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Learning to Detect an Oddball Target
Nidhin Koshy Vaidhiyan and Rajesh Sundaresan, Senior Member, IEEE

Abstract— We consider the problem of detecting an odd
process among a group of Poisson point processes, all having
the same rate except the odd process. The actual rates of the
odd and non-odd processes are unknown to the decision maker.
We consider a time-slotted sequential detection scenario where,
at the beginning of each slot, the decision maker can choose
which process to observe during that time slot. We are interested
in policies that satisfy a given constraint on the probability of
false detection. We propose a variation on a sequential policy
based on the generalised likelihood ratio statistic. The policy,
via suitable thresholding, can be made to satisfy the given
constraint on the probability of false detection. Furthermore,
we show that the proposed policy is asymptotically optimal
in terms of the conditional expected stopping time among all
policies that satisfy the constraint on the probability of false
detection. The asymptotic is as the probability of false detection
is driven to zero. We apply our results to a particular visual
search experiment studied recently by neuroscientists. Our model
suggests a neuronal dissimilarity index for the visual search
task. The neuronal dissimilarity index, when applied to visual
search data from the particular experiment, correlates strongly
with the behavioural data. However, the new dissimilarity index
performs worse than some previously proposed neuronal dissim-
ilarity indices. We explain why this may be attributed to some
experiment conditions.

Index Terms— Action planning, active sensing, hypothesis
testing, relative entropy, search problems, sequential analysis.

I. INTRODUCTION

CONSIDER K homogeneous Poisson point processes.
All processes except one, which we call the “odd”

process, have the same rate. The actual rates of the odd process
and the non-odd processes are unknown. The objective is to
detect the odd (or anomalous or outlier) process as quickly
as possible, but subject to constraints on the probability of
false detection. For simplicity, we assume that time is divided
into slots of fixed duration T . During a particular time slot, the
decision maker can choose exactly one among the K processes
for observation. This choice is made only at slot beginnings.

We cast the above problem into one of sequential detec-
tion with control [1], with the underlying parameters of the

Manuscript received August 23, 2015; revised February 15, 2017 and
August 17, 2017; accepted November 5, 2017. Date of publication
November 29, 2017; date of current version January 18, 2018. This work
was supported in part by the Indo-French Centre for the Promotion of
Advanced Research under Grant 5100-ITA and in part by the Science and
Engineering Research Board, Department of Science and Technology, under
Grant EMR/2016/002503.

N. K. Vaidhiyan is with Qualcomm India Pvt., Ltd., Bengaluru 560066,
India.

R. Sundaresan is with the Robert Bosch Centre for Cyber-Physical Systems,
Department of Electrical Communication Engineering, Indian Institute of
Science, Bengaluru 560012, India.

Communicated by I. Nikiforov, Associate Editor for Detection and
Estimation.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2017.2778264

distributions being unknown [2]. The structural constraints in
the problem, that exactly one among the K processes has a
distribution different from the others, provides an opportunity
to learn the underlying distributions from the observations,
but the decision maker should learn just enough to make a
reliable decision. This problem is a special case of that studied
by Albert [2]. We shall discuss Albert’s results in [2] in the
coming sections.

We adapt the sample complexity result of
Kaufmann et al. [3], developed for the best arm identification
problem, to our setting and obtain a lower bound on
the conditional expected stopping time for any policy
that satisfies the constraint on the probability of false
detection. This result is already available in Albert [2] and
is given only for completeness. The key idea dates back to
Chernoff [1]. The lower bound suggests that the conditional
expected stopping time is asymptotically proportional to the
negative of the logarithm of the probability of false detection.
The proportionality constant is obtained as the solution to a
max-min optimisation problem of relative entropies between
the true system state (index of the odd process, its rate, and
the rate of the non-odd processes) and other alternatives.
The optimisation problem for the lower bound also suggests
the nature of an asymptotically optimal strategy. A strategy
proposed by Chernoff [1], its variation in Albert [2], and a
further variation in this work will soon be described in the
coming pages. Our variation’s improvement over Albert’s [2]
will also be highlighted.

The usual methodology employed in problems with lack
of exact knowledge of the underlying distributions is to use
tests that are based on generalised likelihood ratios (GLR tests
or GLRT). We work with a modification of the GLR statistic.
Unlike the usual GLR statistic, we replace the maximum
likelihood function in the numerator of the statistic by an
average likelihood function, where the average is computed
with respect to an artificial prior on the odd and non-odd rates.
For the Poisson model, we employ a gamma distribution on the
rates of the odd and non-odd processes as the prior, with the
shape and rate parameter set to one. Any prior density having
full support would suffice. The specific gamma prior allows
easier characterisation of the averaged likelihood function.
The averaging prevents over-estimation of the likelihood ratio
function, and at the same time ensures that, asymptotically,
the averaged version is not too far away from the true
likelihood function. The modification allows us to design a
time-invariant and simple threshold policy that satisfies the
probability of false detection constraint. We show that the
sampling strategy of the proposed policy (which of the K
processes to observe at the beginning of each slot) converges
to the sampling strategy suggested by the lower bound, where
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the convergence is as the number of slots observed tends to
infinity. We show that, asymptotically, the conditional expected
stopping time of the proposed policy scales as − log(Pe)/D∗,
where Pe is the constraint on the probability of false detection
and D∗, a relative entropy based constant, is the optimal
scaling factor as suggested by the lower bound. D∗ is obtained
by solving a max-min problem, as mentioned above, and is
made explicit in (5).

The motivation to study this problem comes from a visual
search problem studied by Sripati and Olson [4], where a
subject has to detect an odd image among a sea of distracter
images “as quickly as possible without guessing” [4]. We
model the visual search task as an oddball detection problem,
as above, and propose D∗ as a neuronal dissimilarity index
for such visual search tasks. Smaller values of D∗ result in
harder search tasks and longer search times. We provide an
exact asymptotic characterisation of the expected search time.
We compare the performance of the proposed dissimilarity
index with other dissimilarity indices proposed earlier by
Vaidhiyan et al. [5]. In that paper, it was assumed that the odd
and the non-odd rates were known. Here, we do not make this
assumption and recognise that information about the non-odd
and the odd processes must be gleaned along the way.

