃S A(η).
Fix i . Then there exist C > 0 and b > 0, both finite and
possibly dependent on i , such that

Pi (Ti > n) < Ce−bn. (48)
Proof: By the union bound

Pi (Ti > n) = Pi (θ(n′) �= i for some n′ ≥ n)

≤
∑

n′≥n

Pi
(
θ(n′) �= i

)

≤
∑

n′≥n

Pi

(
min
j �=i

Zi j (n
′) ≤ 0

)
.

The assertion now follows from Proposition 13.
Thus far we have considered the policy π̃S A(η) which never

stops. We now show that the policy πS A(L, η) stops in finite
time.

Proposition 15: Assume (I) and (IIb). Consider the policy
πS A(L, η). Fix i . We then have

Pi (τ (πS A(L, η)) < ∞) = 1.
Proof: We consider π i

S A(L, η) for analysis. Recall that
τ (πS A(L, η)) ≤ τ (π i

S A(L, η)), and hence it is sufficient to
show that

Pi (τ (π i
S A(L, η) < ∞) = 1. (49)

From Proposition 13, we know that, for a suitable constant C̃ ,

Pi

(
min
j �=i

Zi j (n) < log(L(M − 1))

)
< C̃e−γ n.

Since this bound is summable, by the Borel-Cantelli lemma,

Pi

(
min
j �=i

Zi j (n) < log(L(M − 1)) infinitely often

)
= 0,

which is stronger than the assertion (49).
Propositions 13 and 15 are the ones that will be used in the

sequel.

A. Proof of Proposition 3

The proof relies on a standard change of measure argument.
Let � j denote the event that the policy πS A(L, η) declares H j

as the true hypothesis.

Pi (δ �= i) =
∑

j �=i

Pi (δ = j) + Pi (τ (πS A(L, η)) = ∞)

=
∑

j �=i

∑

n>0

∫

ωn∈� j

d Pi (ω
n) + 0

=
∑

j �=i

∑

n>0

∫

ωn∈� j

d Pi

d Pj
(ωn)d Pj (ω

n)

≤
∑

j �=i

∑

n>0

∫

ωn∈� j

1

(M − 1)L
d Pj (ω

n)

≤ 1

(M − 1)L

∑

j �=i

Pj (� j )

≤ 1

L
. (50)

The second equality holds because we have shown in
Proposition 15 that the stopping time is finite with probabil-
ity 1. The inequality (50) follows because ωn ∈ � j implies
Z j i(n)(ωn) ≥ log((M − 1)L), that is, d Pi

d Pj
(ωn) ≤ 1

(M−1)L . �

B. Proof of Theorem 4: Achievability

We assume (I) and (IIb). All statements in this proof are
under H = Hi and under Sluggish Procedure A. We follow
the proof technique of Chernoff [11, Lem. 2]. Chernoff’s proof
technique does not go through completely because unlike in
Procedure A, the next action in Sluggish Procedure A is not
conditionally independent of the previous action, given the
current likelihood values. A similar issue was addressed by
Nitinawarat and Veeravalli in [16], in the context of Markovian
observation model, and we will adapt their proof technique to
our setting.

Let us first setup some notation. Fix ε > 0. Define

Dij :=
∑

a∈A
λi (a)D(qa

i ‖qa
j ),

where λi is as defined in (5). Let Di be as defined by (6),
i.e., Di = min j �=i Di j . Under the Sluggish Procedure A, the
transition probability matrix T P(θ(n)) of the action process
An at time n is given by

T P(θ(n)) = (1 − η)I + η
(

1 λT
θ(n)

)
. (51)

It is easy to verify that the stationary distribution associated
with T P(θ(n)) is λθ(n). Define Fk−1 := σ(Xk−1, Ak−1), the
σ -field generated by the random variables (Xk−1, Ak−1).

