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a b s t r a c t 

This paper is about allocation of an infinitely divisible good to several rational and strategic agents. The 

allocation is done by a social planner who has limited information because the agents’ valuation func- 

tions are taken to be private information known only to the respective agents. We allow only a scalar 

signal, called a bid, from each agent to the social planner. Yang and Hajek [Yang, S., Hajek, B., 2007. 

“VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional 

signals”, IEEE Journal on Selected Areas in Communications 25 (6), 1237–1243.] and Johari and Tsitsiklis 

[Johari, R., Tsitsiklis, J. N., 2009. “Efficiency of scalar-parameterized mechanisms”, Operations Research 57 

(4), 823–839.] proposed a scalar strategy Vickrey–Clarke–Groves (SSVCG) mechanism with efficient Nash 

equilibria. We consider a setting where the social planner desires minimal budget surplus. Example sit- 

uations include fair sharing of Internet resources and auctioning of certain public goods where revenue 

maximization is not a consideration. Under the SSVCG framework, we propose a mechanism that is effi- 

cient and comes close to budget balance by returning much of the payments back to the agents in the 

form of rebates. We identify a design criterion for almost budget balance , impose feasibility and voluntary 

participation constraints, simplify the constraints, and arrive at a convex optimization problem to identify 

the parameters of the rebate functions. The convex optimization problem has a linear objective function 

and a continuum of linear constraints. We propose a solution method that involves a finite number of 

constraints, and identify the number of samples sufficient for a good approximation. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

This paper is about allocation of an infinitely divisible good to

several strategic agents. The social planner who does this alloca-

tion has limited information in the sense that the agents’ valuation

functions are taken to be private information known only to the

respective agents. We allow only a scalar signal from the agents to

the social planner, which we call a bid. This is the only means by

which agents can provide information about their valuation func-

tions to the social planner. We are interested in an efficient mecha-

nism: the allocation should maximize the sum of valuations of the

agents. Under these constraints, we study mechanisms that come

close to budget balance. Example situations described next, include

fair sharing of Internet resources, disbursal of funds by a parent
∗ Corresponding author. 

E-mail addresses: thirumulanathan@gmail.com (D. Thirumulanathan), 

vinayhebbatam@gmail.com (H. Vinay), skrishna@ee.iitm.ac.in (S. Bhashyam), 

rajeshs@ece.iisc.ernet.in (R. Sundaresan). 

p  

r  

d  

c  

o  

c  

m

http://dx.doi.org/10.1016/j.ejor.2017.04.031 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
epartment, and auctioning of certain public goods, where revenue

aximization is not a consideration. 

xample 1. A communication channel with total capacity C is to

e shared among several rational and strategic agents. This chan-

el can be allocated via a randomized allocation rule, and is thus

n infinitely divisible resource. If an agent gets a long term average

hroughput of a i , the agent’s valuation is v i (a i ) , where v i : [0 , C] →
 + is increasing, concave, and known only to the agent. Naturally,

i a i ≤ C . The agents wish to share the resources among them-

elves without money transferred to an external agent. Suppose

hat the agents agree to communicate with an external coordinator

ho attempts to maximize the sum of valuations. The signal space

omplexity to signal the valuation functions to the coordinator is

rohibitive, particularly when the agents are geographically sepa-

ated, because the functions can be arbitrary within the infinite-

imensional class of increasing concave functions. To model this

ommunication constraint, we assume that the agents can send

nly a scalar signal. In this example, the coordinator is the so-

ial planner who desires efficient allocation without an interest in

aximizing revenue. The scalar signals are viewed as bids. 

http://dx.doi.org/10.1016/j.ejor.2017.04.031
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2

xample 2. A parent organization has to disburse available funds

assumed divisible) among several of its departments. Each de-

artment has a certain valuation function v i for the allocation, is

trategic, and the parent department desires to allocate efficiently

hile retaining only a minimal balance, if at all, based on limited

nformation that the departments provide. Consider the extremely

imited information setting of a scalar signal. The parent depart-

ent is the social planner, the scalar signals are the bids, and the

arent department desires an efficient distribution and no surplus.

The Vickrey–Clarke–Groves (VCG) mechanism ( Clarke, 1971;

roves, 1973; Vickrey, 1961 ) achieves efficient allocation, but only

hen the signal space is sufficiently complex to describe entire

aluation functions. In the VCG mechanism, the social planner re-

uests agents to submit their valuation functions. The social plan-

er then allocates to maximize the sum of the submitted valuation

unctions and determines the agents’ payments. 

Motivated by the communication network context but with

onstrategic agents, Kelly (1997) proposed a mechanism that in-

olved only scalar bids. Under the Kelly mechanism, the social

lanner first collects scalar bids from the agents. Then the social

lanner allocates the good in proportion to the bids, and collects

ayments equal to the bids. The price per unit, or the market clear-

ng price, is the sum of the bids divided by the quantity of the

ood. Every agent sees the same market clearing price. This dis-

ributed solution was shown to be efficient under certain condi-

ions, but the agents should be price-taking or nonstrategic. If the

gents are strategic, there is an efficiency loss of up to, but not

ore than, 25% ( Johari & Tsitsiklis, 2004 ). 

The VCG mechanism payments involve prices per unit good that

an differ across the agents. This is not the case in the Kelly mech-

nism. In order to reduce the efficiency loss in strategic settings

ith scalar bids, Yang and Hajek (2007) and Johari and Tsitsiklis

2009) brought the feature of price differentiation across agents (a

eature of the VCG mechanism) to the Kelly mechanism. The result-

ng mechanism, a scalar strategy VCG mechanism 

1 (SSVCG), was

hown to have efficient Nash equilibria. 

All the above mechanisms typically result in a budget sur-

lus (sum of payments from agents is positive). In this paper, our

deal is to achieve budget balance , or zero budget surplus. How-

ver, simultaneously achieving efficiency and budget balance in a

trategy-proof mechanism is, in general, not possible (due to the

reen–Laffont theorem ( Green & Laffont, 1977 ); see footnote 6). 

In the VCG setting, where there is no constraint on signal-

ng, various almost budget balance notions and associated mecha-

isms were proposed. Almost budget balance is achieved by re-

istributing the payments among the agents in the form of re-

ates. Guo and Conitzer (2009) and Moulin (2009) studied rebate

esign in the case of discrete goods. Gujar and Narahari (2009,

011) studied rebate design for the allocation of m heterogeneous

iscrete goods among n agents. Chorppath, Bhashyam, and Sun-

aresan (2011) studied rebate design in the divisible goods setting.

A big advantage with the VCG setting is that the social planner

omes to know the true valuation functions. Voluntary participa-

ion of agents, i.e., agents being better off by participating in the

echanism, is easily verified. Furthermore, knowledge of the val-

ation functions could be exploited in defining a criterion for al-

ost budget balance, as is done in Moulin (2009) and Chorppath

t al. (2011) . The extension of the almost budget balance notion

o the SSVCG setting, however, is not straightforward. We cannot
1 For some examples of mechanism design with restricted signaling, see 

eichelstein and Reiter (1988) (minimal strategy space dimension for fully efficient 

ash equilibria), ( Semret, 1999 ) (two-dimensional bids for each resource), ( Jain & 

alrand, 2010 ) (two-dimensional bids on bundles of resources), ( Blumrosen, Nisan, 

 Segal, 2007 ) (number of bits needed for signaling the bid). Our focus however is 

n the one-dimensional signaling. 

2

 

a  

v  

T  

l  
ssume that the valuation functions are available because agents

upply only a scalar bid. We thus relax our objective to that of

chieving Nash equilibrium instead of achieving the DSIC (Domi-

ant Strategy Incentive Compatibility) property. 

In this paper, we consider the SSVCG setting that allows the

gents to send only a scalar bid. We (1) propose a notion of almost

udget balance appropriate for the SSVCG setting, and (2) design an

ptimal mechanism as per the proposed notion of almost budget

alance. 

Kakhbod and Teneketzis (2012) designed a mechanism to

chieve an efficient Nash equilibrium with no budget surplus, but

onsidered a setting where the agents signal a two-dimensional

id to the social planner. Moreover, their mechanism may not be

easible when the signals of the agents are not at Nash equilib-

ium. Sinha and Anastasopoulos (2013) modified this mechanism

o have feasibility even under off-equilibrium situations, but re-

uired agents to signal a four-dimensional bid to achieve strong

udget balance at equilibrium. We are not aware of any mecha-

ism that achieves an efficient Nash equilibrium with strong bud-

et balance using only scalar bids. 

There are several design choices that we will make in arriv-

ng at a criterion for almost budget balance in the SSVCG setting.

onsiderations of tractability and significant reduction in surplus

ill guide our design decisions. For example, we restrict atten-

ion to the so-called linear rebates. This is mainly because it makes

he optimization problem analytically tractable. An additional rea-

on for the choice of linear rebates is that they are known to

e optimal in the homogeneous discrete goods setting of Moulin

2009) and Guo and Conitzer (2009) . The best justification how-

ver is the significant reduction in the surplus seen in our simula-

ion results. 