A. Prior Work

Chernoff [1] studied sequential hypothesis testing with
control, termed active sequential hypothesis testing (ASHT)
in [6] and [7], in the context of designing optimal experiments.
His performance criterion was the total cost of sampling,
which is proportional to delay, plus a penalty for false detec-
tion. Chernoff proposed a policy called Procedure A which can
be employed in very general contexts including the setting of
this paper. Procedure A, at each time instant, chooses actions
so that the relative entropy between the maximum likelihood
estimate of the underlying parameter and its nearest alternative
is maximised. Chernoff also proposed many variations – see
[1, pp. 763 and 769]. However, Chernoff proved asymptotic
optimality of Procedure A, as the cost of sampling went to 0,
only in the restricted setting of a finite number of states of
nature. Asymptotic optimality of Procedure A, or of other pro-
cedures, for more general settings with a continuum of para-
meter values, as in this paper, was left open by Chernoff [1].
The following works, relevant to this paper, extended Cher-
noff’s work in various directions as we now highlight.

Albert [2] extended Chernoff’s study to the case when the
underlying true states of nature belonged to an infinite set.
Since this is most relevant to us, we now discuss Albert’s
results in some detail. Albert assumed that the parameter space
can be embedded in a compact topological space with certain
additional properties. Albert introduced a relaxed version of
Chernoff’s Procedure A. The first relaxation parameter γ1 > 0
provided a guaranteed minimum sampling rate of γ1 for each
action. This ensures that the maximum likelihood estimator
(or its relaxation considered below) can be guaranteed to be
consistent. The second parameter γ2 > 0 made the stopping
criterion more stringent by requiring the likelihood to be
higher by a factor 1 + γ2. A third parameter ρ ∈ (0, 1)

relaxed the choice of the maximum likelihood location and
picked any state of nature whose likelihood was within ρ
of the maximum likelihood for further examination. This is
essential because the maximum likelihood parameter estimate
for a hypothesised oddball location may not exist. When
γ1 = γ2 = 1 − ρ = 0, one recovered Chernoff’s Procedure A
from Albert’s relaxed procedure. Albert’s results in [2] can be
summarised as follows:

Let c be the cost of sampling and let R(θ) be the total risk
(sum of sampling cost and penalty for false detection) for a
policy under the true state of nature θ .

• Converse: Albert showed that for any policy that guaran-
tees a risk R(θ) = O(−c log c) , for every parameter θ ,
the risk is lower bounded by R(θ) ≥ (1 + o(1))
(−c log c)/D∗. (The quantity D∗ when specialised to
our setting is given by (5).)

• Bound on probability of false detection: Albert’s relaxed
policy guaranteed a probability of false detection Pe(θ) ≤
W (θ, γ1, γ2, ρ)c, where W (θ, γ1, γ2, ρ) is a constant
dependent on θ, γ1, γ2, and ρ. This dependence, par-
ticularly the dependence on θ and ρ, is something we
are able to remove for our specific Poisson setting. We
guarantee a probability of false detection independent of
the underlying true state of nature θ and the relaxation
parameter ρ.

• Bound on total risk: For any ε > 0, there exist suf-
ficiently small γ1 and γ2 such that R(θ) = (1 + ε +
o(1))(−c log c)/D∗ for the corresponding policy.

Albert [2, pp. 797–798] suggested how one may compactify
the parameter space. His suggested procedure applies to the
Poisson model under consideration, but the impact on the
bounds, particularly on the nature of W (θ, γ1, γ2, ρ), are not
clear. In the specific Poisson case, we are able to exploit the
structure of the Poisson distribution and its conjugate prior
to provide a precise guarantee on the probability of error at
stoppage.

Chernoff [1, p. 768] remarked that his criterion of asymp-
totic optimality may not be relevant when the cost of
sampling is high. One way to address this issue is to
study the discounted cost setting. Another way is to study
nonasymptotic cost minimisation. In a series of works,
Naghshvar and Javidi [6]–[10] took the latter approach and
studied ASHT from a Bayesian cost minimisation perspec-
tive. Similarly, Nitinawarat et al. [11], [12] studied ASHT
from the perspective of minimising the conditional expected
cost (generally stopping delay) subject to constraints on
the probability of false detection. The latter works assumed
knowledge of the underlying distributions under different
hypotheses.

In the context of fixed sample size testing, as against the
current context of sequential testing, Li et al. [13] studied
outlier detection under unknown typical and outlier distri-
butions, and thus dealt with composite hypotheses. They
assumed that the observation space is finite. They also assumed
simultaneous observability of all processes at each observation
instance. They then proposed a GLRT with thresholds varying
with sample size, and showed that it has, asymptotically,
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the same error exponent as that of an optimal algorithm
possessing knowledge of the underlying distributions. The
asymptotics was as the number of processes available for
observation tended to infinity. They termed such algorithms
asymptotically exponentially consistent. Further, they extended
their study to the setting where there are more than one
outlier processes. They showed that their extended algorithm
is asymptotically exponentially consistent in the new setting.
As for the sequential setting, Li et al. [14] studied sequential
versions of [13] and showed that another modified GLRT that
keeps sampling until the test statistic crosses a threshold is
universally consistent as the threshold is increased to infinity.
In both these works, unlike the ASHT setting and unlike our
setting, observations from all processes are available to the
decision maker at each observation instance.

