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tions are taken to be private information known only to the respective agents. We allow only a scalar
signal, called a bid, from each agent to the social planner. Yang and Hajek [Yang, S., Hajek, B., 2007.
“VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional
signals”, IEEE Journal on Selected Areas in Communications 25 (6), 1237-1243.] and Johari and Tsitsiklis
[Johari, R., Tsitsiklis, J. N., 2009. “Efficiency of scalar-parameterized mechanisms”, Operations Research 57
(4), 823-839.] proposed a scalar strategy Vickrey-Clarke-Groves (SSVCG) mechanism with efficient Nash
equilibria. We consider a setting where the social planner desires minimal budget surplus. Example sit-
uations include fair sharing of Internet resources and auctioning of certain public goods where revenue
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cient and comes close to budget balance by returning much of the payments back to the agents in the
form of rebates. We identify a design criterion for almost budget balance, impose feasibility and voluntary
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1. Introduction department, and auctioning of certain public goods, where revenue
maximization is not a consideration.

This paper is about allocation of an infinitely divisible good to

several strategic agents. The social planner who does this alloca-
tion has limited information in the sense that the agents’ valuation
functions are taken to be private information known only to the
respective agents. We allow only a scalar signal from the agents to
the social planner, which we call a bid. This is the only means by
which agents can provide information about their valuation func-
tions to the social planner. We are interested in an efficient mecha-
nism: the allocation should maximize the sum of valuations of the
agents. Under these constraints, we study mechanisms that come
close to budget balance. Example situations described next, include
fair sharing of Internet resources, disbursal of funds by a parent
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Example 1. A communication channel with total capacity C is to
be shared among several rational and strategic agents. This chan-
nel can be allocated via a randomized allocation rule, and is thus
an infinitely divisible resource. If an agent gets a long term average
throughput of g;, the agent’s valuation is v;(a;), where v; : [0,C] —
R, is increasing, concave, and known only to the agent. Naturally,
¥;a; < C. The agents wish to share the resources among them-
selves without money transferred to an external agent. Suppose
that the agents agree to communicate with an external coordinator
who attempts to maximize the sum of valuations. The signal space
complexity to signal the valuation functions to the coordinator is
prohibitive, particularly when the agents are geographically sepa-
rated, because the functions can be arbitrary within the infinite-
dimensional class of increasing concave functions. To model this
communication constraint, we assume that the agents can send
only a scalar signal. In this example, the coordinator is the so-
cial planner who desires efficient allocation without an interest in
maximizing revenue. The scalar signals are viewed as bids.
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Example 2. A parent organization has to disburse available funds
(assumed divisible) among several of its departments. Each de-
partment has a certain valuation function v; for the allocation, is
strategic, and the parent department desires to allocate efficiently
while retaining only a minimal balance, if at all, based on limited
information that the departments provide. Consider the extremely
limited information setting of a scalar signal. The parent depart-
ment is the social planner, the scalar signals are the bids, and the
parent department desires an efficient distribution and no surplus.

The Vickrey-Clarke-Groves (VCG) mechanism (Clarke, 1971;
Groves, 1973; Vickrey, 1961) achieves efficient allocation, but only
when the signal space is sufficiently complex to describe entire
valuation functions. In the VCG mechanism, the social planner re-
quests agents to submit their valuation functions. The social plan-
ner then allocates to maximize the sum of the submitted valuation
functions and determines the agents’ payments.

Motivated by the communication network context but with
nonstrategic agents, Kelly (1997) proposed a mechanism that in-
volved only scalar bids. Under the Kelly mechanism, the social
planner first collects scalar bids from the agents. Then the social
planner allocates the good in proportion to the bids, and collects
payments equal to the bids. The price per unit, or the market clear-
ing price, is the sum of the bids divided by the quantity of the
good. Every agent sees the same market clearing price. This dis-
tributed solution was shown to be efficient under certain condi-
tions, but the agents should be price-taking or nonstrategic. If the
agents are strategic, there is an efficiency loss of up to, but not
more than, 25% (Johari & Tsitsiklis, 2004).

The VCG mechanism payments involve prices per unit good that
can differ across the agents. This is not the case in the Kelly mech-
anism. In order to reduce the efficiency loss in strategic settings
with scalar bids, Yang and Hajek (2007) and Johari and Tsitsiklis
(2009) brought the feature of price differentiation across agents (a
feature of the VCG mechanism) to the Kelly mechanism. The result-
ing mechanism, a scalar strategy VCG mechanism! (SSVCG), was
shown to have efficient Nash equilibria.

All the above mechanisms typically result in a budget sur-
plus (sum of payments from agents is positive). In this paper, our
ideal is to achieve budget balance, or zero budget surplus. How-
ever, simultaneously achieving efficiency and budget balance in a
strategy-proof mechanism is, in general, not possible (due to the
Green-Laffont theorem (Green & Laffont, 1977); see footnote 6).

In the VCG setting, where there is no constraint on signal-
ing, various almost budget balance notions and associated mecha-
nisms were proposed. Almost budget balance is achieved by re-
distributing the payments among the agents in the form of re-
bates. Guo and Conitzer (2009) and Moulin (2009) studied rebate
design in the case of discrete goods. Gujar and Narahari (2009,
2011) studied rebate design for the allocation of m heterogeneous
discrete goods among n agents. Chorppath, Bhashyam, and Sun-
daresan (2011) studied rebate design in the divisible goods setting.

A big advantage with the VCG setting is that the social planner
comes to know the true valuation functions. Voluntary participa-
tion of agents, i.e., agents being better off by participating in the
mechanism, is easily verified. Furthermore, knowledge of the val-
uation functions could be exploited in defining a criterion for al-
most budget balance, as is done in Moulin (2009) and Chorppath
et al. (2011). The extension of the almost budget balance notion
to the SSVCG setting, however, is not straightforward. We cannot

T For some examples of mechanism design with restricted signaling, see
Reichelstein and Reiter (1988) (minimal strategy space dimension for fully efficient
Nash equilibria), (Semret, 1999) (two-dimensional bids for each resource), (Jain &
Walrand, 2010) (two-dimensional bids on bundles of resources), (Blumrosen, Nisan,
& Segal, 2007) (number of bits needed for signaling the bid). Our focus however is
on the one-dimensional signaling.

assume that the valuation functions are available because agents
supply only a scalar bid. We thus relax our objective to that of
achieving Nash equilibrium instead of achieving the DSIC (Domi-
nant Strategy Incentive Compatibility) property.

In this paper, we consider the SSVCG setting that allows the
agents to send only a scalar bid. We (1) propose a notion of almost
budget balance appropriate for the SSVCG setting, and (2) design an
optimal mechanism as per the proposed notion of almost budget
balance.

Kakhbod and Teneketzis (2012) designed a mechanism to
achieve an efficient Nash equilibrium with no budget surplus, but
considered a setting where the agents signal a two-dimensional
bid to the social planner. Moreover, their mechanism may not be
feasible when the signals of the agents are not at Nash equilib-
rium. Sinha and Anastasopoulos (2013) modified this mechanism
to have feasibility even under off-equilibrium situations, but re-
quired agents to signal a four-dimensional bid to achieve strong
budget balance at equilibrium. We are not aware of any mecha-
nism that achieves an efficient Nash equilibrium with strong bud-
get balance using only scalar bids.