The coefficients of the linear rebate functions will be deter-

ined by a solution to a convex optimization problem. Specifically,

e need to solve an uncertain convex program (UCP) ( Calafiore &

ampi, 2005 ) involving a linear objective function and a continuum

f linear constraints. We propose a solution method that involves a

nite number of constraints, and provide guarantees on the num-

er of samples needed for a good approximation. We first prove

hat, under some sufficient conditions, the solutions of a general

CP and its corresponding relaxed UCP are close. We then prove

hat the specific linear rebate UCP satisfies these sufficient condi-

ions. 

The rest of this paper is organized as follows. In Section 2 ,

e discuss the problem setting and the SSVCG mechanism. In

ection 3 , we discuss design choices for almost budget balance and

ebate functions, our design decisions, and formulate an optimiza-

ion problem. In Section 4 , we make crucial reductions that ensure

hat our proposal can be implemented. The resulting optimization

roblem is a UCP. In Section 5 , we study a general UCP and formu-

ate a sufficient condition for an approximate solution via sampling

f constraints. In Section 6 , we apply the solution of Section 5 to

he UCP for almost budget balance. In Section 7 , we summarize

ur results, discuss alternative choices, and suggest possible exten-

ions. Some simulation results demonstrate the usefulness of our

pproach. 

. The setting 

.1. SSVCG mechanism 

A social planner needs to allocate a unit divisible resource

mong n intelligent, rational, and strategic agents. Agent i has a

aluation function v i : [0 , 1] → R + privately known only to herself.

he interpretation is that if a i ∈ [0, 1] is the fraction of the good al-

ocated to agent i , her valuation is v (a ) . The social planner’s goal
i i 
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Fig. 1. Schematic representation of the SSVCG mechanism. 
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3 Incentive compatibility is possible in some special settings. Consider the fol- 

lowing restricted VCG setting where, for simplicity, it is common knowledge that 

v i ∈ V for i = 1 , 2 , . . . , n . Then, for each i , there is a θ i such that v i (·) = v (·, θi ) . 

The private information held by agent i is the scalar θ i , and it can be seen that 

b = θ = (θ1 , θ2 , . . . , θn ) is an equilibrium in dominant strategies. 
4 A Nash equilibrium is efficient if it yields an allocation that solves (1) . 
5 The derivatives at the end-points are one-sided, with ∞ as a possible value 

at 0. 
6 The Green–Laffont theorem ( Green & Laffont, 1977 ) says that, when the set of 
is to solve the following problem: 

max 
{ a i } 

n ∑ 

i =1 

v i (a i ) subject to 

n ∑ 

i =1 

a i ≤ 1 , and a i ≥ 0 ∀ i. (1)

The social planner, however, does not know the valuation pro-

file v 1 , . . . , v n . To get some indication of these from the agents,

the social planner chooses the following mechanism with one-

dimensional signals from the agents. The social planner announces,

a priori, a scalar-parametrized surrogate valuation function set V =
{ v (·, θ ) , θ ∈ [0 , ∞ ) } . The function v (·, 0) is taken to be the zero

function. An agent i is asked to bid b i ∈ [0, ∞ ), which is taken

to be a signal of that agent’s desired surrogate valuation function

v (·, b i ) . All agents bid simultaneously. The bid profile is denoted

b = (b 1 , . . . , b n ) . If b is the all-zero vector, the social planner allo-

cates nothing. Otherwise, the social planner allocates the divisible

good by solving the following problem which is naturally analo-

gous to (1) but arising from the signaled surrogate valuation func-

tions: 

max 
{ a i } 

n ∑ 

i =1 

v (a i , b i ) subject to 

n ∑ 

i =1 

a i ≤ 1 , and a i ≥ 0 ∀ i. 

(2)

A payment p i ( b ) is then imposed on agent i . This payment is given

by 

p i (b) = −
∑ 

j 	 = i 
v (a ∗j , b j ) + 

∑ 

j 	 = i 
v (a ∗−i, j , b j ) − r i (b −i ) , (3)

where the terms a ∗
j 
, a ∗−i, j 

, and r i are as explained next. The term

a ∗
j 

denotes the jth coordinate of the optimal solution to the so-

cial planner problem in (2) . Its dependence on b is understood and

suppressed. Similarly, a ∗−i, j 
is the jth component of the optimal al-

location when agent i is not participating in the mechanism. Its

dependence on b −i , the bids of all agents other than agent i , is

once again understood and suppressed. The function r i is arbitrary

and has as its argument the bids of all agents other than i . Agent

i ’s resulting quasi-linear utility is v i (a ∗
i 
(b)) − p i (b) . 

With the above specifications, we have a simultaneous ac-

tion game (with incomplete information) among the n agents. A

schematic illustrating the problem solved by the social planner, the

utilities of the agents, and the exchange of information is shown in

Fig. 1 . Since each agent’s strategy is to choose a one-dimensional or

scalar bid, and since the payments are inspired by the VCG mech-

anism, this mechanism is called the scalar-strategy VCG (SSVCG)

mechanism. 2 The first two terms of the right-hand side of (3) con-

stitute the payment of agent i in Clarke’s pivotal mechanism, and

the last term r i (b −i ) may be viewed as a rebate given to agent i . 
2 Scalar-strategy Groves mechanism is perhaps more appropriate. We will stick to 

the terminology of Johari and Tsitsiklis (2009) . 
The VCG mechanism satisfies DSIC; it is in the best interest

f each agent to signal her valuation function in its entirety. In

ur SSVCG setting, however, the signal dimension is greatly re-

uced because only a scalar bid is permitted. Incentive compati-

ility is not possible in general, 3 and we shall settle for a Nash

quilibrium. The following assumptions suffice to guarantee the ex-

stence of, not just a Nash equilibrium, but an efficient Nash equi-

ibrium 

4 ( Johari and Tsitsiklis, 2009 , Cor. 1), and furthermore, to

ssert that every Nash equilibrium is efficient ( Johari and Tsitsiklis,

009 , Prop. 2). 

ssumption 1. 

(a) For each i , v i is concave, strictly increasing, and continu-

ously differentiable 5 on [0, 1], with v i (0) = 0 . Moreover, at

least two agents have infinite marginal valuations at 0, that

is, there exist two agents i , j with i 	 = j such that v ′ 
i 
(0) =

v ′ 
j 
(0) = ∞ . 

(b) For every θ > 0, the function v (·, θ ) is strictly concave,

strictly increasing, and continuously differentiable over [0,

1], with v (0 , θ ) = 0 for all θ ≥ 0. Furthermore, for any θ >

0, the derivative with respect to the first argument satisfies

v ′ (0 , θ ) = ∞ . 

(c) For every γ > 0 and a > 0, there exists θ > 0 such that

v ′ (a, θ ) = γ . 

Specifically, let us restrict the surrogate valuation function to

e of the form v (a, θ ) = θU(a ) , where U : [0 , 1] → R satisfies the

ollowing assumptions. 

ssumption 2. U is strictly concave, strictly increasing, and a con-

inuously differentiable function over [0, 1] with U(0) = 0 and

 

′ (0) = ∞ . 

It is easy to verify that the surrogate valuation functions of the

bove form satisfy Assumption 1 (b) and (c). The reason for this

estriction is technical, and will be clear in Section 4.3 . 

.2. Almost budget balanced SSVCG mechanism 

When r i in (3) is identically zero, Clarke’s pivotal payment rule

ay result in a net budget surplus (sum of payments) at the so-

ial planner. In this paper, however, we are interested in scenarios

here the social planner wants efficient allocation, but desires zero

udget surplus. Zero budget surplus, also called budget balance , is

nattainable in general. 6 Our objective is to achieve almost budget

alance , a notion we will formalize in this section. 

Two properties are desired for these mechanisms after pay-

ents are collected and rebates are redistributed as in (3) . They

re: 

( F ) Feasibility or weak budget balance : The mechanism should

not be subsidized by an external money source. This im-
valuation functions are sufficiently rich, there is no quasi-linear mechanism that 

simultaneously satisfies DSIC, allocative efficiency, and budget balance properties. 

Take the restricted VCG setting in footnote 3. The Green–Laffont theorem is appli- 

cable to this setting, and since the mechanism is DSIC and allocatively efficient, it 

follows that budget balance is impossible. 
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v  
poses the constraint that, for each b , we should have 

n ∑ 

i =1 

p i (b) ≥ 0 , 

which, using (3) , is seen to be equivalent to 

n ∑ 

i =1 

r i (b −i ) ≤
n ∑ 

i =1 

[ 

−
∑ 

j 	 = i 
v (a ∗j , b j ) + 

∑ 

j 	 = i 
v (a ∗−i, j , b j ) 

] 

= −(n − 1) 
n ∑ 

j=1 

v (a ∗j , b j ) + 

n ∑ 

i =1 

∑ 

j 	 = i 
v (a ∗−i, j , b j ) 

=: p S (b) , (4) 

where p S ( b ) is the total surplus under Clarke’s pivotal pay-

ment rule. 