Nitinawarat and Veeravalli [15] studied an outlier detection
problem in a setting similar to ours, where at each observation
instance, the decision maker is allowed to observe only one
of the processes. But different from our setting, they assume
knowledge of the typical (or non-odd) distribution. They
proposed an algorithm that was shown to have vanishing
probability of false detection as the threshold is increased to
infinity. Further, the proposed algorithm was shown to have,
asymptotically, the same error exponent as that of an optimal
policy with knowledge of the atypical (odd) distribution.
Recently, Cohen and Zhao [16] studied a problem similar
to ours, but restricted their study to the setting when the
atypical (odd) and typical (non-odd) distributions belonged
to disjoint sets. Consequently, in their setting, the optimal
action at each decision instance is to observe the process
that has the generalised maximum likelihood with respect
to the set of atypical (odd) distributions. Their proposed
policy also had a threshold based stopping criterion. They
showed that their policy has the same asymptotic scaling
for the conditional expected stopping time as for an optimal
policy with knowledge of the distributions. Unlike the results
in [15] and [16], we shall see that the information structures
on the odd and non-odd distributions in this paper are such
that lack of knowledge of the exact distributions leads to a
distinct loss in performance.

A related problem, which has seen a resurgence in interest in
the machine learning community, is the problem of identifica-
tion of the best arm for multi-armed bandits. Indeed, Chernoff
[1, p. 758] and Albert [2, p. 775] had already used this
as their prototype example to describe their results. Asymp-
totic optimality of Procedure A was however not established.
Kaufmann et. al. [3] recently studied the sample complexity of
the best arm identification problem. The problem considered
in this paper can be cast as an odd-arm identification problem
as against the best-arm identification problem. The composite
hypotheses structures in the problems are different.

B. Our Contribution

Our asymptotically optimal algorithm and results differ from
prior works in the following aspects:

• Unlike the works on ASHT [6]–[12], we do not assume
complete knowledge of the underlying distribution under

different hypotheses. Unlike the analysis available in
Chernoff [1], but as in Albert [2], our analysis is
for the setting where the number of states of nature
is a continuum. However, we consider an adapta-
tion of Chernoff’s Procedure A that is different from
Albert’s [2].

• Our modification to Procedure A involves a modified
GLR that uses a fictitious Bayesian prior. Testing with
this modified GLR ensures that a given false detection
constraint can be met when the statistic is compared with
a fixed threshold. The false detection rate is independent
of the true state of nature. This is a significant difference
over Albert’s work [2]. We believe our proposed modi-
fication may be useful in other settings as well. See the
last bullet.

• We show that, unlike in Albert [2], there is no need for
an extra parameter γ1 that forces an exploration of the
action space for consistency of the estimates. Instead,
we show that for the Poisson case, the inherent structure
automatically ensures this exploration without need for
an additional parameter; see Figure 1.

• Unlike the works of Li et al. [13], [14], our observations
are limited by the chosen actions. There is then a clear
exploration versus exploitation tradeoff.

• Unlike the work of Nitinawarat and Veeravalli [15], we do
not assume knowledge of the atypical (odd) distribution,
nor do we assume the typical (non-odd) distribution.

• Unlike the work of Cohen and Zhao [16], we do not
assume that the atypical and typical distributions belong
to disjoint sets.

• We specifically consider the setting of Poisson point
processes mainly because of our desire to explain the
experimental observations of Sripati and Olson [4] on
neuronal data which are modelled as Poisson point
processes in [5]. Nevertheless, we believe that the same
ideas may carry forward to other class of distributions,
especially exponential families. Indeed, there has already
been a more recent work that uses our modification to
the GLRT to solve the best arm identification problem in
the more general setting of exponential families [17].

C. Organisation

In Section II, we develop the required notation and describe
the model. In Section III, we provide a lower bound on the
conditional expected stopping time for any policy that satisfies
the probability of false detection constraint. The nature of the
lower bound suggests a candidate asymptotically optimal pol-
icy. In the same section, we make some observations on some
structural properties of the suggested policy. In Section IV, we
formally propose the policy and show that it is asymptotically
optimal. In Section V, we discuss some simulation results to
corroborate our theoretic results. In Section VI, we apply the
theory to visual search. We show that the proposed neuronal
dissimilarity index is strongly correlated with the behavioural
data. In Section VII, we make some concluding remarks
and discuss possible extensions. Most proofs are relegated to
appendices VII and VII.



834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 2018

II. MODEL

In this section we develop the required notation and describe
the model.

Let K ≥ 3 denote the number of Poisson point processes
under consideration. Conditioned on the rates, the processes
are assumed to be independent of each other. Let H,
1 ≤ H ≤ K , denote the index of the odd process. Let
R1 > 0 denote the unknown rate of the odd process, and
let R2 > 0 denote the unknown rate of the non-odd processes.
We assume R1 �= R2. Let the triplet � = (H, R1, R2) denote
the configuration of the processes, where the first component
represents the index of the odd process, while the second
and third components represent the odd and non-odd rates
respectively. Let T denote the time duration of a time slot.
Without loss of generality we can assume T = 1, the analysis
holds for general T with an appropriate scaling of the rates.
The analysis can be done in continuous time as well, but we
shall take the simpler slotted time approach.

Given the Poisson process assumption, a sufficient statistic
for the observed process during a time slot is the number
of jumps observed in that time slot. Let An ∈ {1, 2, . . . , K }
denote the index of the process chosen for observation in
time slot n, and let Xn ∈ Z+ denotes the number of jumps
observed in the process during time slot n. Let (Xn)n≥1
and (An)n≥1 denote the observation process and the control
process respectively. We write Xn for (X1, X2, . . . , Xn) and
An for (A1, A2, . . . , An). We also write P(K ) for the set of
probability distributions on {1, 2, . . . , K }.