There are several design choices that we will make in arriv-
ing at a criterion for almost budget balance in the SSVCG setting.
Considerations of tractability and significant reduction in surplus
will guide our design decisions. For example, we restrict atten-
tion to the so-called linear rebates. This is mainly because it makes
the optimization problem analytically tractable. An additional rea-
son for the choice of linear rebates is that they are known to
be optimal in the homogeneous discrete goods setting of Moulin
(2009) and Guo and Conitzer (2009). The best justification how-
ever is the significant reduction in the surplus seen in our simula-
tion results.

The coefficients of the linear rebate functions will be deter-
mined by a solution to a convex optimization problem. Specifically,
we need to solve an uncertain convex program (UCP) (Calafiore &
Campi, 2005) involving a linear objective function and a continuum
of linear constraints. We propose a solution method that involves a
finite number of constraints, and provide guarantees on the num-
ber of samples needed for a good approximation. We first prove
that, under some sufficient conditions, the solutions of a general
UCP and its corresponding relaxed UCP are close. We then prove
that the specific linear rebate UCP satisfies these sufficient condi-
tions.

The rest of this paper is organized as follows. In Section 2,
we discuss the problem setting and the SSVCG mechanism. In
Section 3, we discuss design choices for almost budget balance and
rebate functions, our design decisions, and formulate an optimiza-
tion problem. In Section 4, we make crucial reductions that ensure
that our proposal can be implemented. The resulting optimization
problem is a UCP. In Section 5, we study a general UCP and formu-
late a sufficient condition for an approximate solution via sampling
of constraints. In Section 6, we apply the solution of Section 5 to
the UCP for almost budget balance. In Section 7, we summarize
our results, discuss alternative choices, and suggest possible exten-
sions. Some simulation results demonstrate the usefulness of our
approach.

2. The setting
2.1. SSVCG mechanism

A social planner needs to allocate a unit divisible resource
among n intelligent, rational, and strategic agents. Agent i has a
valuation function v; : [0, 1] — R, privately known only to herself.
The interpretation is that if a; € [0, 1] is the fraction of the good al-
located to agent i, her valuation is v;(a;). The social planner’s goal
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Fig. 1. Schematic representation of the SSVCG mechanism.

is to solve the following problem:

n
Y a <1, and g; >0 Vi. (1)

n
max » " v;(a;) subject to
i1 i=1

{a;} i

The social planner, however, does not know the valuation pro-
file v1,...,vp. To get some indication of these from the agents,
the social planner chooses the following mechanism with one-
dimensional signals from the agents. The social planner announces,
a priori, a scalar-parametrized surrogate valuation function set V =
{v(.,0),0 €[0,00)}. The function v(-,0) is taken to be the zero
function. An agent i is asked to bid b; € [0, oco), which is taken
to be a signal of that agent’s desired surrogate valuation function
v(-, b;). All agents bid simultaneously. The bid profile is denoted
b= (by,...,by). If b is the all-zero vector, the social planner allo-
cates nothing. Otherwise, the social planner allocates the divisible
good by solving the following problem which is naturally analo-
gous to (1) but arising from the signaled surrogate valuation func-
tions:

n n
Ir{la}x E v(a;, by) subject to E a; <1, and q; > 0 Vi.
ajy % :
i=1 i=1

(2)

A payment p;(b) is then imposed on agent i. This payment is given
by

pi(b) = = > 0(ai. bj) + Y U@, ;. b)) — ri(b_y). (3)
J# J#

where the terms a*, a; and r; are as explained next. The term
a; denotes the jth coordinate of the optimal solution to the so-
cial planner problem in (2). Its dependence on b is understood and
suppressed. Similarly, a’iiv]. is the jth component of the optimal al-
location when agent i is not participating in the mechanism. Its
dependence on b_;, the bids of all agents other than agent i, is
once again understood and suppressed. The function r; is arbitrary
and has as its argument the bids of all agents other than i. Agent
i's resulting quasi-linear utility is v;(af (b)) — p;(b).

With the above specifications, we have a simultaneous ac-
tion game (with incomplete information) among the n agents. A
schematic illustrating the problem solved by the social planner, the
utilities of the agents, and the exchange of information is shown in
Fig. 1. Since each agent’s strategy is to choose a one-dimensional or
scalar bid, and since the payments are inspired by the VCG mech-
anism, this mechanism is called the scalar-strategy VCG (SSVCG)
mechanism.? The first two terms of the right-hand side of (3) con-
stitute the payment of agent i in Clarke’s pivotal mechanism, and
the last term r;(b_;) may be viewed as a rebate given to agent i.

2 Scalar-strategy Groves mechanism is perhaps more appropriate. We will stick to
the terminology of Johari and Tsitsiklis (2009).

The VCG mechanism satisfies DSIC; it is in the best interest
of each agent to signal her valuation function in its entirety. In
our SSVCG setting, however, the signal dimension is greatly re-
duced because only a scalar bid is permitted. Incentive compati-
bility is not possible in general,> and we shall settle for a Nash
equilibrium. The following assumptions suffice to guarantee the ex-
istence of, not just a Nash equilibrium, but an efficient Nash equi-
librium* (Johari and Tsitsiklis, 2009, Cor. 1), and furthermore, to
assert that every Nash equilibrium is efficient (Johari and Tsitsiklis,
2009, Prop. 2).

Assumption 1.

(a) For each i, v; is concave, strictly increasing, and continu-
ously differentiable® on [0, 1], with v;(0) = 0. Moreover, at
least two agents have infinite marginal valuations at 0, that
is, there exist two agents i, j with i # j such that v}(0) =
vj. (0) = 0.

For every 6 > 0, the function v(-,0) is strictly concave,
strictly increasing, and continuously differentiable over [0,
1], with 7(0,0) =0 for all & > 0. Furthermore, for any 6 >
0, the derivative with respect to the first argument satisfies

—~
=2
Nl

7(0,0) = co.
(c) For every ¥y > 0 and a > 0, there exists § > 0 such that
7V (a,0)=y.

Specifically, let us restrict the surrogate valuation function to
be of the form v(a,#) = OU(a), where U : [0, 1] — R satisfies the
following assumptions.

Assumption 2. U is strictly concave, strictly increasing, and a con-
tinuously differentiable function over [0, 1] with U(0) =0 and
U’ (0) = oc.

It is easy to verify that the surrogate valuation functions of the
above form satisfy Assumption 1(b) and (c). The reason for this
restriction is technical, and will be clear in Section 4.3.

2.2. Almost budget balanced SSVCG mechanism

When r; in (3) is identically zero, Clarke’s pivotal payment rule
may result in a net budget surplus (sum of payments) at the so-
cial planner. In this paper, however, we are interested in scenarios
where the social planner wants efficient allocation, but desires zero
budget surplus. Zero budget surplus, also called budget balance, is
unattainable in general.® Our objective is to achieve almost budget
balance, a notion we will formalize in this section.

Two properties are desired for these mechanisms after pay-
ments are collected and rebates are redistributed as in (3). They
are:

(F) Feasibility or weak budget balance: The mechanism should
not be subsidized by an external money source. This im-

3 Incentive compatibility is possible in some special settings. Consider the fol-
lowing restricted VCG setting where, for simplicity, it is common knowledge that
v;eV for i=1,2,...,n. Then, for each i, there is a 6; such that v;(-) =v(., 6;).
The private information held by agent i is the scalar 6;, and it can be seen that
b=0=(6,,6,,..., 6,) is an equilibrium in dominant strategies.