( VP ) Voluntary participation : Agents should be better-off (in

the sense of not being strictly worse-off) by participating in

the mechanism. We take the payoff (utility) for not partic-

ipating in the mechanism to be 0. (VP) then imposes the

constraint that, for each b , we should have 

v i (a ∗i ) − p i (b) ≥ 0 , ∀ i, (5)

which, using (3) once again, is equivalent to 

r i (b −i ) ≥ −v i (a ∗i ) −
∑ 

j 	 = i 
v (a ∗j , b j ) + 

∑ 

j 	 = i 
v (a ∗−i, j , b j ) , ∀ i 

=: q i (b) , (6) 

here q i ( b ) is the negative of the quasi-linear utility of agent i un-

er Clarke’s payment rule. 

An issue now arises. While the payments p i ( b ) do not depend

xplicitly on the true valuation function, which is unknown to the

ocial planner, the condition for (VP) does. This can be seen in

6) by observing that q i ( b ) depends on v i . 
When r i ( · ) ≡ 0, i = 1 , 2 , . . . , n, Clarke’s pivotal mechanism sat-

sfies both (F) and (VP). Are there other mechanisms with nontriv-

al rebate functions that satisfy (F) and (VP)? We shall answer in

he affirmative in Section 6 , and we shall see how the issue of de-

endence of (VP) on v i , which the social planner does not know, is

ddressed in Section 4.1 . 

. Design considerations leading to an optimization problem 

.1. Deterministic and anonymous rebates 

For a given set of bids, we require that the rebates be determin-

stic : the mechanism does not employ randomness. Additionally,

e require that the rebates be anonymous : two agents with iden-

ical bids should receive identical rebates. The information avail-

ble to the social planner on the valuation functions is symmet-

ic across agents. Indeed, all that the social planner knows is that

he valuation functions satisfy Assumption 1 (a). This information is

ymmetric to permutation of agent labels. After the bids are sent

o the social planner, two agents with identical bids are indistin-

uishable, and so, we require that the mechanism give them iden-

ical rebates. 

To ensure deterministic and anonymous rebates, we restrict at-

ention to rebates of the following form. For a bid profile b , let b [ j ] 
e the jth largest entry of b . Similarly, for b −i , let (b −i ) [ j] be the

jth largest entry of b −i . The rebate functions are taken to be of the

orm 

7 
7 This choice is motivated by the following observation. Consider the restricted 

CG setting of footnote 3 where a converse statement holds: if 

sup 
a,θ ) ∈ [0 , 1] 2 

∣∣∣∣ ∂ v (a, θ ) 

∂θ

∣∣∣∣ < ∞ , (7) 

t

m

(

a

G

t

w

 i (b −i ) = g((b −i ) [1] , (b −i ) [2] , . . . , (b −i ) [ n −1] ) . (8)

n following subsections, we propose optimality criteria for design-

ng rebates. 

.2. Design for the worst case 

Suppose that there are m discrete and identical goods, and each

gent is allocated at most one good. The valuation function of

gent i may be taken to be θ i a i , where a i ∈ {0, 1}. The private in-

ormation θ i is then interpreted as the value of the good to agent

 . Clearly, this is a setting where, with U(a i ) = a i , the proposed

echanism is just the VCG mechanism and achieves DSIC. We may

herefore take the bids to be b i = θi for each agent i . For this set-

ing, Moulin (2009) defined almost budget balance in terms of the

orst-case ratio of the sum of payments to the sum of valuations.

pecifically, Moulin’s proposal is to design rebates to minimize 

up 

θ

[
p S (θ) − ∑ n 

i =1 r i (θ−i ) 

σ (θ) 

]
, (9) 

here σ (θ) = 

∑ n 
i =1 v (a ∗

i 
, θi ) is the optimal social welfare, subject

o: 

F) 

n ∑ 

i =1 

r i (θ−i ) ≤ p S (θ) ∀ θ, (10) 

VP) r i (θ−i ) ≥ q i (θ) ∀ i, ∀ θ. (11) 

ee (4) and (6) for definitions of p S and q i , respectively. Guo and

onitzer (2009) considered an alternate proposal to minimize 

up 

θ

[
1 −

∑ n 
i =1 r i (θ−i ) 

p S (θ) 

]
(12) 

ubject to the same (F) and (VP) constraints. 

It turns out that in the above example of an auction of m iden-

ical discrete goods, considered both by Moulin (2009) and Guo

nd Conitzer (2009) , the two proposals yield the same optimal re-

ates and objective function values. In general, however, the two

roposals yield different solutions. Indeed, they yield different so-

utions for the auction of m identical discrete goods if, for example,

he (VP) constraint alone is relaxed. The Guo and Conitzer proposal

ocuses only on the fraction of payment that is retained as net sur-

lus without regard to the absolute value of the payment amounts.

 rewriting of Moulin’s objective (9) as 

up 

θ

[
p S (θ) 

σ (θ) 
·
(

1 −
∑ n 

i =1 r i (θ−i ) 

p S (θ) 

)]
learly shows that the fraction of retained surplus, the quantity

onsidered by Guo and Conitzer and enclosed within parentheses

bove, is weighted by a factor that takes into account the size of

he payments p S ( θ) relative to the optimal social welfare σ ( θ). If

he Guo and Conitzer proposal attains its worst-case at a profile

here the net Clarke surplus is small relative to the optimal social

elfare, it is de-emphasized by the Moulin proposal. The Moulin

roposal, therefore, focuses more on reducing the surplus in set-

ings where the net surplus is high relative to the optimal social

elfare. We therefore adopt Moulin’s proposal of minimizing (9) . 

Chorppath et al. (2011) studied exactly this proposal in the di-

isible goods setting, but in the simpler restricted VCG setting of
hen any DSIC mechanism with a rebate function that is deterministic and anony- 

ous must have the form (8) . This converse was informally stated by Cavallo 

2006) , and formally proved in (Guo & Conitzer, 2009, Lem. 2) . The proof relies on 

 result of Holmström (1979) that shows that any DSIC mechanism must be of the 

roves class if the family of valuation functions is ‘smoothly connected’. The lat- 

er property holds for our single-parameter family of surrogate valuation functions 

hen (7) holds. 
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footnote 3. While the Moulin proposal is defensible for that set-

ting, it has the drawback in our SSVCG setting that σ ( θ) is not

known to the social planner. Just as we chose a surrogate valua-

tion function to identify the allocations and payments, we choose

a surrogate social welfare function 

σS (b) := 

n ∑ 

i =1 

v (a ∗i , b i ) (13)

in place of σ ( b ). We therefore propose to minimize 

sup 

b 

[
p S (b) − ∑ n 

i =1 r i (b −i ) 

σS (b) 

]
(14)

subject to (F) 

n ∑ 

i =1 

r i (b −i ) ≤ p S (b) ∀ b, (15)

(VP) r i (b −i ) ≥ q i (b) ∀ b, ∀ i, (16)

where (15) is the same as (4) , and (16) is the same as (6) . This

choice puts us in the optimization framework of Chorppath et al.

(2011) , except that we have not yet shown how to resolve the issue

of dependence of (16) on the private information v i . 
We now highlight two important differences between our work

and that of Yang and Hajek (2007) . (1) For given valuation func-

tions, they bound the payments and revenues of the SSVCG mech-

anism, and remark that there are suitable surrogate functions that

can drive the revenue to zero. For a given surrogate function, how-

ever, by merely scaling the (true) valuation functions, the revenue

can be made arbitrarily large. Thus their analysis does not ad-

dress the worst case setting while ours does. (2) Yang and Ha-

jek (2007) nor Johari and Tsitsiklis (2009) explicitly discuss or im-

pose the VP constraint, while we do. But, as we will point out af-

ter Lemma 3 , the SSVCG mechanism with Clarke’s pivotal payment

rule does indeed satisfy the VP constraint at Nash equilibrium if

there is a bid, say 0, that signals withdrawal from the mechanism. 

3.3. Linear rebates 

In the Moulin (2009) and Guo and Conitzer (2009) settings,

which is that of worst-case optimal rebates for the auction of dis-

crete identical goods, linear rebate functions of the form 

r i (b −i ) = c 0 + c 1 (b −i ) [1] + · · · + c n −1 (b −i ) [ n −1] (17)

were shown to be optimal. We too restrict attention to linear re-

bates of this form. Optimality or otherwise of linear rebates for the

divisible good case is still unexplored. Linear rebates enable ana-

lytical tractability as we will see in later sections. In Section 7 , we

present some numerical results that justify to some extent the use

of linear rebates. 

3.4. Restriction to the closure of realizable signals 

The performance metric (14) has a supremum over b subject

to constraints (15) and (16) which are also parametrized by b . The

supremum and the constraints ought to reflect only those b that

are realizable , i.e., those b that are Nash equilibria for some valua-

tion function profiles v 1 , . . . , v n . We now identify this set of realiz-

able points. 

Lemma 1. Let the surrogate valuation function satisfy Assumption

1 (b) and (c). Then, for any θ ∈ (0, ∞ ) n , there exist valuation func-

tion profiles v 1 , . . . , v n satisfying Assumption 1 (a) such that b = θ is a

Nash equilibrium. 