We now upper bound the expected time to make a decision
under Sluggish Procedure A as follows:

Ei [τ (πS A(L, η))] ≤ Ei

[
τ (π i

S A(L, η))
]

=
∑

n≥0

Pi

(
τ (π i

S A(L, η)) > n
)

≤ (1 + ε) log(L(M − 1))

Di
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+
∑

n≥ñ

Pi

(
τ (π i

S A(L, η)) > n
)
, (52)

where

ñ = (1 + ε) log(L(M − 1))

Di
.

To complete the proof, we will now show that for any ε > 0,
the second term on the right-hand side of (52) goes to zero as
L → ∞. Indeed, we claim that each term in the summation
decays exponentially with n with an exponent that does not
depend on L. Assuming the claim, the tail sum vanishes as
L → ∞, because ñ → ∞. This suffices to complete the proof
of Theorem 4.

We now proceed to prove the claim. Observe that

Pi

(
τ (π i

S A(L, η)) > n
)

≤ Pi

(
min
j �=i

Zi j (n) ≤ log(L(M − 1))

)

≤
∑

j �=i

Pi
(
Zi j (n) ≤ log(L(M − 1))

)
.

Fix one j �= i . (The same analysis holds for other j .) Then

Pi
(
Zi j (n) ≤ log(L(M − 1))

)

= Pi

(
n∑

k=1

�Zi j (k) ≤ log(L(M − 1))

)

= Pi

(
n∑

k=1

(
�Zi j (k) − Ei

[
�Zi j (k)|Fk−1

] + ε′)

+
n∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′)

+ n
(
Dij − 2ε′) ≤ log(M − 1)L

)

≤ Pi

(
n∑

k=1

(
�Zi j (k) − Ei

[
�Zi j (k)|Fk−1

] + ε′) < 0

)

+ Pi

(
n∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0

)

+ Pi
(
n(Dij − 2ε′) ≤ log(L(M − 1))

)
. (53)

Look at the first probability term in (53). Each entry within the
summation has a positive mean and, from Chernoff’s bounding
technique in [11, Lem. 2], there exists a b(ε′) > 0 such that

Pi

(
n∑

k=1

(
�Zi j (k)−Ei

[
�Zi j (k)|Fk−1

] + ε′)<0

)
≤ e−nb(ε′).

The third probability term is 0 if we choose an ε′ small
enough such that n(Dij −2ε′) > log(L(M −1)), for all n > ñ.
Indeed, any ε′ satisfying 0 < ε′ < ε

1+ε
Di
2 suffices. So set

ε′ = ε
1+ε

Di
4 .

We now proceed to show that the second term also decays
exponentially to zero. Let Ti be as defined in (47). For a
suitably chosen ε′′, and we will soon indicate how to choose
it, we have

Pi

(
n∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0

)

≤ Pi

(
n∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0, Ti ≤ nε′′
)

+ Pi (Ti > nε′′).

From Lemma 14, the second probability term on the
right-hand side decays exponentially with n. To show
that the first probability term on the right-hand side
decays exponentially with n, we use a technique of
Nitinawarat and Veeravalli [16, (6.23)].

First, we indicate how to choose ε′′. Define

C̃ = min
a∈A

Ei
[
�Zi j (k)|Ak = a

] − Dij

= min
a∈A

D(qa
i ‖qa

j ) − Dij .

Since Dij is the λi -weighted average of D(qa
i ‖qa

j ), we have

C̃ ≤ 0. Choose ε′′ small enough so that ε̃ := ε′ + ε′′C̃ > 0.
We then have

Pi

(
n∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0, Ti ≤ nε′′
)

= Pi

⎛

⎝
�nε′′�∑

k=1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′)

+
n∑

k=�nε′′�+1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0,

Ti ≤ nε′′
⎞

⎠

≤ Pi

⎛

⎝�nε′′�(C̃ + ε′)

+
n∑

k=�nε′′�+1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε′) < 0,

Ti ≤ nε′′
⎞

⎠

≤ Pi

⎛

⎝
n∑

k=�nε′′ �+1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε̃
)