A policy π is a sequence of action plans that at time n looks
at the history Xn−1, An−1 and prescribes a composite action
C An that is either (stop, δ) or (continue, λ) as explained
next. If the composite action is (stop, δ), then the detector
stops taking further samples (or retires) and indicates δ as
its decision on the hypotheses; δ ∈ {1, 2, . . . , K }. If the
composite action is (continue, λ), the detector picks the next
process to observe An according to the distribution λ ∈ P(K ).
The stopping time is defined as

τ := inf{n ≥ 1 : C An = (stop, ·)}.
Consider a policy π . Conditioned on action An , the true

hypothesis H , and the odd and non-odd rates R1 and R2,
we assume that the observation Xn is independent of previous
actions An−1, previous observations Xn−1, and the policy. The
conditional distribution of Xn , given the current action An , the
configuration � = (H, R1, R2), the history Xn−1, An−1, and
the Poisson assumption, is given by

P(Xn = l|� = (H, R1, R2), An, Xn−1, An−1)

= P(Xn = l|� = (H, R1, R2), An) (1)

=
⎧
⎨

⎩

Rl
1e−R1

l! if An = H
Rl

2e−R2

l! if An �= H,
(2)

where l ∈ Z+.
Let Eπ denote the conditional expectation and let

Pπ denote the conditional probability measure, given � ,
under the policy π . Given an error tolerance vector

α = (α1, α2, . . . , αn), with 0 < αi < 1, let �(α) be the
set of desirable policies defined as

�(α) := {π : Pπ (δ �= i |� = (H, R1, R2), H = i) ≤ αi ,

for all i and for all � such that R1 �= R2}. (3)

Let ‖α‖ denote maxi αi .
For ease of notation, we drop the superscript π while writing

Eπ , Pπ , and other variables, but their dependence on the
underlying policy should be kept in mind, and the policy under
consideration will be clear from the context.

III. THE CONVERSE-LOWER BOUND

In this section we develop a lower bound on the conditional
expected stopping time for any policy that belongs to �(α).
While optimal results for finite ‖α‖ are difficult to characterise,
the asymptotic ‖α‖ → 0 puts us in the regime of a large
number of samples where asymptotically optimal results are
more easily available (see [1, p. 755]). We show that, as
‖α‖ → 0, the lower bound scales as − log(‖α‖)/D∗. We also
characterise D∗ in detail in this section. Section IV provides
an asymptotically optimal policy whose conditional expected
stopping time is close to this lower bound.

The following proposition gives the lower bound. Its proof
may be seen as an application of the data processing inequality
([18, p. 16], [19]) for relative entropy.

Proposition 1: Fix α, with 0 < αi < 1 for each i . Let
� = (i, R1, R2) be the true configuration. For any π ∈ �(α),
we have

Eπ [τ |�] ≥ db(‖α‖, 1 − ‖α‖)
D∗(i, R1, R2)

, (4)

where db(‖α‖, 1−‖α‖) is the binary relative entropy function
defined as

db(x, 1 − x) := x log(x/(1 − x)) + (1 − x) log((1 − x)/x),

and D∗(i, R1, R2) is defined as

D∗(i, R1, R2)

:= max
λ∈P(K )

min
R′

1>0,R′
2>0, j �=i

[
λ(i)D(R1‖R′

2)

+ λ( j)D(R2‖R′
1) + (1 − λ(i) − λ( j))D(R2‖R′

2)
]
,

(5)

where D(x‖y) := x log(x/y)− x + y is the KL-divergence or
relative entropy between two Poisson random variables with
means x and y.

Let λ∗(i, R1, R2) denote the λ ∈ P(K ) that maximises (5),
i.e.,

λ∗(i, R1, R2)

= arg max
λ∈P(K )

min
R′

1,R′
2, j �=i

[
λ(i)D(R1‖R′

2)

+ λ( j)D(R2‖R′
1) + (1 − λ(i) − λ( j))D(R2‖R′

2)
]
.

(6)

We can interpret D∗(i, R1, R2) as the minimum among
relative entropy rates between the true configuration
� = (i, R1, R2) and all other possible alternate configurations
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� ′ = ( j, R′
1, R′

2), with j �= i , but maximised over all policies
(action strategies) that pick actions in an independent and
identically distributed (i.i.d.) manner. It can also be inter-
preted as the max-min-drift of the log likelihood ratio process
between the true configuration and other error configurations,
the minimum being over all possible error configurations, and
the maximum being over all i.i.d. policies. D∗(i, R1, R2) is
the key information quantity in this paper. Since db(‖α‖,
1 − ‖α‖)/ log(‖α‖) → −1 as ‖α‖ → 0, Proposition 1
shows that the conditional expected stopping time of the
optimal policy scales at least as − log(‖α‖)/D∗(i, R1, R2)
as the probability of false detection constraint ‖α‖ → 0.
In Section IV we will describe a policy that is upper bounded
by, and therefore achieves, a similar scaling, though only
asymptotically as ‖α‖ → 0.

Proof of Proposition 1: Assume Eπ [τ |�] is finite, for
otherwise (4) is trivially true. We apply the sample complexity
result of Kaufmann et al. [3, Lemma 1] to our setting.
Let N j (τ ) = ∑τ

k=1 1{Ak= j } denote the number of samples
from process j observed till the stopping time τ . Clearly,
τ = ∑K

j=1 N j (τ ). Kaufmann et al. [3, Lemma 1] showed
that, for any π ∈ �(α), conditioned on the true configu-
ration � = (i, R1, R2), and for any alternate configuration
� ′ = ( j, R′

1, R′
2), j �= i , the conditional expected sample sizes

satisfy

Eπ [Ni (τ )|�] D(R1‖R′
2) + Eπ

[
N j (τ )|�] D(R2‖R′

1)

+
⎛

⎝
∑

k �=i,k �= j

Eπ [Nk(τ )|�]

⎞

⎠ D(R2‖R′
2)

≥ db(‖α‖, 1 − ‖α‖). (7)

This is a consequence of the convexity of relative entropy and
the data processing inequality. Multiplying and then dividing
the left-hand side by Eπ [τ |�], we get

db(‖α‖, 1 − ‖α‖)
≤ Eπ [τ |�]

[
Eπ [Ni (τ )|�]

Eπ [τ |�]
D(R1‖R′

2)

+ Eπ
[
N j (τ )|�]

Eπ [τ |�]
D(R2‖R′

1)

+
(

1 − Eπ [Ni (τ )|�] + Eπ
[
N j (τ )|�]

Eπ [τ |�]

)

D(R2‖R′
2)

]

.