Proof. Proof is available in the online appendix. �
The form of the surrogate valuation function implies some reg-

larity on p S and σ S . 

emma 2. With v (a, θ ) = θU(a ) , where U satisfies Assumption 2 , the

appings b �→ σ S ( b ) and b �→ p S ( b ) are Lipschitz continuous. 

roof. For σ S , see Thm. 4 of Chorppath et al. (2011) . For p S , see

em. 1 of Chorppath et al. (2011) . The proofs are reproduced in the

nline appendix for completeness. �

Lemmas 1 and 2 , and the fact that our choice of linear rebates

s continuous in b , allow us to run b over the closure of the set

f realizable (or Nash equilibrium) bids. Since this closure is R 

n + , b
uns over all elements in R 

n + , both in the supremum and in the (F)

nd (VP) constraints. 

.5. Ordering and the optimization problem 

Observe that the worst-case optimality criterion (14) depends

nly on the ordered bids. Without loss of generality, we henceforth

ssume that agent i is the agent with the i th highest bid. Bids then

ome from the set ˆ � = { b ∈ R 

n + | b 1 ≥ b 2 ≥ . . . ≥ b n ≥ 0 } , and the

 th agent’s rebate is 

 i (b −i ) = c 0 + c 1 b 1 + · · · + c i −1 b i −1 + c i b i +1 + · · · + c n −1 b n . (18)

Henceforth, when we refer to the optimization problem in

14) subject to the (F) and (VP) constraints in (15) and (16) , we

eplace the parameter b by θ, and ∀ b by ∀ θ ∈ 

ˆ �. Let us also define

 = (c 0 , . . . , c n −1 ) . 

The optimization problem to design the best linear rebate func-

ions, after substitution of (18) in (F) of (15) and in (VP) of (16) , is

ow: 

min 

c 
sup 

θ∈ ̂ �

[
p S (θ) − ∑ n 

i =1 r i (θ−i ) 

σS (θ) 

]
(19)

ubject to (F) nc 0 + 

n −1 ∑ 

i =1 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) , ∀ θ ∈ 

ˆ �

(20)

(VP) c 0 + 

i −1 ∑ 

j=1 

c j θ j + 

n −1 ∑ 

j= i 
c j θ j+1 ≥ q i (θ) , ∀ θ ∈ 

ˆ �, ∀ i. 

(21)

. Simplification of constraints and a reformulation 

We now free up the optimization problem in (19) from its de-

endence on the true valuation functions in the (VP) constraint.

e also justify the restriction of θ to a compact subset of ˆ � and

rrive at a reformulation of the above optimization problem as a

eneralized linear program. 

.1. Simplification of the (VP) constraints 

As observed earlier, the (VP) constraint in (21) requires, through

 i ( θ), knowledge of the true valuation functions. The following

emma is a significant step in freeing up the constraint from the

nowledge of true valuation functions, and assures us that the op-

imization problem is well-posed. Incidentally, this will also estab-

ish that the SSVCG mechanism with Clarke’s pivotal payment rule

atisfies the VP constraint at Nash equilibrium. 

emma 3. Suppose that the true valuations satisfy Assumption 1 (a)

nd that the surrogate valuation function is v (a, θ ) = θU(a ) , with U

atisfying Assumption 2 . 
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(1) The constraints (F) and (VP), (20) and (21) , imply that c 0 =
c 1 = 0 . 

(2) Let c 0 = c 1 = 0 . Then, the (VP) constraint is equivalent to 

k ∑ 

i =2 

c i ≥ 0 , for k = 2 , 3 , . . . , n − 1 . (22)

roof. Proof is available in the online appendix. �

Thanks to Lemma 3 , the optimization problem is now given

y: 

min 

c 
sup 

θ∈ ̂ �

[
p S (θ) − ∑ n 

i =1 r i (θ−i ) 

σS (θ) 

]
(23) 

ubject to (F) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) , ∀ θ ∈ 

ˆ �

(VP) 

k ∑ 

i =2 

c i ≥ 0 , k = 2 , 3 , . . . , n − 1 . 

.2. Reformulation as a generalized linear program 

As in Chorppath et al. (2011) , the min-max problem (23) can

e turned into a generalized linear program (LP) by introducing an

uxiliary variable t : 

min 

c,t 
t 

ubject to (F) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) , ∀ θ ∈ 

ˆ �

(VP) 

k ∑ 

i =2 

c i ≥ 0 , k = 2 , 3 , . . . , n − 1 , 

(W) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) + tσS (θ) ≥ p S (θ) , ∀ θ ∈ 

ˆ �

W) captures the constraint associated with the worst-case objec-

ive. 

We say “generalized” because the above LP has a continuum of

inear constraints parametrized by θ ∈ 

ˆ �. The constraint set on c

nd t is convex, because it is an intersection of a family of half-

lane constraints. While there appears to be no direct way to solve

his problem, further simplification of the constraints is possible.

e pursue this in the next subsection. 

.3. Simplification of (F) and (W) 

In Appendix A we show two properties – monotonicity and

caling – of the VCG payments. We shall now exploit them to sim-

lify (F) and (W). 

Observe that the left-hand side of (F) does not depend on θ1 .

rom Proposition 7 (a), we have that p S ( θ) is monotonically increas-

ng in θ1 for a fixed θ−1 . It follows that the right-hand side is

mallest (and the constraint is tightest) when θ1 = θ2 . It there-

ore suffices to restrict attention to elements of ˆ � that satisfy

1 = θ2 . Further, note that the constraint is automatically satisfied

f θ1 = θ2 = 0 . So we may assume θ2 > 0. 

Consider θ ∈ 

ˆ � such that θ1 = θ2 ≥ θ3 ≥ · · · ≥ θn , and θ2 > 0.

efine ˆ θ = θ/θ2 ; then 

ˆ θ ∈ 

ˆ � with 1 = 

ˆ θ1 = 

ˆ θ2 . The left-hand side

f (F) is homogeneous of order 1 in θ. By our choice v (a i , θi ) =
i U(a i ) , the right-hand side of (F) is also homogeneous of order 1.

s a consequence 
n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) 

⇔ θ2 

n −1 ∑ 

i =2 

c i (i ̂  θi +1 + (n − i ) ̂  θi ) ≤ p S (θ2 · ˆ θ) 

⇔ 

n −1 ∑ 

i =2 

c i (i ̂  θi +1 + (n − i ) ̂  θi ) ≤
p S (θ2 · ˆ θ) 

θ2 

⇔ 

n −1 ∑ 

i =2 

c i (i ̂  θi +1 + (n − i ) ̂  θi ) ≤ p S ( ̂  θ) . (24) 

F) now simplifies, after removing the hats in 

ˆ θ, to 

F) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) , ∀ θ ∈ 

ˆ �, θ1 = θ2 = 1 . 

We now simplify the (W) constraint. First note that when θ1 =
 , (W) is trivially satisfied since it is always the case that σ S ( θ)

p S ( θ). So we may assume that θ1 > 0. We next note that the

ummation 

∑ n −1 
i =2 c i (iθi +1 + (n − i ) θi ) , σ S ( θ), and p S ( θ) are all ho-

ogeneous of order 1 in θ. Under θ1 > 0, we can re-scale θ by its

rst component to get ˆ θ = θ/θ1 , and obtain 

n −1 
 

i =2 

c i (iθi +1 + (n − i ) θi ) + tσS (θ) ≥ p S (θ) 

⇔ 

n −1 ∑ 

i =2 

c i (i ̂  θi +1 + (n − i ) ̂  θi ) + tσS ( ̂  θ) ≥ p S ( ̂  θ) . (25) 

hus the worst-case constraint (W) simplifies to 

W) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) + tσS (θ) ≥ p S (θ) , ∀ θ ∈ 

ˆ �, θ1 = 1 . 

e note that the simplification of constraints (F) and (W) was

acilitated by our assumption of the surrogate valuation function

 (a, θ ) = θU(a ) . These simplifications, as we will observe in the

roof of Theorem 6 , enable us to obtain a simpler solution to the

ptimization problem at hand. 

.4. An uncertain convex program 

Let us now define � = { θ ∈ 

ˆ � : 1 = θ1 } . In view of the simplifi-

ations of (F) and (W), we can now rewrite the optimization prob-

em as 

min 

c,t 
t (26) 

ubject to (F) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) ≤ p S (θ) , ∀ θ ∈ �, θ2 = 1 , 

(VP) 

k ∑ 

i =2 

c i ≥ 0 , k = 2 , 3 , . . . , n − 1 , 

(W) 

n −1 ∑ 

i =2 

c i (iθi +1 + (n − i ) θi ) + tσS (θ) ≥ p S (θ) , ∀ θ∈ �. 

This optimization problem continues to be a generalized LP

ith a continuum of constraints. However, the continuum of con-

traints are now parametrized by a compact set � instead of the

on compact set ˆ �. 

Chorppath et al. (2011) studied the simpler VCG setting and

dopted a randomized approach to solving the optimization prob-

em within a probably approximately correct framework. Specifi-

ally, they considered a random sampling of constraints from �
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and provided guarantees on the number of samples required to

obtain a near optimum solution. Here we take a deterministic ap-

proach. 