< 0,

Ti ≤ nε′′
⎞

⎠

≤ P̃i

⎛

⎝
n∑

k=�nε′′�+1

(
Ei

[
�Zi j (k)|Fk−1

] − Dij + ε̃
)

< 0

⎞

⎠

≤ Ce−nb̃(ε̃), (54)

for some C > 0 and some b̃(ε̃) > 0. The second inequality
follows from the fact that C̃ ≤ Ei

[
�Zi j (k)|Fk−1

] − Dij , for
all k. The third inequality follows from the choice of ε̃ and
the fact that

�nε′′�(C̃ + ε′) + (n − �nε′′�)ε′ ≥ (n − �nε′′�)ε̃.
P̃i is a new measure under which actions are taken according
to Sluggish Procedure A but assuming θ(n) = i ∀n, and
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the observations are conditionally independent of past obser-
vations and actions, given the current action. Consequently,
under P̃i , the action process An is a stationary Markov Chain
with transition probability matrix T P(i). By the ergodic the-
orem and concentration inequalities for Markov Chains [31],
this term also decays exponentially with n, which is (54). �

APPENDIX B
PROOF OF PROPOSITION 9

We will focus only on i ≤ W and will determine

Di = max
λ∈P(A)

min
j �=i

∑

a∈A
λ(a)D(qa

i ‖qa
j ). (55)

The case i > W can be handled similarly and is omitted.
Using (23) - (27), we can simplify the minimisation in (55)
by considering three regions for j as follows:

Di = max
λ∈P(A)

min

{
min

j≤W, j �=i
(λ(i)D( fk‖ fl ) + λ( j)D( fl‖ fk)),

λ(i)D( fk‖ fl) + (1 − λ(i))D( fl‖ fk),

min
j>W, j �=i+W

(1 − λ(i) − λ( j − W ))D( fl‖ fk)

}
, (56)

= max
λ∈P(A)

min

{
λ(i)D( fk‖ fl) + min

j �=i
λ( j)D( fl‖ fk),

λ(i)D( fk‖ fl) + (1 − λ(i))D( fl‖ fk),

(1 − λ(i) − max
j �=i

λ( j))D( fl‖ fk)

}
. (57)

Observe that the second term is always greater than or equal
to the other two terms, and hence can be removed from the
minimisation. Thus,

Di = max
λ∈P(A)

min

{
λ(i)D( fk‖ fl ) + min

j �=i
λ( j)D( fl‖ fk),

(1 − λ(i) − max
j �=i

λ( j))D( fl‖ fk)

}
. (58)

We now perform the maximisation over λ in two steps. First,
let us fix λ(i) and optimise over the distribution of 1 − λ(i)
among the other actions. Since

min
j �=i

λ( j) ≤ 1 − λ(i)

W − 1
≤ max

j �=i
λ( j),

we have
(

min
j �=i

λ( j)

)
D( fl‖ fk) ≤

(
1 − λ(i)

W − 1

)
D( fl‖ fk)

and

− max
j �=i

λ( j)D( fl‖ fk) ≤ − (1 − λ(i))

W − 1
D( fl‖ fk).

Thus both the terms within braces in (58) are lesser than
or equal to the corresponding terms for equal distribution of
1 − λ(i) among the other actions. The optimisation problem
is now reduced to a single variable optimisation of the form

Di = max
0≤λ(i)≤1

min

{
λ(i)D( fk‖ fl) + (1 − λ(i))

W − 1
D( fl‖ fk),

(1 − λ(i))
W − 2

W − 1
D( fl‖ fk)

}
. (59)

Second, we now perform the optimisation in (59) over λ(i).
The first term in the minimisation is increasing or non-
increasing in λ(i) depending on D( fk‖ fl) > D( fl‖ fk)/
(W − 1) or D( fk‖ fl) ≤ D( fl‖ fk)/(W − 1), respectively. The
second term is decreasing in λ(i).