(8)

Since (8) holds for any R′
1, R′

2 and j �= i , and since Eπ [τ |�]
does not depend on R′

1, R′
2 and j �= i , we can choose the

tightest bound and get

db(‖α‖, 1 − ‖α‖)
≤ Eπ [τ |�] min

R′
1,R′

2, j �=i

[
Eπ [Ni (τ )|�]

Eπ [τ |�]
D(R1‖R′

2)

+ Eπ
[
N j (τ )|�]

Eπ [τ |�]
D(R2‖R′

1)

+
(

1 − Eπ [Ni (τ )|�] + Eπ
[
N j (τ )|�]

Eπ [τ |�]

)

D(R2‖R′
2)

]

(9)

≤ Eπ [τ |�] max
λ∈P(K )

min
R′

1,R′
2, j �=i

[
λ(i)D(R1‖R′

2)

+ λ( j)D(R2‖R′
1) + (1 − λ(i) − λ( j))D(R2‖R′

2)
]
.

(10)

The last inequality follows because maximisation over all λ ∈
P(K ) only increases the right-hand side. This completes the
proof.

We now describe some simplifications for D∗(i, R1, R2) and
λ∗(i, R1, R2). We show that the K -dimensional optimisation
in (5) can be reduced to a one-dimensional optimisation, which
can be easily solved via say a simple line search. This has
positive implications on the complexity of a policy achieving
the above lower bound, which we will discuss in the next
section.

Proposition 2: Consider K Poisson point processes with
configuration � = (i, R1, R2). The quantity D∗(i, R1, R2)
of (5) can be equivalently expressed as

D∗(i, R1, R2)

= max
0≤λ(i)≤1

[

λ(i)D(R1‖R̃) + (1 − λ(i))
(K − 2)

(K − 1)
D(R2‖R̃)

]

,

(11)

where

R̃ =
(
λ(i)R1 + (1 − λ(i)) (K−2)

(K−1) R2

)

(
λ(i) + (1 − λ(i)) (K−2)

(K−1)

) . (12)

Also, λ∗(i, R1, R2) is of the form

λ∗(i, R1, R2)( j) =
{

λ∗(i, R1, R2)(i) if j = i

(1−λ∗(i, R1, R2)(i))/(K −1) if j �= i.

(13)

Proof: Consider (5). Observe that R′
1 appears only in the

middle term on the right-hand side. This is minimised when
R′

1 = R2 and the minimum value is zero. We therefore have

D∗(i, R1, R2)

= max
λ∈P(K )

min
R′

2, j �=1

[
λ(i)D(R1‖R′

2)

+ (1 − λ(i) − λ( j))D(R2‖R′
2)
]

(14)

= max
0≤λ(i)≤1

min
R′

2

[

λ(i)D(R1‖R′
2)

+ (1 − λ(i))
(K − 2)

(K − 1)
D(R2‖R′

2)

]

. (15)

Equation (15) follows from the fact that the λ that max-
imises (14) will have equal mass on all locations other than
i , i.e., the maximiser λ∗ will satisfy λ∗( j) = (1 − λ∗(i))/
(K − 1), for all j �= i .

For a fixed λ(i), to find the R′
2 that minimises the term

within brackets in (15) which is a strictly convex function
of R′

2, we take its derivative with respect to R′
2 and equate

it to zero. We then see that the minimising R′
2 satisfies the

equation

λ(i)D′(R1‖R′
2) + (1 − λ(i))

(K − 2)

(K − 1)
D′(R2‖R′

2) = 0, (16)
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where D′(x‖y) is the derivative of D(x‖y) with respect to the
second argument y, which turns out to be 1 − x/y. The R′

2
thus obtained is

R′
2 =

(
λ(i)R1 + (1 − λ(i)) (K−2)

(K−1) R2

)

(
λ(i) + (1 − λ(i)) (K−2)

(K−1)

) . (17)

This completes the proof.
As we will see, λ∗(i, R1, R2) can be interpreted as the

distribution on the set of actions of the optimal i.i.d. policy
that achieves D∗(i, R1, R2). Heuristically, a good policy would
attempt to have an action process whose empirical measure on
the set of actions approaches the distribution λ∗(i, R1, R2), as
‖α‖ → 0. A closed form expression for λ∗(i, R1, R2) is not
available. But we now describe some structural properties of
λ∗(i, R1, R2). In particular, we show for any configuration � ,
all components of λ∗(�) are strictly bounded away from zero.

Proposition 3: Fix K ≥ 3. Let λ∗ be as in (6). There
exists a constant cK ∈ (0, 1), independent of (k, θ1, θ2) but
dependent on K , such that

λ∗(k, θ1, θ2)( j) > cK > 0

for all j ∈ {1, 2, . . . , K } and for all (k, θ1, θ2) such that θ1 >
0, θ2 > 0 and θ1 �= θ2.

Proof: See Appendix A.
Proposition 3 suggests that a good policy should sample

each process at least cK fraction of the time. Estimates of the
rate of each process should then converge to the corresponding
true rate. We will make use of this fact in the analysis of our
proposed algorithm, which is to come shortly.

An explicit expansion of the objective function in (11)
shows that λ∗(k, θ1, θ2)(k) is invariant to joint scaling of
(θ1, θ2). It can therefore be expressed in terms of the ratio
ν = θ1/(θ1 + θ2) as λ∗(k, ν, 1 − ν)(k). Fig. 1 shows the value
of λ∗(k, θ1, θ2)(k) for different values of ν and for different K ,
K varying from 3 to 1000 and ∞. We observe the following:

1) λ∗(k, θ1, θ2)(k) is lower bounded by ∼ 0.3 for all ν and
for all K , and λ∗(k, θ1, θ2)(k) attains its minimum at
ν = 1 and for K = 3.