5. An uncertain convex program 

The optimization in (26) can be cast as a convex optimiza-

tion problem subject to convex constraints having an uncertainty

parameter. Such problems are called uncertain convex programs

(UCP). Formally, a UCP is defined (in Calafiore & Campi, 2005 ) as a

convex program of the form 

min 

x 
f (x ) subject to x ∈ A and g(x, θ) ≤ 0 , ∀ θ ∈ �, 

(27)

where θ is the uncertainty parameter, � is an n -dimensional set, x

is a d -dimensional variable over which optimization occurs, g ( x , θ)

is a convex function of x for every θ ∈ �, and A is a convex subset

of R 

d . In general, the index set for the constraints, �, may be a

continuum and, hence, the constraint set may be hard to charac-

terize or compute. 

The following three approaches to solve a UCP are known:

robust optimization, chance-constrained optimization, and sam-

pled convex program (SCP) (see Calafiore & Campi, 2005 ). The

first two techniques have been extensively studied under some

special settings while the third technique (SCP) appears to have

a wider applicability (see Calafiore and Campi, 2005, 2006 for

details). The SCP technique involves sampling a subset ˆ �(m ) =
{ θ(1) , θ(2) , . . . , θ(m ) } in an independent and identically distributed

fashion according to a distribution P D , and relaxing the constrain-

ing parameters from ‘ θ ∈ �’ to ‘ θ ∈ 

ˆ �(m ) ’. Formally, an SCP is of

the form 

min 

x 
f (x ) subject to x ∈ A and { g(x, θ(i ) ) ≤ 0 , i = 1 , 2 , . . . , m } , 

(28)

where θ( i ) is the i th sample of the constraint parameter, and m is

the number of samples. Calafiore and Campi (2006) provide the

number of samples m sufficient to make the sampled constraint

set approximate the actual constraint set in a particular sense as

described next. 

Theorem 4 ( Calafiore & Campi (2006) ) . Let the violation probabil-

ity V ( x ) at x be defined as V (x ) = P D (θ ∈ � : g(x, θ) > 0) . Then, for a

fixed ε, δ > 0, the number of samples 

m (ε, δ) = 

2 

ε

(
n log 

(
2 

ε

)
+ log 

(
1 

δ

))
+ 2 n 

suffices for having Pr { V (x ) ≤ ε} ≥ 1 − δ for each x that satisfies all

the constraints of the SCP. 

In this paper, we want to bound the number of samples m ( τ )

needed to make the values of the UCP and the SCP be within τ of

each other, that is, 

| Value of SCP − Value of UCP |≤ τ. (29)

Chorppath et al. (2011) , following Calafiore and Campi (2006) ,

studied a random sampling of constraints and provided a bound

on the number of samples needed to satisfy (29) with high prob-

ability. Here we take a deterministic approach. We first state and

prove a more general result to bring out the essential ideas. We

then specialize it to the almost budget balance problem. 

5.1. Solution to a general UCP 

An ε-cover for � is a collection of points ˆ �(m ) =
{ θ(1) , θ(2) , . . . , θ(m ) } such that balls of radius ε centered around
ach of these points cover �. If � is compact, there exists a finite

over. 

Let X denote the constraint set of the UCP, and let Y denote the

onstraint set of the SCP obtained from an ε-cover. Symbolically, 

 = 

⋂ 

θ∈ �
{ x ∈ A : g(x, θ) ≤ 0 } and Y = 

⋂ 

θ∈ ̂ �(m ) 

{ x ∈ A : g(x, θ) ≤ 0 } . 

ince ˆ �(m ) ⊂ �, we have X ⊂ Y . We make the following assump-

ion. 

ssumption 3. 

(a) The mapping x �→ f ( x ) is Lipschitz on Y with Lipschitz con-

stant K 1 . 

(b) The mapping θ �→ g ( x , θ) is uniformly Lipschitz over x ∈ Y ,

with Lipschitz constant K 2 . 

(c) There is a constant K 3 such that, for every y ∈ Y \ X , there

exists a θ ∈ � and an x ∈ X that satisfy g(y, θ) ≥ K 

−1 
3 

|| y − x || .
Our general result is the following. 

heorem 5. For the UCP (27) and the SCP (28) with ˆ �(m ) being an

-cover for �, let Assumption 3 hold. Then the optimal values of the

CP and the SCP are within K 1 K 2 K 3 ε of each other. 

roof. Let x ∗ solve the UCP and let y ∗ solve the SCP. Since X ⊂ Y ,

e have f ( x ∗) ≥ f ( y ∗). We may assume that f ( x ∗) > f ( y ∗) (hence

 

∗ ∈ Y \ X ), for otherwise, the theorem is trivially true. 

By Assumption 3 (c), for this y ∗, there exist a θ ∈ �, x ∈ X , such

hat 

(y ∗, θ) ≥ K 

−1 
3 ‖ y ∗ − x ‖ . (30)

learly, we must have θ / ∈ 

ˆ �(m ) , for otherwise, g ( y ∗, θ) ≤ 0, which

ontradicts (30) . Let θ∗ be the element in the ε-cover ˆ �(m ) that is

losest to θ. We then have || θ∗ − θ|| ≤ ε, and since y ∗ is a feasible

oint for the SCP, we also have g ( y ∗, θ∗) ≤ 0. Thus 

(y ∗, θ) ≤ g(y ∗, θ) − g(y ∗, θ∗) 
(� ) ≤ K 2 ‖ θ − θ∗‖ ≤ K 2 ε, (31)

here ( � ) follows from Assumption 3 (b). Since x ∈ X , we must also

ave f ( x ∗) ≤ f ( x ), and thus 

f (y ∗) ≤ f (x ∗) ≤ f (x ) . 

ubtracting f ( y ∗) throughout, we have, 

 ≤ f (x ∗) − f (y ∗) ≤ f (x ) − f (y ∗) ≤ K 1 ‖ y ∗ − x ‖ , (32)

here the last inequality follows from Assumption 3 (a). Putting

he chain of inequalities in (30), (31) , and (32) together, we get

 f (x ∗) − f (y ∗) | ≤ K 1 K 2 K 3 ε. �

. An application to the problem of almost budget balance 

The optimization problem in (26) can be cast as a UCP. Let us

ee how. 

Define x i = 

∑ i 
j=2 c j , i = 2 , . . . , n − 1 , and x n = t . (There is no

 1 ). Let x = (x 2 , . . . , x n −1 , x n ) . 

(VP) now becomes x i ≥ 0 , i = 2 , . . . , n − 1 . The variable t is non-

egative, and hence x n ≥ 0. Moreover, (W) is trivially satisfied for

 n ≥ 1, when x i ≥ 0 , i = 2 , . . . , n − 1 . Therefore, restricting x n to be

t most 1 has no effect on the optimization problem since we min-

mize x n . Thus the set A for the UCP is 

 = { x | x n ≤ 1 , x i ≥ 0 , i = 2 , . . . , n } . 
We now write (F) and (W) in terms of the above-defined vari-

bles. To do this, we define 

i (θ) = iθi +1 + (n − i ) θi , i = 2 , . . . , n − 1 (33)

n (θ) = 0 . (34)
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8 θ2 , . . . , θn were picked uniformly at random from [0,1] and were then sorted. 
sing c 2 = x 2 and c i = x i − x i −1 for i = 3 , . . . , n − 1 , the (F) con-

traint then becomes 

 1 (x, θ) := 

n −1 ∑ 

i =2 

x i (αi (θ) − αi +1 (θ)) − p S (θ) ≤ 0 , ∀ θ ∈ �. 

urther, (W) becomes 

 2 (x, θ) := −
n −1 ∑ 

i =2 

x i (αi (θ) − αi +1 (θ)) + p S (θ) − x n σS (θ) ≤ 0 , 

∀ θ ∈ �. 

ow set g ( x , θ) := max { g 1 ( x , θ), g 2 ( x , θ)}. We earlier argued that

e could restrict (F), g 1 ( x , θ) ≤ 0, to those θ ∈ � that satisfy θ2 =
 . In order to combine the two constraints into a single one, we

llow other values of θ2 , θ2 ≤ 1, even though the constraints are

ightest when θ2 = 1 . 

Finally, the objective function is taken to be f (x ) = x n . The UCP

n (26) is then of the form (27) studied in the previous section. 

We now have the following result. 

heorem 6. With �, A , f , g as defined above, the corresponding UCP

atisfies Assumption 3 . 

roof. See Appendix B . �

By Theorems 5 and 6 , using an ε-cover for �, the values of

he UCP for the almost budget balance problem in (26) and the

ssociated SCP are within K 1 K 2 K 3 ε of each other. The proof of

heorem 6 provides more information on how the constants K 1 ,

 2 , and K 3 depend on n and U . The proof, especially Eqs. (B.3) and

B.7) , requires σ S ( θ) and p S ( θ) to be lower bounded by a positive

umber. The simplifications in (F) and (W) were needed to obtain

hese lower bounds. 