1) Suppose D( fk‖ fl ) > D( fl‖ fk)/(W − 1), then the two
terms viewed as linear functions over λ(i) cross each other,
and so the maximum will be achieved at the point of equality,
i.e.,

λ(i)D( fk‖ fl ) + (1 − λ(i))

W − 1
D( fl‖ fk)

= (1 − λ(i))
W − 2

W − 1
D( fl‖ fk).

Solving for λ(i) yields

λ(i) = (W − 3)D( fl‖ fk)

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
,

λ( j) = D( fk‖ fl )

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
, ∀ j �= i,

Di = (W − 2)D( fk‖ fl )D( fl‖ fk)

(W − 1)D( fk‖ fl ) + (W − 3)D( fl‖ fk)
.

2) Suppose D( fk‖ fl) < D( fl‖ fk)/(W − 1), then the max-
imum is achieved at λ(i) = 0. Then λ( j) = 1/(W − 1),
∀ j �= i , and

Di = min

{
D( fl‖ fk)

W − 1
,
(W − 2)D( fl‖ fk)

W − 1

}

= D( fl‖ fk)

W − 1
,

since W > 3.
3) Suppose D( fk‖ fl ) = D( fl‖ fk)/(W − 1), then
the maximum is achieved at any of the following
λ: λ(i) = c, for any 0 ≤ c ≤ W−3

W−2 . Then
λ( j) = 1 − c/(W − 1), ∀ j �= i , and

Di = min

{
D( fl‖ fk)

W − 1
, (1 − c)

(W − 2)D( fl‖ fk)

W − 1

}

= D( fl‖ fk)

W − 1
.

This completes the proof. �

APPENDIX C
ESTIMATION OF RELATIVE ENTROPY RATE

The computation of our proposed neuronal index requires
a computation of the relative entropy rate between two
Poisson point processes from estimates of their rates.
Wang et al. [32] considered the problem of estimating the
relative entropy between two continuous distributions based
on i.i.d. samples from each distribution. The authors proposed
a k-nearest neighbour based estimate for the relative entropy
and showed that their estimate is asymptotically unbiased and
mean-square consistent. However, the approach in [32] is not
directly applicable to our problem because we do not have i.i.d.
samples from the distributions. Instead we only have empirical
firing rates of the two Poisson point processes.
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The relative entropy between two Poisson point processes
with rates R1 and R2 is

1

T
D(μR1,T ‖μR2,T ) = R1 log

(
R1

R2

)
+ R2 − R1

= R1 log R1 − R1 log R2 + R2 − R1.

(60)

Let Ni (k, T ) be the number of spikes observed in time
slot k, 1 ≤ k ≤ n, of duration T on the i th process, i = 1, 2.
The empirical firing rate is then R̂i = 1

nT

∑n
k=1 Ni (k, T ). A

natural estimate for (60), based on the observations, would
be to substitute Ri , i = 1, 2 by their respective empirical
estimates R̂i , i = 1, 2, to get

D̂ = R̂1 log

(
R̂1

R̂2

)
+ R̂2 − R̂1

= R̂1 log R̂1 − R̂1 log R̂2 + R̂2 − R̂1. (61)

A little reflection suggests that this is a bad estimate, for
there is a positive probability that R̂1 > R̂2 = 0, yielding

ER1,R2

[
D̂
]

= ∞. Estimate (61) is thus biased (though
consistent). Our approach is to obtain estimates for each of
the terms in (60) with minimal bias.