4 A Nash equilibrium is efficient if it yields an allocation that solves (1).

5 The derivatives at the end-points are one-sided, with oo as a possible value
at 0.

6 The Green-Laffont theorem (Green & Laffont, 1977) says that, when the set of
valuation functions are sufficiently rich, there is no quasi-linear mechanism that
simultaneously satisfies DSIC, allocative efficiency, and budget balance properties.
Take the restricted VCG setting in footnote 3. The Green-Laffont theorem is appli-
cable to this setting, and since the mechanism is DSIC and allocatively efficient, it
follows that budget balance is impossible.
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poses the constraint that, for each b, we should have
n

> pi(b) = 0,

i=1

which, using (3), is seen to be equivalent to

n

dorniby) < Y[ =D v(a by + Y v(ar ;b))

i=1 i=1 i i
n n
= —(n—-1)) 0(a;. b))+ > v(a, ;. b
j=1 i=1 ji
=: ps(b). (4)
where ps(b) is the total surplus under Clarke’s pivotal pay-
ment rule.

(VP) Voluntary participation: Agents should be better-off (in
the sense of not being strictly worse-off) by participating in
the mechanism. We take the payoff (utility) for not partic-
ipating in the mechanism to be 0. (VP) then imposes the
constraint that, for each b, we should have

vi(ay) — pi(b) = 0, Vi, (5)
which, using (3) once again, is equivalent to

ri(b_) = —vi(a;) =) (@, b)) + Y V(@ by), Vi
J#i J#i
=: q;(b), (6)

where g;(b) is the negative of the quasi-linear utility of agent i un-
der Clarke’s payment rule.

An issue now arises. While the payments p;(b) do not depend
explicitly on the true valuation function, which is unknown to the
social planner, the condition for (VP) does. This can be seen in
(6) by observing that g;(b) depends on v;.

Whenri( -)=0,i=1,2,...,n, Clarke’s pivotal mechanism sat-
isfies both (F) and (VP). Are there other mechanisms with nontriv-
ial rebate functions that satisfy (F) and (VP)? We shall answer in
the affirmative in Section 6, and we shall see how the issue of de-
pendence of (VP) on v;, which the social planner does not know, is
addressed in Section 4.1.

3. Design considerations leading to an optimization problem
3.1. Deterministic and anonymous rebates

For a given set of bids, we require that the rebates be determin-
istic: the mechanism does not employ randomness. Additionally,
we require that the rebates be anonymous: two agents with iden-
tical bids should receive identical rebates. The information avail-
able to the social planner on the valuation functions is symmet-
ric across agents. Indeed, all that the social planner knows is that
the valuation functions satisfy Assumption 1(a). This information is
symmetric to permutation of agent labels. After the bids are sent
to the social planner, two agents with identical bids are indistin-
guishable, and so, we require that the mechanism give them iden-
tical rebates.

To ensure deterministic and anonymous rebates, we restrict at-
tention to rebates of the following form. For a bid profile b, let by,
be the jth largest entry of b. Similarly, for b_;, let (b_;){; be the
jth largest entry of b_;. The rebate functions are taken to be of the
form’

7 This choice is motivated by the following observation. Consider the restricted
VCG setting of footnote 3 where a converse statement holds: if

av(a, 0)

@0)) <o, (7)

sup
(@.0)€[0.1]2

ri(b_i) = g((b_)py (b_dpzps -+ (B_Dn-1))- (8)

In following subsections, we propose optimality criteria for design-
ing rebates.

3.2. Design for the worst case

Suppose that there are m discrete and identical goods, and each
agent is allocated at most one good. The valuation function of
agent i may be taken to be 6;a;, where a; € {0, 1}. The private in-
formation 6; is then interpreted as the value of the good to agent
i. Clearly, this is a setting where, with U(q;) = a;, the proposed
mechanism is just the VCG mechanism and achieves DSIC. We may
therefore take the bids to be b; = 6; for each agent i. For this set-
ting, Moulin (2009) defined almost budget balance in terms of the
worst-case ratio of the sum of payments to the sum of valuations.
Specifically, Moulin’s proposal is to design rebates to minimize

sup ps(0) — >i, ri(60-) 7
0 o (6)
where o () = Y1, U(af, ;) is the optimal social welfare, subject

to:

(F) Y ri(6_) <ps(6) V0, (10)

i=1

(9)

(VP) ri(0_;) = qi(0) Vi, V6. (11)

See (4) and (6) for definitions of ps and g;, respectively. Guo and
Conitzer (2009) considered an alternate proposal to minimize

D3R ()
S‘Jp[l ps(0) } {12)

subject to the same (F) and (VP) constraints.

It turns out that in the above example of an auction of m iden-
tical discrete goods, considered both by Moulin (2009) and Guo
and Conitzer (2009), the two proposals yield the same optimal re-
bates and objective function values. In general, however, the two
proposals yield different solutions. Indeed, they yield different so-
lutions for the auction of m identical discrete goods if, for example,
the (VP) constraint alone is relaxed. The Guo and Conitzer proposal
focuses only on the fraction of payment that is retained as net sur-
plus without regard to the absolute value of the payment amounts.
A rewriting of Moulin’s objective (9) as

ps() (. Xiiri(0-)
S‘ép[a(o) (1 Ps(®) ﬂ

clearly shows that the fraction of retained surplus, the quantity
considered by Guo and Conitzer and enclosed within parentheses
above, is weighted by a factor that takes into account the size of
the payments pg(6) relative to the optimal social welfare o (@). If
the Guo and Conitzer proposal attains its worst-case at a profile
where the net Clarke surplus is small relative to the optimal social
welfare, it is de-emphasized by the Moulin proposal. The Moulin
proposal, therefore, focuses more on reducing the surplus in set-
tings where the net surplus is high relative to the optimal social
welfare. We therefore adopt Moulin’s proposal of minimizing (9).
Chorppath et al. (2011) studied exactly this proposal in the di-
visible goods setting, but in the simpler restricted VCG setting of

then any DSIC mechanism with a rebate function that is deterministic and anony-
mous must have the form (8). This converse was informally stated by Cavallo
(2006), and formally proved in (Guo & Conitzer, 2009, Lem. 2). The proof relies on
a result of Holmstrom (1979) that shows that any DSIC mechanism must be of the
Groves class if the family of valuation functions is ‘smoothly connected’. The lat-
ter property holds for our single-parameter family of surrogate valuation functions
when (7) holds.



1200 D. Thirumulanathan et al./European Journal of Operational Research 262 (2017) 1196-1207

footnote 3. While the Moulin proposal is defensible for that set-
ting, it has the drawback in our SSVCG setting that o (@) is not
known to the social planner. Just as we chose a surrogate valua-
tion function to identify the allocations and payments, we choose
a surrogate social welfare function

n
os(b) := ) v(a;, b;) (13)
i=1
in place of o(b). We therefore propose to minimize
ps(b) — Y1 ri(b_y)
su 14
P [ o5(b) (14)
n
subject to (F) > ri(b_y) < ps(b) Vb, (15)
i=1
(VP) ri(by) = qi(b) Vb, Vi, (16)

where (15) is the same as (4), and (16) is the same as (6). This
choice puts us in the optimization framework of Chorppath et al.
(2011), except that we have not yet shown how to resolve the issue
of dependence of (16) on the private information v;.

We now highlight two important differences between our work
and that of Yang and Hajek (2007). (1) For given valuation func-
tions, they bound the payments and revenues of the SSVCG mech-
anism, and remark that there are suitable surrogate functions that
can drive the revenue to zero. For a given surrogate function, how-
ever, by merely scaling the (true) valuation functions, the revenue
can be made arbitrarily large. Thus their analysis does not ad-
dress the worst case setting while ours does. (2) Yang and Ha-
jek (2007) nor Johari and Tsitsiklis (2009) explicitly discuss or im-
pose the VP constraint, while we do. But, as we will point out af-
ter Lemma 3, the SSVCG mechanism with Clarke’s pivotal payment
rule does indeed satisfy the VP constraint at Nash equilibrium if
there is a bid, say 0, that signals withdrawal from the mechanism.