. Discussion 

.1. Summary 

We considered the allocation of a single divisible good among

 agents whose valuation functions are private information known

nly to the respective agents. The social planner announces (1) an

llocation scheme and a payment scheme that depend only on a

calar bid from each agent, and (2) invites the agents to submit

heir bids. Allocations and payments utilize a surrogate valuation

unction chosen (and announced beforehand) by the social planner

SSVCG). Rebates are used to achieve almost budget balance. We

rovided a framework to design the rebates and to achieve almost

udget balance in a certain worst-case sense (19) . Our framework

nvolved a solution to a convex optimization problem with a con-

inuum of constraints for which we proposed a solution method

nvolving constraint sampling. The almost budget balance property

nd the implementability of the mechanism holds off-equilibrium

s well. 

.2. Performance of linear rebates 

Linear rebates are known to be optimal in the homogeneous

iscrete goods setting ( Guo and Conitzer, 2010 ; Moulin, 2009 ). This

as our main motivation for studying linear rebate functions in

his paper. While the optimality of linear rebates in our divisible

oods setting is not yet established in generality, we present some

umerical results to highlight the reduction in budget surplus us-

ng linear rebates. 

For our simulations, we chose the surrogate valuation function

 (a i , θi ) = θi U(a i ) . This form of surrogate valuations is popular in

he computer networking literature. (See Kelly, 1997 for an exam-

le.) This choice is 1-homogeneous in the θ variable, a property
i 
hich in conjunction with the choice of linear rebates and the

caling property of VCG payments enabled us to compactify the

et of θ’s to �, the set of all ordered θ’s with θ1 = 1 . 

We chose U(a ) = a 1 −α, α ∈ {0.01, 0.25, 0.5, 0.75, 0.99}. These

 functions are related to the generalized α-logarithm suggested

y Yang and Hajek (2007) . In each case, the coefficients of the lin-

ar rebate functions were obtained by solving the sampled con-

ex problem (SCP). But instead of using an ε-cover, we used the e k 
rofiles and 50 0 0 × n additional randomly sampled constraints. 8 

he corresponding value of the SCP is denoted “Numerical” value.

n additional 50, 0 0 0 × n samples were generated, and the per-

ormance of the identified rebate function on those 50, 0 0 0 × n

amples is denoted “Simulated” value. Since the rebates are de-

ermined only as an approximate solution with the sampled con-

traints, the worst-case ratio in the simulations, “Simulated” value,

an be higher than “Numerical” value. 

For α = 0 . 5 , Fig. 2 a shows “Simulated” and “Numerical” values

nd compares them with the “SSVCG” value, the surplus under no

ebates. Fig. 2 b shows “Numerical” and “SSVCG” values for each

alue of α. “Simulated” (not plotted) and “Numerical” values were

lose to each other for each value of α, and both significantly lower

han “SSVCG”. Moreover the worst-case ratio reduces as the num-

er of agents increases. In contrast, the “SSVCG” value is nearly

onstant across the number of agents. Both of these plots provide

 compelling argument in favor of linear rebates. 

Observe that the worst-case objective in the plots is scaled by

 factor of 1 / (1 − α) . This is because the observed SSVCG value

as at most 1 − α. This suggests (correctly) that we should set

very close to 1 to reduce the worst-case objective. The reduc-

ion in the worst-case objective occurs because of an increase in

S ( θ) at the Nash equilibrium point corresponding to each α, and

ot because of the reduced surplus. The reduced objective func-

ion value is because of our choice of the Moulin objective func-

ion which reweighs the fraction of surplus retained by a factor

 S ( θ)/ σ S ( θ). The surplus itself approaches a nonzero constant as

he number of agents goes to infinity. (Proofs of these assertions

an be found in the online appendix.) Interestingly, linear rebates

ontinue to provide a significant reduction in the budget surplus,

s can be gleaned from Fig. 2 b. See Section 7.4 on possible exten-

ions for further remarks. 

The following is a brief description of how | c i |, obtained from

ur simulations, vary in i , n , and α. 

• | c 2 | is found to be the highest among all | c i |. We did not ob-

serve any other increasing or decreasing trend in the variable

i . 
• | c i ( n )| monotonically decreases in n when i � n . | c i ( n )| did not

show any trend for i comparable to n . 
• | c 2 ( α)| was found to increase monotonically with α. | c i ( α)| for

all other α was found to increase up to some α and then de-

crease thereafter. 

We reiterate that these are mere observations from simulation

utcomes and are not formally established. 

.3. Optimality in expectation 

In another work, Guo and Conitzer (2010) considered a Bayesian

etting and an associated objective: minimize the ratio E [ budget

urplus ] / E [ VCG payment without rebates]. Its extension to our set-

ing involves a prior distribution on the space of valuation function

rofiles. Suppose one can assume that the Nash equilibrium asso-

iated with any valuation function profile is unique – Yang and

ajek (2007) identify some sufficient conditions for this to hold.
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Fig. 2. (a) (Worst-case objective t )/(1/2) vs. number of agents; v (a, θ ) = θ
√ 

a . (b) (Worst-case objective t )/( 1 − α) vs. number of agents; v (a, θ ) = θa 1 −α for α ∈ {0.01, 0.25, 

0.5, 0.75, 0.99}. ‘Simulated’ (not plotted) was close to ‘Numerical’ in each case. 
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Then each valuation profile maps to a unique equilibrium bid pro-

file. The prior distribution on the space of valuation function pro-

files induces a distribution on the space of equilibrium bid profiles.

Now, taking expectations of the budget surplus with and without

rebates, we can arrive at an objective function similar to that of

Guo and Conitzer (2010) . 

7.4. Possible extensions 

As our choice of the almost budget balance criterion, we

adopted the one proposed by Moulin (2009) , see (14) , for the rea-

son highlighted in Section 3.2 . One could however work with the

Guo and Conitzer (2009) criterion, see (12) , and arrive at a new

UCP. For this modified UCP, we do not have bounds on the size of

the ε-cover because Assumption 3 (c) does not hold. 

We focused here on anonymous rebates because we assumed

that the information with the social planner on the agents is sym-

metric to agent permutation. If information on the agents is asym-

metric, for example the social planner wishes to weigh the alloca-

tion to one agent a little more than that to another, then agent-

specific U i or agent-specific rebates could be used. Anonymity will

have to be relaxed. 

We restricted our attention to the allocation of an infinitely di-

visible good, and did not study a network setting, primarily be-

cause of our focus on identifying a suitable notion of almost budget

balance and our desire to address the (VP) constraint’s dependence

on the true valuations in a simple setting. With our foundation, an

extension to the network setting ( Yang & Hajek, 2007 ) or a general

convex setting ( Johari & Tsitsiklis, 2009 ) should now be possible. 

While designing the rebate functions, we restricted attention to

linear rebates for analytical tractability. Linear rebates are optimal

in the homogeneous discrete goods setting. Proving the optimality

or sub-optimality of linear rebates in our setting could be a direc-

tion for future work. 
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ppendix A. Monotonicity and scaling properties of VCG 

ayments 

We now prove monotonicity and scaling properties of the sur-

lus under Clarke’s payment rule, a result that may be of indepen-

ent interest. 

We consider a slightly more general setting than that of the pa-

er. We now allow the surrogate valuation function to possibly de-

end on the agent and replace v by v i for agent i . We also relax

he restriction that v i (a i , θi ) = θi U(a i ) , and make the following as-

umptions on the family v i , i = 1 , 2 , . . . , n . 

ssumption 4. 

(a) For every i , every θ i > 0, v i (·, θi ) is strictly concave, strictly

increasing, continuously differentiable over [0, 1]. 

(b) For every a i ∈ [0, 1], the map θi �→ v i (a i , θi ) is absolutely

continuous. 

(c) For every a i ∈ [0, 1], the partial derivative 
∂ v i (a i ,θi ) 

∂θi 
exists. 

(d) Furthermore, for some integrable B i ( θ i ), we have 

∣∣∣ ∂ v i (a i ,θi ) 

∂θi 

∣∣∣ ≤
B i (θi ) . 

(e) For each fixed θ i , the map a i �→ 

∂ v i (a i ,θi ) 

∂θi 
is increasing. 

(f) For each fixed a i , the map θi �→ 

1 
θi 

∂ v i (a i ,θi ) 

∂a i 
is decreasing. 

Obviously, v i (a i , θi ) = θi U(a i ) , where U is strictly concave,

trictly increasing, and continuously differentiable over [0, 1] satis-

es Assumption 4 . 

The surplus under the Clarke’s payment rule is given by 

p S (θ) = −(n − 1) 
n ∑ 

j=1 

v j (a ∗j , b j ) + 

n ∑ 

i =1 

∑ 

j 	 = i 
v j (a ∗−i, j , b j ) . 

ee also (4) . The optimal social welfare is (see (13) ): 

S (θ) = 

n ∑ 

i =1 

v i (a ∗i , θi ) . 

he following shows the intuitive property that p S (θi , θ−i ) is in-

reasing in θ i . 

roposition 7. Under Assumption 4 , p S ( θ) satisfies following proper-

ies. 
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(a) ( Monotonicity ) For fixed θ−i , the map θi �→ p S (θi , θ−i ) is in-

creasing. 