2) λ∗(k, θ1, θ2)(k) is upper bounded by ∼ 0.7 for all ν and
for all K , and the maximum is approached at ν = 0 and
as K → ∞.

3) At ν = 1/2, we have R1 = R2; the objective function
in (11) is identically zero, and any λ(k) works. We may
take λ∗(k) to be the continuous extension of λ∗(k) as
ν → 1/2.

From the above observations, for a fixed K , we have
λ∗(k, θ1, θ2)( j) � (0.3/(K − 1)) for all j and for all
(k, θ1, θ2). In Appendix A, where we prove Proposition 3, we
obtain a looser bound for λ∗(k, θ1, θ2)( j). We only show that
λ∗(k, θ1, θ2)( j) > 0.1/(K − 1).

IV. ACHIEVABILITY-MODIFIED GLRT

In this section we describe our proposed asymptotically
optimal policy that achieves the lower bound in Proposition 1
as the constraint on the probability of false detection is
driven to zero. Our algorithm is an adaptation of Chernoff’s

Fig. 1. λ∗(k, θ1, θ2)(k) versus ν = θ1/(θ1 + θ2) for various K .

Procedure A. The likelihood ratio function in Procedure A is
replaced by a modified generalised likelihood ratio function
in our algorithm. The strategy at each time slot is not only a
function of the hypothesis with the largest GLR statistic, but
also a function of the maximum likelihood estimates of the
odd and non-odd rates.

Before describing the algorithm, we develop some required
notation.

Let Nn
j denote the number of times process j was chosen

for observation up to time n, i.e., Nn
j = ∑n

t=1 1{At = j } and so

n = ∑K
j=1 Nn

j . Let Y n
j denote the number of observed jumps

in process j up to time n; Y n
j = ∑n

t=1 Xt 1{At = j }. Let Y n

denote the total number of observed jumps up to time n;
Y n = ∑K

j=1 Y n
j .

Let f (Xn, An |� = ( j, θ1, θ2)) be the likelihood function
of the observations and actions up to time n, conditioned on
the configuration � , i.e.,

f (Xn, An|� = ( j, θ1, θ2))

= 1
∏n

t=1(Xt !) θ
Y n

j
1 e−Nn

j θ1 θ
(Y n−Y n

j )

2 e−(n−Nn
j )θ2 . (18)

This reflects the assumption that the observations of the
number of jumps (neuronal spikes) follow the Poisson distri-
bution. When the parameters are unknown, there is a natural
conjugate prior distribution for these parameters which enables
easy updates of the posterior distribution based on observa-
tions. This prior is the gamma distribution which requires a
pair of parameters. Since we have two Poisson distributions,
coming from the odd and the non-odd processes, we need
a total of four parameters. Let these four parameters be
β11, β12, β21, β22, all fixed constants and all greater than zero.
Let

fβ11,β12,β21,β22(� = ( j, θ1, θ2)|H = j)

:= fβ11,β12(θ1|H = j) fβ21,β22(θ2|H = j) (19)

:= β
β11
12 θ

β11−1
1 e−β12θ1

�(β11)

β
β21
22 θ

β21−1
2 e−β22θ2

�(β21)
(20)

denote the product gamma densities on the parameters
θ1 and θ2. We will use f1,1,1,1(� = ( j, θ1, θ2)|H = j) as an
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artificial prior on the parameter space � = {(θ1, θ2)} in our
proposed algorithm. While any positive (β11, β12, β21, β22)
would suffice, (β11, β12, β21, β22) = (1, 1, 1, 1) makes the
calculations and the presentation simpler. θ1 and θ2 then,
initially, have the exponential distribution with mean 1.

Let θ̂n
j = (θ̂n

j,1, θ̂
n
j,2) denote the maximum likelihood esti-

mates of the odd and non-odd rates at time n conditioned on
H = j , i.e.,

θ̂n
j,1 = Y n

j

Nn
j

and θ̂n
j,2 = (Y n − Y n

j )

(n − Nn
j )

. (21)

We now substitute this into the likelihood function and let

f̂
(
Xn, An |H = j

) := max
�:H= j

f
(
Xn , An|�) (22)

= f
(

Xn, An|� = ( j, θ̂n
j,1, θ̂

n
j,2)
)

(23)

= 1
∏n

t=1(Xt !)

(
Y n

j

Nn
j

)Y n
j

e−Y n
j

×
(

Y n − Y n
j

n − Nn
j

)(Y n−Y n
j )

e−(Y n−Y n
j )

(24)

denote the maximum likelihood of the observations and actions
till time n conditioned on H = j . The maximum is taken over
all possible odd and non-odd rates, and the best choices are
those in (21). Let the averaged likelihood function at time
n, averaged according to the artificial prior f1,1,1,1 over all
configurations � given H = i , be

f (Xn, An|H = i)

:=
∫

f (Xn, An|� = (i, θ1, θ2))

× f1,1,1,1((i, θ1, θ2)|H = i)dθ1dθ2 (25)

= 1
∏n

t=1(Xt !)
∫

θ
Y n

i
1 e−Nn

i θ1θ
(Y n−Y n

i )

2 e−(n−Nn
i )θ2

× e−θ1 e−θ2dθ1dθ2 (26)

= 1
∏n

t=1(Xt !)
�(Y n

i + 1)

(Nn
i + 1)(Y

n
i +1)

× �(Y n − Y n
i + 1)

(n − Nn
i + 1)(Y

n−Y n
i +1)

, (27)

where the second equality follows after substitution of
(18) and (20), and the last equality follows by recognising the
presence of Gamma(Y n

i +1, Nn
i +1) and Gamma(Y n −Y n

i +1,
n − Nn

i + 1) densities without scale factors in (27). The
modified GLR is defined as

Zi j (n) := log

(
f (Xn, An |H = i)

f̂ (Xn, An |H = j)