3.3. Linear rebates

In the Moulin (2009) and Guo and Conitzer (2009) settings,
which is that of worst-case optimal rebates for the auction of dis-
crete identical goods, linear rebate functions of the form

+ 1 (b_i)jn_1j (17)

were shown to be optimal. We too restrict attention to linear re-
bates of this form. Optimality or otherwise of linear rebates for the
divisible good case is still unexplored. Linear rebates enable ana-
lytical tractability as we will see in later sections. In Section 7, we
present some numerical results that justify to some extent the use
of linear rebates.

ri(b_) =co+cr(b_)py+---

3.4. Restriction to the closure of realizable signals

The performance metric (14) has a supremum over b subject
to constraints (15) and (16) which are also parametrized by b. The
supremum and the constraints ought to reflect only those b that
are realizable, i.e., those b that are Nash equilibria for some valua-
tion function profiles v, ..., vn. We now identify this set of realiz-
able points.

Lemma 1. Let the surrogate valuation function satisfy Assumption
1(b) and (c). Then, for any 6 < (0, co)", there exist valuation func-
tion profiles vy, ..., vy satisfying Assumption 1(a) such that b= 0 is a
Nash equilibrium.

Proof. Proof is available in the online appendix. O

The form of the surrogate valuation function implies some reg-
ularity on ps and o.

Lemma 2. With v(a, 0) = 60U (a), where U satisfies Assumption 2, the
mappings b— o s(b) and b—ps(b) are Lipschitz continuous.

Proof. For o, see Thm. 4 of Chorppath et al. (2011). For ps, see
Lem. 1 of Chorppath et al. (2011). The proofs are reproduced in the
online appendix for completeness. O

Lemmas 1 and 2, and the fact that our choice of linear rebates
is continuous in b, allow us to run b over the closure of the set
of realizable (or Nash equilibrium) bids. Since this closure is R}, b
runs over all elements in R}, both in the supremum and in the (F)
and (VP) constraints.

3.5. Ordering and the optimization problem

Observe that the worst-case optimality criterion (14) depends
only on the ordered bids. Without loss of generality, we henceforth
assume that agent i is the agent with the ith highest bid. Bids then
come from the set © = {beRY | by >by>...> by >0}, and the
ith agent’s rebate is

ri(b_i) =co+ciby + -+ ciibig + b1 + -+ Caabn. (18)

Henceforth, when we refer to the optimization problem in
(14) subject to the (F) and (VP) constraints in (15) and (16), we
replace the parameter b by 6, and Vb by V0 < ©. Let us also define
c=(cg,...,Cn_1).

The optimization problem to design the best linear rebate func-
tions, after substitution of (18) in (F) of (15) and in (VP) of (16), is
now:

min sup ps(0) — YL, ri(0_) (19)
96 os(6)
n-1 .
subject to (F)  nco+ Y ¢i(i6;1 + (n—1)6;) < ps(9), VO € ©

i=1

(20)

i-1 n-1
(VP) CO+ZCj0j+ZCj9j+] qu(o), Ve (:),Vl
j=1 j=i
(21)

4. Simplification of constraints and a reformulation

We now free up the optimization problem in (19) from its de-
pendence on the true valuation functions in the (VP) constraint.
We also justify the restriction of @ to a compact subset of ©® and
arrive at a reformulation of the above optimization problem as a
generalized linear program.

4.1. Simplification of the (VP) constraints

As observed earlier, the (VP) constraint in (21) requires, through
q;(@), knowledge of the true valuation functions. The following
lemma is a significant step in freeing up the constraint from the
knowledge of true valuation functions, and assures us that the op-
timization problem is well-posed. Incidentally, this will also estab-
lish that the SSVCG mechanism with Clarke’s pivotal payment rule
satisfies the VP constraint at Nash equilibrium.

Lemma 3. Suppose that the true valuations satisfy Assumption 1(a)
and that the surrogate valuation function is v(a,0) = 0U(a), with U
satisfying Assumption 2.
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(1) The constraints (F) and (VP), (20) and (21), imply that cq =
= 0.
(2) Let cg = ¢q = 0. Then, the (VP) constraint is equivalent to
k
> =0 fork=23,....n-1. (22)
i=2

Proof. Proof is available in the online appendix. O

Thanks to Lemma 3, the optimization problem is now given
by:

- ps(0) — >0, ri(0-)
23
e (M @
n-1 .
subject to (F) > ({01 + (n—1)6;) < ps(8). VO € ©
i=2
k

(VP) Y =0 k=23,...n-1
i=2

4.2. Reformulation as a generalized linear program
As in Chorppath et al. (2011), the min-max problem (23) can

be turned into a generalized linear program (LP) by introducing an
auxiliary variable t:

min t
ct
n-1
subject to (F) > (i1 + (n—)6;) < ps(B). VO e ©

i=2
k

(VP)) =0, k=2,3,...,n—1,
i=2
n-1

(W) Y (i1 + (n— 1)6) + tos(B) > ps(). V0 € ©.

i=2

(W) captures the constraint associated with the worst-case objec-
tive.

We say “generalized” because the above LP has a continuum of
linear constraints parametrized by @ ¢ ©. The constraint set on ¢
and t is convex, because it is an intersection of a family of half-
plane constraints. While there appears to be no direct way to solve
this problem, further simplification of the constraints is possible.
We pursue this in the next subsection.

4.3. Simplification of (F) and (W)

In Appendix A we show two properties - monotonicity and
scaling - of the VCG payments. We shall now exploit them to sim-
plify (F) and (W).

Observe that the left-hand side of (F) does not depend on 6.
From Proposition 7(a), we have that ps(#) is monotonically increas-
ing in 6, for a fixed #_;. It follows that the right-hand side is
smallest (and the constraint is tightest) when 6; =6,. It there-
fore suffices to restrict attention to elements of © that satisfy
61 = 0,. Further, note that the constraint is automatically satisfied
if 6; = 6, = 0. So we may assume 6, > 0.

Consider 6 € ® such that §; =6, > 63 > --->6,, and 0, > 0.
Define 6 = 0/6; then 6 € ® with 1 =0; = 6,. The left-hand side
of (F) is homogeneous of order 1 in @. By our choice v(q;, 6;) =
6;U(a;), the right-hand side of (F) is also homogeneous of order 1.
As a consequence

n-1
> (i1 + (n—)6;) < ps(0)
i—2
n-1 R R R
62 Ci(ibg + (n—D6) < ps(6-6)

i=2

n-1 0
o L+ (-0 = peite 61
n-1 R R .
& Y (i1 + (n—1)6) < ps(9). (24)

i=2
(F) now simplifies, after removing the hats in 0, to

n-1
(F) Y (i1 + (n—1)6;) < ps(@), V0 e©, 6; =0, =1.

i=2

We now simplify the (W) constraint. First note that when 6; =

0, (W) is trivially satisfied since it is always the case that og(6)
> ps(f). So we may assume that 6; > 0. We next note that the
summation Zl'f:; ;101 + (n—1)6;), os(0), and ps(#) are all ho-
mogeneous of order 1 in . Under #; > 0, we can re-scale @ by its
first component to get § = 0/0;, and obtain

n-1
Y (i1 + (n—1)6;) + tas(9) = ps(0)
i=2
n-1 R . . .
& Y (i + (n—D)6;) + tos(6) > ps(6). (25)
i=2
Thus the worst-case constraint (W) simplifies to
n-1
(W) Y (i1 + (n = 1)6) + tas(0) = ps(8). Ve O, 67 =1.
i=2
We note that the simplification of constraints (F) and (W) was
facilitated by our assumption of the surrogate valuation function
v(a,0) = 60U (a). These simplifications, as we will observe in the
proof of Theorem 6, enable us to obtain a simpler solution to the
optimization problem at hand.