(b) ( Scaling ) For fixed θ, the map λ�→ p S ( λθ)/ λ is decreasing. 

roof. (a) Fix i . The proof uses the envelope theorem (see

ilgrom and Segal, 2002 , Thm. 2). Focus first on σ S . By virtue

f Assumption 4 (b)–(d), for a fixed a and θ−i , we have that

i �→ 

∑ n 
k =1 v k (a k , θk ) is absolutely continuous, has partial deriva-

ive, and 

∂ 

∂θi 

( 

n ∑ 

k =1 

v k (a k , θk ) 

) 

∣∣∣∣∣ = 

∣∣∣∣∂ v i (a i , θi ) 

∂θi 

∣∣∣∣ ≤ B i (θi ) . 

y Milgrom and Segal (2002 , Thm. 2), σ S ( θ) has a partial derivative

ith respect to θ i almost everywhere on [0, 1] which equals 

∂σS (θ) 

∂θi 

= 

∂ v i (a ∗
i 
(θ) , θi ) 

∂θi 

. 

or each k 	 = i , apply the same argument as given above to the

nvelope 
∑ 

j 	 = k v j (a ∗−k, j 
(θ−k ) , θ j ) , to get 

∂ 

∂θi 

( ∑ 

j 	 = k 
v j (a ∗−k, j (θ−k ) , θ j ) 

) 

= 

∂ v i (a ∗−k,i 
(θ−k ) , θi ) 

∂θi 

. 

or k = i, the corresponding envelope does not depend on θ i . The

bove considerations yield 

∂ p S (θ) 

∂θi 

= 

∑ 

k 	 = i 

∂ v i (a ∗−k,i 
(θ−k ) , θi ) 

∂θi 

− (n − 1) 
∂ v i (a ∗

i 
(θ) , θi ) 

∂θi 

. (A.1) 

t is easy to see (using the Karush–Kuhn–Tucker necessary condi-

ions) that for each k , we have a ∗−k,i 
(θ−k ) ≥ a ∗

i 
(θ) . Intuitively, if an

gent k 	 = i is out of consideration, then the optimal amount allo-

ated to agent i only increases. Consequently, by Assumption 4 (e),

e have 

∂ v i (a ∗−k,i 
(θ−k ) , θi ) 

∂θi 

≥ ∂ v i (a ∗
i 
(θ) , θi ) 

∂θi 

. 

sing this in (A.1) , we get 
∂ p S (θ) 

∂θi 
≥ 0 , i.e., p S ( θ) is increasing in θ i . 

(b) Differentiating p S ( λθ)/ λ with respect to λ, we get 

d 

dλ

(
p S (λθ) 

λ

)
= 

λθT ∇ θ p S (λθ) − p S (λθ) 

λ2 
. 

t suffices to show that this is negative. Without loss of generality,

e can replace λθ by θ, and it suffices to check that θT ∇ θp S ( θ) ≤
 S ( θ). Using the formula (A.1) , this amounts to checking that 

n ∑ 

i =1 

θi 

{ ∑ 

k 	 = i 

∂ 

∂θi 

v i (a ∗−k,i (θ−k ) , θi ) − (n − 1) 
∂ 

∂θi 

v i (a ∗i (θ) , θi ) 

} 

≤
n ∑ 

i =1 

{ ∑ 

k 	 = i 
v i (a ∗−k,i (θ−k ) , θi ) − (n − 1) v i (a ∗i (θ) , θi ) 

} 

. 

This holds if, for every i and every k 	 = i , 

θi 

∂ 

∂θi 

v i (a ∗−k,i (θ−k ) , θi ) − θi 

∂ 

∂θi 

v i (a ∗i (θ) , θi ) 

≤ v i (a ∗−k,i (θ−k ) , θi ) − v i (a ∗i (θ) , θi ) , 

r equivalently 

θi 

∂ 

∂θi 

v i (a ∗−k,i (θ−k ) , θi ) − v i (a ∗−k,i (θ−k ) , θi ) ≤ θi 

∂ 

∂θi 

v i (a ∗i (θ) , θi ) 

−v i (a ∗i (θ) , θi ) . 

ut this follows from a ∗−k,i 
(θ−k ) ≥ a ∗

i 
(θ) and the fact that, for every

i , 

 i �→ θi 

∂ 

∂θi 

v i (a i , θi ) − v i (a i , θi ) 
s decreasing, which is an easy consequence of Assumption 4 (f). �
ppendix B. Proof of Theorem 6 

We again restrict the surrogate valuation function v (a, θ ) =
U(a ) , with U satisfying Assumption 2 . We now verify (a)–(c) of

ssumption 3 . 

Assumption 3 (a): Since f (x ) = x n , this holds trivially with Lips-

hitz constant K 1 = 1 . 

Before we get to verifying the next assumption, we establish

wo lemmas. 

emma 8. The coefficients of x i in the expression for g 1 are nonneg-

tive, i.e., αi (θ) − αi +1 (θ) ≥ 0 for i = 2 , . . . , n − 1 , where αi are de-

ned in (33) and (34) . 

roof. For i = 2 , . . . , n − 2 , using (33) , the coefficients of x i satisfy 

αi (θ) − αi +1 (θ) = i (θi +1 − θi +2 ) + (θi − θi +2 ) 

+(n − i − 1)(θi − θi +1 ) ≥ 0 

here the last inequality follows because the θ i are nonincreas-

ng with index i . Finally, the coefficient of x n −1 is simply αn −1 (θ)

hich is nonnegative. �

We next argue that the elements of X are bounded. 

emma 9. If x ∈ X , then, for i = 2 , . . . , n − 1 , we have 0 ≤ x i ≤ B n ,

here B n := p S ( e n ) . 

roof. From (F) in (26) , the nonnegativity of x i , and the nonnega-

ivity of the coefficients of x i in the expression for g 1 established

n Lemma 8 , we have that for each i = 2 , . . . , n − 1 , 

 i ≤
p S (θ) 

αi (θ) − αi +1 (θ) 
, ∀ θ ∈ �. 

etting θ = e i , we get αi (θ) − αi +1 (θ) = (n − i ) − 0 . Now, by using

onotonicity of p S ( Proposition 7 (a)), we get 

 i ≤
p S (e i ) 

n − i 
≤ p S (e n ) 

n − i 
≤ p S (e n ) = B n . 

ence the result. �

We now continue with the proof that Assumption 3 (b) holds. 

Assumption 3 (b): If g 1 ( x , ·) and g 2 ( x , ·) are both uniformly Lips-

hitz with constants K 

′ 
2 

and K 

′′ 
2 
, then g(x, ·) = max { g 1 (x, ·) , g 2 (x, ·) }

s also uniformly Lipschitz with constant K 2 = max { K 

′ 
2 
, K 

′′ 
2 
} . The

appings g 1 ( x , ·) and g 2 ( x , ·) are uniformly Lipschitz because of

he following: 

(i) θ �→ σ S ( θ) is Lipschitz with constant U(1) 
√ 

n ; 

(ii) θ �→ p S ( θ) is Lipschitz with constant 2 U(1) n 
√ 

n ; 

(iii) the mapping θ �→ 

∑ n −1 
i =2 x i (αi (θ) − αi +1 (θ)) is uniformly Lip-

schitz. 

Items (i) and (ii) were established in Lemma 2 . To see (iii), ob-

erve that 

αi (θ) − αi (θ
′ ) 
∣∣ = 

∣∣i (θi +1 − θ ′ 
i +1 ) + (n − i )(θi − θ ′ 

i ) 
∣∣

≤ i || θ − θ′ || + (n − i ) || θ − θ′ || = n || θ − θ′ || . 
ince this inequality holds for all i , and since x i ≤ B n , we see that

tem (iii) holds with Lipschitz constant 2 n 2 B n . The Lipschitz con-

tants K 

′ 
2 and K 

′′ 
2 , and hence K 2 , are as follows. 

K 

′ 
2 = 2 n 

2 B n + 2 U(1) n 

√ 

n 

 

′′ 
2 = 2 n 

2 B n + 2 U(1) n 

√ 

n + U(1) 
√ 

n ( from x n ≤ 1) 

K 2 = max { K 

′ 
2 , K 

′′ 
2 } = K 

′′ 
2 . 

Assumption 3 (c): Define X i = { x ∈ A | g i (x, θ) ≤ 0 ∀ θ ∈ �} , i =
 , 2 . Note that g 1 ( x , θ) does not depend on the last component (the

 n component). Recall that Y is the constraint set for the SCP. 

Let y = (y 2 , . . . , y n −1 , y n ) ∈ Y \ X . We consider two cases. 
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(i) Suppose y ∈ X 1 , but y / ∈ X 2 . 

Find the smallest t > y n such that x = (y 2 , . . . , y n −1 , t) ∈ X 2 .

Since the first n − 2 components have not changed, x ∈ X 1 as well,

and so x ∈ X . We now claim that there is a θ with g 2 (x, θ) = 0 . 