)

(28)

= log

(
�(Y n

i + 1)

(Nn
i + 1)(Y

n
i +1)

· �(Y n − Y n
i + 1)

(n − Nn
i + 1)(Y

n−Y n
i +1)

)

− Y n
j

(

log

(
Y n

j

Nn
j

)

− 1

)

− (Y n − Y n
j )

(

log

(
(Y n − Y n

j )

(n − Nn
j )

)

− 1

)

. (29)

Note that the numerator is an averaged likelihood under
H = i , averaged with respect to an artificial prior, and
denominator is a maximum likelihood under H = j . This
modification of the GLR will prove to be crucial in demon-
strating that the following policy that uses this statistic meets
the error tolerance criterion. Let

Zi (n) := min
j �=i

Zi j (n) (30)

denote the modified GLR of i against its nearest alternate.
We now describe our proposed policy.
Policy: Modified GLRT (πM (L))
Fix L ≥ 1. At time n (end of slot n):

• Let i∗(n) = arg maxi Zi (n), the index with the largest
modified GLR after n time slots. Ties are resolved uni-
formly at random.

• If Zi∗(n)(n) < log ((K − 1)L) then An+1 is chosen
according to λ∗(i∗(n), θ̂n

i∗(n)1, θ̂
n
i∗(n)2), i.e.,

Pr(An+1 = j |Xn, An)

= λ∗(i∗(n), θ̂n
i∗(n)1, θ̂

n
i∗(n)2)( j). (31)

• If Zi∗(n)(n) ≥ log ((K − 1)L) then the test retires and
declares i∗(n) as the oddball location.

We now make some remarks on the complexity of this
policy. The maximum likelihood estimates (21) of the odd
and non-odd rates must be computed for every hypothesis.
These being averages can be done in an iterated fashion via
ξn+1 := (n+1)−1 ∑n+1

i=1 ξi = (1−(n+1)−1)ξn+(n+1)−1ξn+1
in O(K ) steps. The computation of Zi j (n) in (29) can also be
done iteratively and requires O(K 2) steps. The computation of
the modified GLR requires another O(K 2) since computation
of (30) requires K comparisons, and this must be done for
each hypothesis. The index of current best hypothesis requires
O(K ) comparisons. The check for stopping requires O(1)
steps, and if the process continues, the identification of the best
sampling distribution is a one-dimensional bounded convex
optimisation and can be done easily via a line search in O(1)
steps. Finally, the sampling itself requires O(K ) steps. Adding
these up we see that the complexity at every slot is O(K 2)
steps.

As done in [5], we also consider two variants of πM (L)
which are useful in the analysis.

• Policy π i
M (L): This is the same as πM (L), but stops only

at decision i when Zi (n) ≥ log((K − 1)L).
• Policy π̃M : This is the same as πM (L), but never stops,

and hence L is irrelevant.

Under a fixed hypothesis H = i , and the triplet of policies
(πM (L), π i

M (L), π̃M (L)), it is easily seen that there is a
common underlying probability measure with respect to which
the processes (Xn, An)n≥1 associated with the three policies
are naturally coupled, with only the stopping times being
different. The coupling is as follows. They all act on the same
infinite sequence of samples derived from the randomised
sampling policy (31). Policy πM (L) stops first. If it decides i at
stoppage, then π i

M (L) also stops; otherwise π i
M (L) continues

until it reaches an epoch where it decides i . The policy π̃M (L)
continues to sample forever.
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We denote the stopping times by τ (πM (L)) and τ (π i
M (L)),

respectively. Under the above coupling, the following conclu-
sions are obvious:

τ (π i
M (L)) ≥ τ (πM (L)),

{τ (πM (L)) > n} ⊆ {τ (π i
M (L)) > n}

⊆ {Zi (n) < log((K − 1)L)} .

We now explore the characteristics of the proposed policy
πM (L).

Proposition 4: Fix L > 1. Policy πM (L) stops in finite time
with probability 1, that is, P(τ (πM (L)) < ∞) = 1.

Proof: See Appendix B-A.
The main idea of the proof is as follows. We argue that,

when the odd process has index i , i.e., H = i , the test
statistic Zi (n) has a strictly positive drift and hence will cross
the threshold log((K − 1)L) in finite time almost surely. The
details are given in Appendix B-A.

We next show that for any α, the policy πM (L), with L
chosen to meet the smallest constraint, belongs to �(α), and
so πM (L) satisfies the constraint on the probability of false
detection.

Proposition 5: Fix α = (α1, α2, . . . , αK ). Let L =
1/ mink αk . We then have πM (L) ∈ �(α).

Proof: From the choice of L, we have 1/L ≤ αk

for all k ∈ {1, 2, . . . , K }. This implies �((1/L, 1/L, . . . ,
1/L)) ⊆ �(α). Hence, it suffices to show that πM (L) ∈
�((1/L, 1/L, . . . , 1/L)).

Fix � = (i, R1, R2). Let �n
j = {ω : τ (πM (L))(ω) =

n, δ(ω) = j} denote the sample paths for which the decision
maker stops sampling after n time slots and decides in favour
of H = j . The decision region in favour of j is denoted
� j := ∪n≥1�

n
j . Note that

�n
j ∩ �m

j = ∅ for all m �= n. (32)

We now use a standard change of measure argument to
bound the conditional probability of false detection as follows,
with P in place of PπM :

P(δ �= i |� = (i, R1, R2))

=
∑

j �=i

P(δ = j |� = (i, R1, R2))

+ P(τ (πM (L)) = ∞|� = (i, R1, R2))

=
∑

j �=i

∑

n≥1

∫

ω∈�n
j

d P(ω|� = (i, R1, R2)) + 0 (33)

=
∑

j �=i

∑

n≥1

∫

ω∈�n
j

f (xn, an|� = (i, R1, R2)))d(xn, an)