4.4. An uncertain convex program

Let us now define ® = {# € ® : 1 = 6;}. In view of the simplifi-
cations of (F) and (W), we can now rewrite the optimization prob-
lem as

min ¢ (26)
ct

n-1
> ({01 + (n—1)6;) < ps(B), V0 € 0,6, =1,
i—2
k
(VP) 37620, k=2,3,....n—1,
i—2
n—-1
(W) ) (i1 + (n = D)6;) +tos(0) = ps(0), VOO,

i=2

subject to (F)

This optimization problem continues to be a generalized LP
with a continuum of constraints. However, the continuum of con-
straints are now parametrized by a compact set ® instead of the
non compact set ©.

Chorppath et al. (2011) studied the simpler VCG setting and
adopted a randomized approach to solving the optimization prob-
lem within a probably approximately correct framework. Specifi-
cally, they considered a random sampling of constraints from ®
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and provided guarantees on the number of samples required to
obtain a near optimum solution. Here we take a deterministic ap-
proach.

5. An uncertain convex program

The optimization in (26) can be cast as a convex optimiza-
tion problem subject to convex constraints having an uncertainty
parameter. Such problems are called uncertain convex programs
(UCP). Formally, a UCP is defined (in Calafiore & Campi, 2005) as a
convex program of the form

xeAand g(x,0) <0,V0 € O,
(27)

where @ is the uncertainty parameter, ® is an n-dimensional set, x
is a d-dimensional variable over which optimization occurs, g(x, )
is a convex function of x for every # € ®, and A is a convex subset
of R%, In general, the index set for the constraints, ®, may be a
continuum and, hence, the constraint set may be hard to charac-
terize or compute.

The following three approaches to solve a UCP are known:
robust optimization, chance-constrained optimization, and sam-
pled convex program (SCP) (see Calafiore & Campi, 2005). The
first two techniques have been extensively studied under some
special settings while the third technique (SCP) appears to have
a wider applicability (see Calafiore and Campi, 2005, 2006 for
details). The SCP technique involves sampling a subset ®™ =
{0V 9@ . #(™} in an independent and identically distributed
fashion according to a distribution Pp, and relaxing the constrain-
ing parameters from ‘9 € ©’ to ‘9 ¢ ©™", Formally, an SCP is of
the form

mxin fx) subject to

min f(x) subject to x € A and {g(x, 09)<0,i=1,2,...,m},
(28)

where 00 is the ith sample of the constraint parameter, and m is
the number of samples. Calafiore and Campi (2006) provide the
number of samples m sufficient to make the sampled constraint
set approximate the actual constraint set in a particular sense as
described next.

Theorem 4 (Calafiore & Campi (2006)). Let the violation probabil-
ity V(x) at x be defined as V(x) = Py(0 € © : g(x,0) > 0). Then, for a
fixed €, § > 0, the number of samples

m(e,§) = %(nlog (%) + log (%)) +2n

suffices for having Pr{V(x) <€} >1 -4 for each x that satisfies all
the constraints of the SCP.

In this paper, we want to bound the number of samples m(t)
needed to make the values of the UCP and the SCP be within 7 of
each other, that is,

| Value of SCP — Value of UCP |< t. (29)

Chorppath et al. (2011), following Calafiore and Campi (2006),
studied a random sampling of constraints and provided a bound
on the number of samples needed to satisfy (29) with high prob-
ability. Here we take a deterministic approach. We first state and
prove a more general result to bring out the essential ideas. We
then specialize it to the almost budget balance problem.

5.1. Solution to a general UCP

An g-cover for ® is a
TN IS

collection of points O =
.0} such that balls of radius & centered around

each of these points cover ®. If ® is compact, there exists a finite
cover.

Let X denote the constraint set of the UCP, and let Y denote the
constraint set of the SCP obtained from an ¢-cover. Symbolically,

X=(){xeA:gx.0)<0}and Y= ()] {xeA:g(x.0) <0}.
0cO Hcdm

Since @™ c ©, we have X c Y. We make the following assump-
tion.

Assumption 3.

(a) The mapping x—f(x) is Lipschitz on Y with Lipschitz con-
stant Kj.

(b) The mapping @—g(x, ) is uniformly Lipschitz over x € Y,
with Lipschitz constant K.

(c) There is a constant K3 such that, for every y € Y \ X, there
exists a @ € © and an x € X that satisfy g(y, #) > 1(3‘1 [ly — x|]-

Our general result is the following.

Theorem 5. For the UCP (27) and the SCP (28) with @™ being an
g-cover for ®, let Assumption 3 hold. Then the optimal values of the
UCP and the SCP are within K{K;Ks& of each other.

Proof. Let x* solve the UCP and let y* solve the SCP. Since X C Y,
we have flx*) > f(y*). We may assume that fix*) > f(y*) (hence
y* € Y\ X), for otherwise, the theorem is trivially true.

By Assumption 3(c), for this y*, there exist a @ € ®, x € X, such
that

g, 0) = K ly* —x|. (30)

Clearly, we must have @ ¢ ©(™ | for otherwise, g(y*, #) < 0, which
contradicts (30). Let #* be the element in the e-cover @™ that is
closest to #. We then have ||6* — 0|| < ¢, and since y* is a feasible
point for the SCP, we also have g(y*, 6*) < 0. Thus

*)
8. 0) =g(y".0) —g(y*.0") < K10 - 0°|| < Kse, (31)

where (x) follows from Assumption 3(b). Since x € X, we must also
have flx*) < f(x), and thus

fOm) = f&x) < f().

Subtracting f(y*) throughout, we have,
0<f(x)-fy)=fe—fu) =Kly —xl, (32)

where the last inequality follows from Assumption 3(a). Putting
the chain of inequalities in (30), (31), and (32) together, we get
|f(x*) = FOH)I = KiKoKze. O

6. An application to the problem of almost budget balance

The optimization problem in (26) can be cast as a UCP. Let us
see how.

Define x; = Z§»=2 ¢, i=2,...,n-1, and x, =t. (There is no
x1).- Let x = (X3, ..., Xn_1, Xn).

(VP) now becomes x; > 0,i=2,...,n— 1. The variable t is non-
negative, and hence x, > 0. Moreover, (W) is trivially satisfied for
Xn > 1, when x; > 0,i=2,...,n— 1. Therefore, restricting x, to be

at most 1 has no effect on the optimization problem since we min-
imize x,. Thus the set A for the UCP is

A={x|x<1,%>0,i=2,...,n}.

We now write (F) and (W) in terms of the above-defined vari-
ables. To do this, we define

Ol,'(0) :i9i+1+(n—i)9,<, i=2,...,n—-1 (33)

ay(0) = 0. (34)
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Using ¢ =x, and ¢;=x;—x;_q for i=3,...,n—1, the (F) con-
straint then becomes
81(x.0) := Exi(ai(o) —i41(0)) —ps(@) <0, VOeO.
i=2
Further, (W) becomes
£((x,0) =~ Exi(ai(o) — i41(0)) + ps(0) —xn05(0) <0,
<o

Now set g(x, 0) := max{g;(x, 0), 22(x, 8)}. We earlier argued that
we could restrict (F), g1(x, #) < 0, to those § € © that satisfy 6, =
1. In order to combine the two constraints into a single one, we
allow other values of 6,, 6, < 1, even though the constraints are
tightest when 6, = 1.