Suppose that the claim is false. Since θ �→ g 2 ( x , θ) is continuous,

and since � is compact, we have −ε := max θ∈ � g 2 (x, θ) < 0 . By the

linearity of g 2 (., θ), for any θ ∈ �, we have 

g 2 

((
y 2 , . . . , y n −1 , t − ε 

nU(1) 

)
, θ

)
= g 2 ((y 2 , . . . , y n −1 , t) , θ) + 

ε 

nU(1) 
σS (θ) 

≤ g 2 (x, θ) + 

ε 

nU(1) 
σS (θ) 

≤ −ε + 

ε 

nU(1) 
σS (θ) ≤ 0 , 

where σ S ( θ) ≤ nU (1) since θ i , a i ∈ [0, 1] ∀ i . Thus (y 2 , . . . , y n −1 , t −
ε 

nU(1) 
) ∈ X 2 , and this contradicts the choice of t . 

Using the claim, we have 

g(y, θ) ≥ g 2 (y, θ) = g 2 (y, θ) − g 2 (x, θ) 

= (t − y n ) σS (θ) = || y − x || σS (θ) 

≥ || y − x || U(1) . (B.1)

The last inequality holds because σ S ( θ) is the socially optimum

value when the reported bids are θ, and U (1) is the value obtained

for a particular allocation that gives the entire good to a single

agent. In (B.1) , we also used || y − x || = t − y n because y and x dif-

fer only in the last component and t > y n . Let K 

′ 
3 

= U(1) . We will

choose K 

−1 
3 

lower than this after considering other cases. 

(ii) Suppose y / ∈ X 1 . 

Fix γ > n / U (1). We will choose this γ suitably later. Find the

smallest β > 0 such that 

x (β) := [(y 2 − β) + , . . . , (y n −1 − β) + , min (1 , y n + γβ)] ∈ X , 

where [ ·] + indicates truncation from below by 0. Notice that the

first n − 2 components decrease, but the last component increases.

The procedure clearly terminates because (0 , . . . , 0 , 1) ∈ X , and this

point will eventually be reached for some β > 0. 

We now have two subcases. 

(ii-a): The path from y to x ( β) first touches X 2 , say at x ( β ′ ) for

0 ≤ β ′ ≤ β , before entering X . 

Then x (β ′′ ) ∈ X 2 for all { β ′′ ≥ β ′ | y n + γβ ′′ ≤ 1 } . This is be-

cause for all θ ∈ �, we have 

g 2 (x (β ′ ) , θ) − g 2 (x (β ′′ ) , θ) 

= −
n −1 ∑ 

i =2 

(x i (β
′ ) − x i (β

′′ ))(αi (θ) − αi +1 (θ)) − γ (β ′ − β ′′ ) σS (θ) 

≥ −(β ′′ − β ′ ) 
n −1 ∑ 

i =2 

(αi (θ) − αi +1 (θ)) + γ (β ′′ − β ′ ) σS (θ) , (B.2)

where (B.2) follows from αi (θ) − αi +1 (θ) ≥ 0 ( Lemma 8 ) and

x i (β
′ ) − x i (β

′′ ) ≤ β ′′ − β ′ for i = 2 , 3 , . . . , n − 1 . Continuing, the

right-hand side of (B.2) equals 

(β ′′ − β ′ ) 
[
−(α2 (θ) − αn (θ)) + γ σS (θ) 

]
= (β ′′ − β ′ ) 

[
γ σS (θ) − α2 (θ) 

]
≥ (β ′′ − β ′ ) [ γU(1) − n ] (B.3)

≥ 0 . (B.4)

In (B.3) , we used σ S ( θ) ≥ U (1) and α2 ( θ) ≤ n . The latter follows

because α2 (θ) = 2 θ3 + (n − 2) θ2 ≤ 2 + n − 2 = n, since 0 ≤ θ i ≤ 1

for all i . The inequality (B.4) follows from the choice of γ . 
In case β ′ ′ ∈ [ β ′ , β] but y n + γ β ′′ > 1 , then x n (β ′′ ) = 1 and

hus x (β ′′ ) ∈ X 2 is trivially true. 

We claim that there exists a θ ∈ � with θ2 = 1 such that

 1 (x (β) , θ) = 0 . Suppose that the claim is false. Since θ �→ g 1 ( x ,

) is continuous, and since � is compact, we have −ε :=
ax { θ∈ �: θ2 =1 } g 1 (x, θ) < 0 . By the linearity of g 1 (., θ), for any θ ∈
with θ2 = 1 , we have 

 1 

(
x 

(
β − ε 

n 

)
, θ

)
≤ g 1 (x (β) , θ) + 

ε 

n 

n −1 ∑ 

i =2 

(αi (θ) − αi +1 (θ)) 

≤ −ε + 

ε 

n 

(α2 (θ) − αn (θ)) ≤ 0 , (B.5)

.e., x (β − ε 
n ) ∈ X 1 , and this contradicts the choice of β . 

Now for this θ, which satisfies θ1 = θ2 = 1 , by monotonicity of

 S , we have p S (θ) ≥ p S (e 2 ) = 2 U(1) − 2 U(1 / 2) := B 2 > 0 . The strict

ositivity follows because U is strictly increasing. We then have 

(y, θ) ≥ g 1 (y, θ) = g 1 (y, θ) − g 1 (x (β) , θ) 

= 

n −1 ∑ 

i =2 

(y i − x i (β))(αi (θ) − αi +1 (θ)) 

≥ β
n −1 ∑ 

i =2 

(αi (θ) − αi +1 (θ)) 1 { x i (β) > 0 } . (B.6)

he last inequality follows because: if x i ( β) > 0, the difference y i −
 i (β) is exactly β; if not, the corresponding term is ≥ 0 and thus

an be dropped. 

To lower bound this last term, we proceed as follows. Since

p S (θ) ≥ p S (e 2 ) = B 2 , and since g 1 (x (β) , θ) = 0 , we have 

 2 ≤ p S (θ) = 

n −1 ∑ 

i =2 

x i (β)(αi (θ) − αi +1 (θ)) ( from g 1 (x (β) , θ) = 0) 

= 

n −1 ∑ 

i =2 

x i (β)(αi (θ) − αi +1 (θ)) 1 { x i (β) > 0 } 

≤ B n 

n −1 ∑ 

i =2 

(αi (θ) − αi +1 (θ)) 1 { x i (β) > 0 } , (B.7)

here the last inequality follows from Lemma 9 . Putting (B.6) and

B.7) together, we get 

(y, θ) ≥ βB 2 /B n . (B.8)

Define x ∗(β) = y − β(1 , . . . , 1 , −γ ) . This is without the trunca-

ion from below by 0. Clearly, 

| y −x (β) || ≤ || y −x ∗(β) || = β|| (1 , . . . , 1 , −γ ) || = β
√ 

n − 2 + γ 2 . 

(B.9)

ombining (B.8) and (B.9) , we get 

(y, θ) ≥ B 2 

B n 

√ 

n − 2 + γ 2 
|| y − x (β) || . (B.10)

ake x = x (β) and take K 

′′ 
3 

= B 2 / (B n 
√ 

n − 2 + γ 2 ) . 

(ii-b): The path from y to x ( β) first touches X 1 , say at x ( β ′ ) for

 < β ′ < β , before entering X . 

Then x (β ′′ ) ∈ X 1 for all β ′ ≤ β ′ ′ ≤ β . This is because, once X 1 is

eached, the first n − 2 components only decrease thereafter with

, and therefore g 1 also only decreases. 

We now claim that there exists a θ ∈ � such that g 2 (x (β) , θ) =
 . Suppose that the claim is false. Since θ �→ g 2 ( x , θ) is continuous,

nd since � is compact, we have −ε := max θ∈ � g 2 (x, θ) < 0 . By the

inearity of g (., θ), for any θ ∈ �, we have 
2 
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 2 

(
x 

(
β − ε 

γ nU(1) 

)
, θ

)
≤ g 2 (x (β) , θ) + 

ε 

γ nU(1) 
γ σS (θ) 

≤ −ε + 

ε 

nU(1) 
σS (θ) ≤ 0 , (B.11) 

here first inequality follows since the terms involving

(x 2 (β) , . . . , x n −1 (β)) are nonpositive. Thus x (β − ε 
γ nU(1) 

) ∈ X 2 ,

nd this contradicts the choice of β . We then have 

(y, θ) ≥ g 2 (y, θ) = g 2 (y, θ) − g 2 (x (β) , θ) 

≥ β(γU(1) − n ) (B.12) 

≥ (γU(1) − n ) √ 

n − 2 + γ 2 
|| y − x (β) || (B.13) 

here (B.12) follows by tracing the same sequence of inequalities

eading to (B.3) , with y and x ( β) in place of x ( β ′ ) and x ( β ′ ′ ), re-

pectively, and (B.13) follows from (B.9) . Observe that the same se-

uence of inequalities leading to (B.3) can be traced since x (β) ∈ X

he moment y n + γβ = 1 , and thus y n + γβ > 1 never occurs. Take

 = x (β) and K 

′′′ 
3 

= (γU(1) − n ) / 
√ 

n − 2 + γ 2 . 

Setting K 

−1 
3 

= min { K 

′ 
3 
, K 

′′ 
3 
, K 

′′′ 
3 

} , we see that Assumption 3 (c)

olds. Setting γ = (n + B 2 /B n ) /U(1) , which exceeds n / U (1), we get

 

−1 
3 

= min { U(1) , B 2 / (B n 
√ 

n − 2 + γ 2 ) } . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ejor.2017.04.031 
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