Unbiased and maximum likelihood estimates for the third
and fourth terms on the right hand side of (60) are the
respective empirical firing rates themselves. Let us there-
fore now study the second term. We may assume that the
firings are independent, given R1 and R2. Thus we may
look for an estimator of the form −R̂1 f (R̂2) which has
expectation −R1 ER2 [ f (R̂2)]. For this to be close to the
desired −R1 log R2, we look for a function f (R̂2) such that

ER2

[
f (R̂2)

]
≈ log R2. The difficulty is due to the log(0) =

−∞ artifact. We consider a simple fix of adding a nonzero
offset to the empirical estimate, i.e., we consider estimates
of the form log(R̂ + θ). Figure 8 shows the optimum offset
θ∗(R) for different firing rates R when n = T = 1. The
optimum offset θ∗(R) can be seen to converge to 0.5 for
large R. Further, the convergence is quite fast, θ∗(R) is close
to 0.5 for all R greater than 3. Hence in this work we use
θ = 0.5 as the offset, thus resulting in an estimator for
log(R) of the form log(R̂ + 1/2). For a general n and T we
then have E

[
log(nT R̂ + 1/2)

]
≈ log(nT R), which in turn

implies E
[
log(R̂ + 1/2nT )

]
≈ log(R). Thus an estimator for

a general n and T would be log
(

R̂ + 1/2nT
)

. The estimator

for the second term in (60) is then −R̂1 log
(

R̂2 + 1/2nT
)

.
One could look for better estimators with the offset being a
function of the observed empirical means. In this work we
stick to the constant offset estimator, with the constant offset
being θ = 0.5, as it is reasonable to assume that the neurons
have a firing rate greater than 3/nT = 3/(24 ∗ 0.25) = 0.5
spikes/second (n = 24, T = 250 ms), thus putting them in the
firing rate regime where θ = 0.5 is a good offset for near
unbiasedness. The values T = 250ms and n = 24 correspond
to the neuronal recording time and the number of repetitions
in the neuronal recording experiment of Sripati and Olson [3].

Fig. 8. Optimum offset (θ∗(R)) to minimise bias for different firing
rates (R).

To address the first term of (60) we consider estimates of
the form R̂1g(R̂1) such that

ER1

[
R̂1g(R̂1)

] ∼= R1 log R1.

Expanding the expectation above for n = T = 1, we obtain,

ER1

[
R̂1g(R̂1)

]
=

∞∑

k=0

kg(k)
R1

ke−R1

k!

= R1

∞∑

k=1

g(k)
Rk−1

1 e−R1

(k − 1)!
= R1 ER1

[
g(R̂1 + 1)

]
.

Thus we want a g such that ER1

[
g(R̂1 + 1)

] ∼= log R1.

From the discussion on the second term, we know that
ER1

[
log(R̂1 + 1

2 )
]

∼ log R1, and hence a good choice for

g would be g(R̂1) = log(R̂1 − 1
2 ). Thus our estimate for the

first term for a general n and T is
⎧
⎪⎪⎨

⎪⎪⎩

R̂1 log
(

R̂1 − 1
2nT

)
if R̂1 ≥ 1

2nT ,

i.e., there is atleast one point,

0 otherwise.

Therefore our combined estimate for the relative entropy
rate in (60), based on the average firing rate estimates R̂1 and
R̂2 and obtained over a time of duration nT is

D̂(R̂1‖R̂2)

=
⎧
⎨

⎩

[
R̂1 log

(
R̂1− 1

2nT

R̂2+ 1
2nT

)
+ R̂2 − R̂1

]+
if R̂1 ≥ 1

2nT

R̂2 otherwise.

Relative entropy being a convex function of its arguments,
the plug-in estimator of (61) would always have a positive
bias. Naturally, an unbiased estimator would have a smaller
value than (61), and our proposed estimator does satisfy this
requirement.
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Fig. 9. Estimator bias for the proposed relative entropy rate estimator.
n = 24, T = 250 ms.

In Figure 9 we plot the estimator bias for different (R1, R2)
pairs for n = 24 and T = 250 ms, motivated by the specific
neuronal experimental data of Sripati and Olson [3]. From
Figure 9 we can see that our proposed estimator has low esti-
mation error for most (R1, R2). Estimation error is relatively
large only when R1 is large and R2 is close to zero.
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