Finally, the objective function is taken to be f(x) = x,. The UCP
in (26) is then of the form (27) studied in the previous section.

We now have the following result.

Theorem 6. With ©, A, f, g as defined above, the corresponding UCP
satisfies Assumption 3.

Proof. See Appendix B. O

By Theorems 5 and 6, using an &-cover for ®, the values of
the UCP for the almost budget balance problem in (26) and the
associated SCP are within K;K;K3& of each other. The proof of
Theorem 6 provides more information on how the constants Kj,
K5, and K35 depend on n and U. The proof, especially Eqs. (B.3) and
(B.7), requires o5(#) and ps(@) to be lower bounded by a positive
number. The simplifications in (F) and (W) were needed to obtain
these lower bounds.

7. Discussion
7.1. Summary

We considered the allocation of a single divisible good among
n agents whose valuation functions are private information known
only to the respective agents. The social planner announces (1) an
allocation scheme and a payment scheme that depend only on a
scalar bid from each agent, and (2) invites the agents to submit
their bids. Allocations and payments utilize a surrogate valuation
function chosen (and announced beforehand) by the social planner
(SSVCG). Rebates are used to achieve almost budget balance. We
provided a framework to design the rebates and to achieve almost
budget balance in a certain worst-case sense (19). Our framework
involved a solution to a convex optimization problem with a con-
tinuum of constraints for which we proposed a solution method
involving constraint sampling. The almost budget balance property
and the implementability of the mechanism holds off-equilibrium
as well.

7.2. Performance of linear rebates

Linear rebates are known to be optimal in the homogeneous
discrete goods setting (Guo and Conitzer, 2010; Moulin, 2009). This
was our main motivation for studying linear rebate functions in
this paper. While the optimality of linear rebates in our divisible
goods setting is not yet established in generality, we present some
numerical results to highlight the reduction in budget surplus us-
ing linear rebates.

For our simulations, we chose the surrogate valuation function
v(a;, 6;) = 6;U(q;). This form of surrogate valuations is popular in
the computer networking literature. (See Kelly, 1997 for an exam-
ple.) This choice is 1-homogeneous in the 6; variable, a property

which in conjunction with the choice of linear rebates and the
scaling property of VCG payments enabled us to compactify the
set of @’s to ®, the set of all ordered #'s with 6; = 1.

We chose U(a) =al~%, a e {0.01, 0.25, 0.5, 0.75, 0.99}. These
U functions are related to the generalized a-logarithm suggested
by Yang and Hajek (2007). In each case, the coefficients of the lin-
ear rebate functions were obtained by solving the sampled con-
vex problem (SCP). But instead of using an e-cover, we used the e,
profiles and 5000 x n additional randomly sampled constraints.®
The corresponding value of the SCP is denoted “Numerical” value.
An additional 50, 000 x n samples were generated, and the per-
formance of the identified rebate function on those 50, 000 x n
samples is denoted “Simulated” value. Since the rebates are de-
termined only as an approximate solution with the sampled con-
straints, the worst-case ratio in the simulations, “Simulated” value,
can be higher than “Numerical” value.

For o = 0.5, Fig. 2a shows “Simulated” and “Numerical” values
and compares them with the “SSVCG” value, the surplus under no
rebates. Fig. 2b shows “Numerical” and “SSVCG” values for each
value of «. “Simulated” (not plotted) and “Numerical” values were
close to each other for each value of «, and both significantly lower
than “SSVCG”. Moreover the worst-case ratio reduces as the num-
ber of agents increases. In contrast, the “SSVCG” value is nearly
constant across the number of agents. Both of these plots provide
a compelling argument in favor of linear rebates.

Observe that the worst-case objective in the plots is scaled by
a factor of 1/(1 — ). This is because the observed SSVCG value
was at most 1—«. This suggests (correctly) that we should set
o very close to 1 to reduce the worst-case objective. The reduc-
tion in the worst-case objective occurs because of an increase in
o5(0) at the Nash equilibrium point corresponding to each «, and
not because of the reduced surplus. The reduced objective func-
tion value is because of our choice of the Moulin objective func-
tion which reweighs the fraction of surplus retained by a factor
ps(@)[os(@). The surplus itself approaches a nonzero constant as
the number of agents goes to infinity. (Proofs of these assertions
can be found in the online appendix.) Interestingly, linear rebates
continue to provide a significant reduction in the budget surplus,
as can be gleaned from Fig. 2b. See Section 7.4 on possible exten-
sions for further remarks.

The following is a brief description of how |c;|, obtained from
our simulations, vary in i, n, and .

e |cy] is found to be the highest among all |c;|. We did not ob-
serve any other increasing or decreasing trend in the variable
i

e |c;(n)| monotonically decreases in n when i « n. |c;(n)| did not
show any trend for i comparable to n.

e |cy(ar)] was found to increase monotonically with «. |¢;(«)| for
all other & was found to increase up to some « and then de-
crease thereafter.

We reiterate that these are mere observations from simulation
outcomes and are not formally established.

7.3. Optimality in expectation

In another work, Guo and Conitzer (2010) considered a Bayesian
setting and an associated objective: minimize the ratio E[budget
surplus]/E[VCG payment without rebates]. Its extension to our set-
ting involves a prior distribution on the space of valuation function
profiles. Suppose one can assume that the Nash equilibrium asso-
ciated with any valuation function profile is unique - Yang and
Hajek (2007) identify some sufficient conditions for this to hold.

80, ..., 6, were picked uniformly at random from [0,1] and were then sorted.
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Fig. 2. (a) (Worst-case objective t)/(1/2) vs. number of agents; U(a, ) = 6a. (b) (Worst-case objective t)/(1 — &) vs. number of agents; ¥(a,0) = 8a'~“ for « € {0.01, 0.25,

0.5, 0.75, 0.99}. ‘Simulated’ (not plotted) was close to ‘Numerical’ in each case.

Then each valuation profile maps to a unique equilibrium bid pro-
file. The prior distribution on the space of valuation function pro-
files induces a distribution on the space of equilibrium bid profiles.
Now, taking expectations of the budget surplus with and without
rebates, we can arrive at an objective function similar to that of
Guo and Conitzer (2010).

7.4. Possible extensions

As our choice of the almost budget balance criterion, we
adopted the one proposed by Moulin (2009), see (14), for the rea-
son highlighted in Section 3.2. One could however work with the
Guo and Conitzer (2009) criterion, see (12), and arrive at a new
UCP. For this modified UCP, we do not have bounds on the size of
the e-cover because Assumption 3(c) does not hold.

We focused here on anonymous rebates because we assumed
that the information with the social planner on the agents is sym-
metric to agent permutation. If information on the agents is asym-
metric, for example the social planner wishes to weigh the alloca-
tion to one agent a little more than that to another, then agent-
specific U; or agent-specific rebates could be used. Anonymity will
have to be relaxed.

We restricted our attention to the allocation of an infinitely di-
visible good, and did not study a network setting, primarily be-
cause of our focus on identifying a suitable notion of almost budget
balance and our desire to address the (VP) constraint’s dependence
on the true valuations in a simple setting. With our foundation, an
extension to the network setting (Yang & Hajek, 2007) or a general
convex setting (Johari & Tsitsiklis, 2009) should now be possible.

While designing the rebate functions, we restricted attention to
linear rebates for analytical tractability. Linear rebates are optimal
in the homogeneous discrete goods setting. Proving the optimality
or sub-optimality of linear rebates in our setting could be a direc-
tion for future work.
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Appendix A. Monotonicity and scaling properties of VCG
payments

We now prove monotonicity and scaling properties of the sur-
plus under Clarke’s payment rule, a result that may be of indepen-
dent interest.

We consider a slightly more general setting than that of the pa-
per. We now allow the surrogate valuation function to possibly de-
pend on the agent and replace v by v; for agent i. We also relax
the restriction that v;(a;, 6;) = 6;,U(q;), and make the following as-
sumptions on the family 7;, i=1,2,...,n.

Assumption 4.

(a) For every i, every 6; > 0, 7;(-,6;) is strictly concave, strictly
increasing, continuously differentiable over [0, 1].

(b) For every a; € [0, 1], the map 6; — V;(qa;, 6;) is absolutely
continuous.

(c) For every g; € [0, 1], the partial derivative % exists.
1
(d) Furthermore, for some integrable B;(;), we have %’ <
1

B; (6)).
(e) For each fixed 6;, the map q; — is increasing.

(f) For each fixed g;, the map 6; — &W

v;(a;.6;)
—36,
is decreasing.
Obviously, v;(a;,6;) =06;U(q;), where U is strictly concave,
strictly increasing, and continuously differentiable over [0, 1] satis-

fies Assumption 4.
The surplus under the Clarke’s payment rule is given by

ps(0) = —(n—1)Y ;@i bj) + Y > v;(a, ;. by.
j=1 i=1 j##i

See also (4). The optimal social welfare is (see (13)):
n

os(0) = vi(a;. 6;).
i=1

The following shows the intuitive property that ps(6;,6_;) is in-
creasing in 6;.

Proposition 7. Under Assumption 4, ps(0) satisfies following proper-
ties.
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(a) (Monotonicity) For fixed 6_;, the map 6; — ps(6;,0_;) is in-
creasing.
(b) (Scaling) For fixed 0, the map Ar>ps(A@)[A is decreasing.

Proof. (a) Fix i. The proof uses the envelope theorem (see
Milgrom and Segal, 2002, Thm. 2). Focus first on os. By virtue
of Assumption 4(b)-(d), for a fixed a and 6_;, we have that
0; — > k_1 Vk(ay, By) is absolutely continuous, has partial deriva-
tive, and

% (ka(ak’ Qk))'
P\ k=1

By Milgrom and Segal (2002, Thm. 2), o5(#) has a partial derivative
with respect to 6; almost everywhere on [0, 1] which equals
dos(0) v;(a; (0). 9)

00, d6;
For each k # i, apply the same argument as given above to the
envelope Z#kﬁj(aik.j((),k), 0;), to get

av;(a, ;(0_4), 6))
89 (ZUJ(G k](o k) 0; )) vaka
Jk !

For k =i, the corresponding envelope does not depend on 6;. The

above considerations yield

avi(ar, ;(0_4), 6)) - )Bv,(a 0),6)
a6; a6; ’

B;(6)).

8v,(al, ;) ’

aps(0) _ Z

0, (A1)

ki
It is easy to see (using the Karush-Kuhn-Tucker necessary condi-
tions) that for each k, we have ajkyi(ﬂ,k) > a;(0). Intuitively, if an
agent k # i is out of consideration, then the optimal amount allo-
cated to agent i only increases. Consequently, by Assumption 4(e),
we have
avi(aikyi(a—k)’ ‘9!) > E)E(G;k (0)’ 9!)

d6; - a6; ’
Bpg(o)

Using this in (A.1), we get >0, i.e., ps(@) is increasing in 6;.

(b) Differentiating ps(10) /A with respect to A, we get
d (ps(A0)\ _ A0"Vyps(A0) — ps(16)
dxr A - A2 '

It suffices to show that this is negative. Without loss of generality,
we can replace A@ by 6, and it suffices to check that 0TV0p5(0) <
ps(0). Using the formula (A.1), this amounts to checking that

ZG{Z aevl(a_kl(o—k) 9) (

i=1 k#i

n%u@mﬂﬁ

< Z {Zl’i(a*k_i(ak)s 0;)) — (n—Dvi(a; (9), 9i)}~

i=1 | ke
This holds if, for every i and every k # i,

0 _
eiaieivi(aik.i(ofk)v 0;) — '89 vi(a; (0),6;)
<vi(a,;(0_y), 6) —Vi(a; (0),6;),

or equivalently

5 _ _ o
QiB*QiUi(af,(’,-(ofk), 0;) —vi(a*, ;(0_4).6) < 9i8*9ivi(a,- ).6)

—Ti(a; (0), 6)).
But this follows from ai,“.(o,k) > a;(0) and the fact that, for every
0;,
ai Qi%vi(ai’ 0;) — vi(a;, 6;)
1

is decreasing, which is an easy consequence of Assumption 4(f). O

Appendix B. Proof of Theorem 6

We again restrict the surrogate valuation function v(a, ) =
60U (a), with U satisfying Assumption 2. We now verify (a)-(c) of
Assumption 3.

Assumption 3(a): Since f(x) = X, this holds trivially with Lips-
chitz constant K; = 1.

Before we get to verifying the next assumption, we establish
two lemmas.

Lemma 8. The coefficients of x; in the expression for g, are nonneg-
ative, i.e., a;(0) —aj1(0) >0 fori=2,..., n—1, where «; are de-
fined in (33) and (34).

Proof. Fori=2,..., n — 2, using (33), the coefficients of x; satisfy
@i(0) — @i;1(0) = i(0i1 — Oi2) + (60 — Oi12)
+(n—i-1)(6; - 0i41) =0

where the last inequality follows because the 6; are nonincreas-
ing with index i. Finally, the coefficient of x,_; is simply «;,_;(6)
which is nonnegative. O

We next argue that the elements of X are bounded.

Lemma 9. If x € X, then, fori=2,...,
where B, = ps(ey).

n—1, we have 0 < x; < By,

Proof. From (F) in (26), the nonnegativity of x;, and the nonnega-
tivity of the coefficients of x; in the expression for g; established
in Lemma 8, we have that for eachi=2,...,n—-1,

ps(0)
ai(0) — i 1(0)
Setting 0 = e;, we get «;(0) — @ 1(#) = (n —i) — 0. Now, by using
monotonicity of ps (Proposition 7(a)), we get
% < ps(ei) Ps(en)

n—i n-—

X < ,V0 € ©.

< ps(en) = By.
Hence the result. O

We now continue with the proof that Assumption 3(b) holds.

Assumption 3(b): If g1(x, -) and g,(x, -) are both uniformly Lips-
chitz with constants K/ and K/, then g(x, -) = max{g; (x,-). & (x. )}
is also uniformly LlpSChltZ w1th constant K, = max{K}, K'}. The
mappings gi(x, -) and gy(x, -) are uniformly Lipschitz because of
the following:

(i) —05(0) is Lipschitz with constant U(1)+/n;
(ii) @—ps(@) is Lipschitz w1th constant 2U (1)ny/n;
(iii) the mapping 6 — >I, ! xi (0 () — @;;1(0)) is uniformly Lip-
schitz.

Items (i) and (ii) were established in Lemma 2. To see (iii), ob-
serve that

|ti(0) — (8] = |i(61e1 — 6],1) + (1 — D) (6 — 0]
<il|0 -0+ —-1)]6—0 =n|l6-0|

Since this inequality holds for all i, and since x; < B, we see that
item (iii) holds with Lipschitz constant 2n2B,. The Lipschitz con-
stants K, and K/, and hence K, are as follows.
K = 2n?B, +2U(1)nvn
Ky = 2n?B, + 2U(1)nv/n+U(1)vn
Ky = max{K},K}} = K

Assumption 3(c): Define X;={xcA|gi(x,0) <0 V0c®},i=
1, 2. Note that g;(x, #) does not depend on the last component (the

xn component). Recall that Y is the constraint set for the SCP.
Lety = (¥2,...,¥n—1,Yn) € Y\ X. We consider two cases.

(from x, < 1)
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(i) Suppose y € Xy, but y ¢ X;.

Find the smallest t > y, such that x = (y,,..., Yn_1,t) € Xy.
Since the first n — 2 components have not changed, x € X; as well,
and so x € X. We now claim that there is a # with g,(x,0) =

Suppose that the claim is false. Since 8 g,(x, #) is continuous,
and since © is compact, we have —¢ := maxy_g g2 (%, 6) < 0. By the
linearity of g,(., @), for any @ € ®, we have

gz(()’z,m,J/nfl,f— %(1))9)

=g (W2, - Yn-1,1),0) + ——<05(0)

U(l)

=8 (x.0) + ——<0s5(0)

nU(l)

< - 0
<—&+ U(])US( )<0
where o5(0) < nU(1) since 6;, a; € [0, 1]Vi. Thus (y,, ...
ﬁ(l)) € X5, and this contradicts the choice of t.
Using the claim, we have

80.0)>2:(0.0)=2(y,0) —g2(x,0)
= (t —yn)os(0) = ||y — x||os(0)
> |ly = x||U(1). (B.1)

The last inequality holds because og(#) is the socially optimum
value when the reported bids are 6, and U(1) is the value obtained
for a particular allocation that gives the entire good to a single
agent. In (B.1), we also used ||y — x|| =t — y, because y and x dif-
fer only in the last component and t > yn. Let K} =U(1). We will
choose 1(;1 lower than this after considering other cases.

(ii) Suppose y ¢ X;.

Fix y > n/U(1). We will choose this y suitably later. Find the
smallest 8 > 0 such that

X(ﬂ) = [(,yz _/3)+7"'5 (.Yn—l _ﬂ)+sm1n(1sYH+Vﬁ)] GX,

where [-]. indicates truncation from below by 0. Notice that the
first n — 2 components decrease, but the last component increases.
The procedure clearly terminates because (0, ...,0,1) € X, and this
point will eventually be reached for some g > 0.

We now have two subcases.

(ii-a): The path from y to x(8) first touches X,, say at x(8’) for
0 < B’ < B, before entering X.

Then x(8"”) e X, for all {B” >
cause for all @ € ®, we have

8(x(B).0) —g(x(B").0)

n-1

= - *i(B) —xi(B"))(i(0) — i1 (8)) — ¥ (B — B")05(8)

i=2

,_anl,t—

B’ | yn+ypB" <1}). This is be-

n-1

= —(B" =B ) (i(8) — i1 (8)) + ¥ (B” — B)os(6),

i=2

(B.2)

where (B.2) follows from o;(0)—;,.1(#) >0 (Lemma 8) and
x(B) —x(B")<p”"—-p" for i=2,3,...,n—1. Continuing, the
right-hand side of (B.2) equals

(B” - B[~ (c2(8) — n(8)) + yo5(0)]
=(B" - B)[ros@) —ax(0)]

= (B"-BOlyu) —nj (B.3)
> 0. (B.4)

In (B.3), we used og(f) > U(1) and «»(0) < n. The latter follows
because ay () =203 + (n—2)6, <2+n—-2=n, since 0 < 6; < 1
for all i. The inequality (B.4) follows from the choice of y.

In case B € [B/, B] but y,+yB” > 1, then x,(B”) =1 and
thus x(8”) € X, is trivially true.

We claim that there exists a # € ©® with 6, =1 such that
g1(x(B),0) =0. Suppose that the claim is false. Since 6 g;(x,
0) is continuous, and since ® is compact, we have —¢:=
MaXp..9,-1) 81 (X, 0) < 0. By the linearity of g;(., #), for any 6 <
® with 6, =1, we have

g(x(B-5).0) qrxp).0)+ £ g(ai(o) ~ @i (9))

£
= -6+ (02(0) —n(0)) <0, (BS)
ie, x(8 — £) € Xy, and this contradicts the choice of .
Now for this #, which satisfies 6; = 6, = 1, by monotonicity of
ps, we have ps(0) > ps(ey) = 2U(1) —2U(1/2) := B, > 0. The strict
positivity follows because U is strictly increasing. We then have

8(.0) =81(y.0) =51y, 0) — g1 (x(B).09)
n—1
=Y i —x(B)(@i(0) — i1 (9))
i—2
n-1
> B (i(8) — i1 (0)1{xi(B) > 0}.

i=2

(B.6)

The last inequality follows because: if x;(8) > 0, the difference y; —
x;(B) is exactly B; if not, the corresponding term is > 0 and thus
can be dropped.

To lower bound this last term, we proceed as follows. Since

ps(@) > ps(ey) = By, and since g; (x(8),0) = 0, we have
n-1
By < ps(8) = > xi(B)(i(0) — ;1 (8)) (from g1 (x(B).0) =0)
i=2
n-1

=Y xi(B)(i(0) — i1 (0))1{x;(B) > 0}
i—2
n-1
< B ) (ai(0) — i1 (0)1{x:(B) > 0},

i=2

(B.7)
where the last inequality follows from Lemma 9. Putting (B.6) and
(B.7) together, we get

g(yv 0) = .BBZ/BH

Define x*(8) =y — B(1,...,1,—y). This is without the trunca-
tion from below by 0. Clearly,

(B.8)

1, -y)ll=B8yn-2+y2
(B.9)

y=x(B)II < [ly—x"(B)II=BII(1.....

Combining (B.8) and (B.9), we get
B,

Bny/n—-2+
Take x = x(B) and take KZ = By/(Bny/n — 2 + y2).

(ii-b): The path from y to x(g8) first touches Xy, say at x(8’) for
0 < B’ < B, before entering X.

Then x(B”) € X4 for all B/ < B” < B. This is because, once X is
reached, the first n — 2 components only decrease thereafter with
B, and therefore g; also only decreases.

We now claim that there exists a @ € ® such that g, (x(8), ) =
0. Suppose that the claim is false. Since 6 g,(x, @) is continuous,
and since ® is compact, we have —¢ := maxy_qg g2 (x, 6) < 0. By the
linearity of g,(., #), for any 6 € ®, we have

8(y.0) > ||y x(BII- (B.10)
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<—&+ U(1)as(0)<0 (B.11)
where first inequality follows since the terms involving
x2(B),...,x%,_1(B)) are nonpositive. Thus x(8 — %) € Xy,
and this contradicts the choice of . We then have
8(0.0) = 80.0) =8:(y.0) —g(x(B).0)

> B(yUu) —n) (B12)
U(1)—-n
> W0y i) (B13)

>

where (B.12) follows by tracing the same sequence of inequalities
leading to (B.3), with y and x(8) in place of x(8’) and x(8"), re
spectively, and (B.13) follows from (B.9). Observe that the same se-
quence of inequalities leading to (B.3) can be traced since x(f) € X
the moment y, + y 8 =1, and thus y, + ¥ 8 > 1 never occurs. Take
x=x(B) and K}’ = (yU(1) —n)/y/n—2+y2.

Setting K‘ =min{K}, K}, K}’}, we see that Assumption 3(c)
holds. Settmg y=Mm+ Bz/Bn)/U(l), which exceeds n/U(1), we get

Kt = min{U(l),Bz/(Bnm)}~

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.ejor.2017.04.031
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