≤
∑

j �=i

∑

n≥1

∫

ω∈�n
j

(
f̂ (xn, an|H = i)

f (xn, an|H = j)

)

× f (xn, an|H = j)d(xn, an) (34)

≤
∑

j �=i

1

L(K − 1)

∑

n≥1

∫

ω∈�n
j

f (xn, an|H = j)d(xn, an)

(35)

≤ 1

L
. (36)

The equality in (33) follows from (32) and from
Proposition (4). The inequality in (34) follows because the
maximum likelihood function satisfies f̂ (xn, an|H = i) ≥
f (xn, an|� = (i, R1, R2)) for all � such that H = i . The
inequality in (35) follows because ω ∈ �n

j implies Z j i ≥
log((K − 1)L), which in turn implies that the term within
parenthesis is upper bounded by 1/((K −1)L), a consequence
of (28). Inequality in (36) follows because the inner summation
in (35) is a sum of probabilities of disjoint events, and hence
is upper bounded by one.

Observe that we chose the modified GLR instead of GLR
precisely because we want to recognise the inner summation
in (35) as a probability of an event and upper bounded by 1.
If we use the GLR, the integrand would have been a maximum
likelihood which after summation and integration may not
even be finite.

We now move on to show that πM is asymptotically optimal.
We first assert that the process (Zi (n))n≥1 has an asymptotic
drift equal to D∗(i, R1, R2).

Proposition 6: Consider the non-stopping policy π̃M . Let
� = (i, R1, R2) be the true configuration. Then,

lim
n→∞

Zi (n)

n
= D∗(i, R1, R2) almost surely. (37)

Proof: See Appendix B-B.
With the above ingredients in place, we now assert that our

proposed policy πM (L) has a conditional expected stopping
time upper bounded by the desired quantity.

Proposition 7: Consider the policy πM (L). Let � =
(i, R1, R2) be the true configuration. Then

lim sup
L→∞

τ (πM (L))

log(L)
≤ 1

D∗(i, R1, R2)
almost surely, (38)

and further,

lim sup
L→∞

E [τ (πM (L))|�]

log(L)
≤ 1

D∗(i, R1, R2)
. (39)

Proof: See Appendix B-C.
We now state the main theorem that combines the lower

bound in Proposition 1 and the upper bound in Proposition 7
to show that our proposed policy πM (L) is asymptotically
optimal.

Theorem 8: Consider K homogeneous Poisson point
processes with configuration � = (i, R1, R2). Let (α(n))n≥1 be
a sequence of vectors, where α(n) is the nth tolerance vector,
such that limn→∞ ‖α(n)‖ = 0 and

lim sup
n→∞

‖α(n)‖
mink α

(n)
k

≤ B for some B. (40)

Then, for each n, the policy πM (Ln) with Ln = 1/ mink α
(n)
k

belongs to �(α(n)). Furthermore,

lim inf
n→∞ inf

π∈�(α(n))

E [τ (π))|�]

log(Ln)
= lim sup

n→∞
E [τ (πM (Ln)))|�]

log(Ln)

(41)

= 1

D∗(i, R1, R2)
. (42)
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Fig. 2. Performance of πM (L) against GLRT. R1 = 10, R2 = 15,
K = 8.D∗ = 0.2355.

Proof: The fact that πM (Ln) ∈ �(α(n)) follows from
Proposition 5. We then have the following inequalities:

1

D∗(i, R1, R2)
≤ lim inf

n→∞ inf
π∈�(α(n))

E [τ (π))|�]

− log(‖α(n)‖) (43)

= lim inf
n→∞ inf

π∈�(α(n))

E [τ (π))|�]

log(Ln)
(44)

≤ lim sup
n→∞

E [τ (πM (Ln)))|�]

log(Ln)
(45)

≤ 1

D∗(i, R1, R2)
. (46)

Inequality (43) follows from Proposition 1. Equality (44)
follows from the choice of Ln and from assumption (40).
Inequality (45) follows because πM (Ln) belongs to �(α(n)).
Inequality (46) follows from Proposition 7.

V. NUMERICAL SIMULATIONS

In this section we study the performance of our modi-
fied GLR based algorithm πM (L) via numerical simulations.
Fig. 2 and Fig. 3 show the empirical average stopping time
of our modified GLR based πM (L) (modified GLRT) and the
standard GLRT (with the same threshold as πM (L)), averaged
across 100 independent runs of the algorithms, and plotted
against log(L). Note that πM (L) ensures that the probability
of error is upperbounded by 1/L, though such a guarantee
is not available for GLRT. We also plot the lower bound on
the expected stopping time as obtained in Proposition 12.
We observe that the expected stopping time for πM (L) is
greater than the lower bound by a constant additive factor, thus
validating the asymptotic optimality of πM (L). (Asymptotic
optimality is a statement about the slopes.)

We now make some interesting observations for which
we do not, as yet, have a sound theoretical basis. For large
sample size, the modified GLRT appears to converge to the
true likelihood ratio minus the log of the density of the
fictitious prior. For our specific choice of the gamma prior,
the modified GLRT then lags behind the likelihood ratio by
an additive term (R1 + R2). This leads to an average increase

Fig. 3. Performance of πM (L) against GLRT. R1 = 45, R2 = 48,
K = 8.D∗ = 0.02238.

Fig. 4. Performance of πM (L) compared with (a) the setting when all
processes are observed, and (b) a simple round-robin search. R1 = 2,
R2 = 10, K = 8.D∗ = 1.3791, D = 4.3055, DRR = 0.5382.

in delay of (R1 + R2)/D∗ for our modified GLRT. Further,
since our threshold increases with the number of locations
K by log(K − 1), this appears to lead to an extra delay of
log(K −1)/D∗. For the specific example given in Fig. 2 below,
where R1 = 10 and R2 = 15, the above mentioned delays
add up to (R1 + R2)/D∗ + log(K − 1)/D∗ = 25/0.2355 +
log(7)/0.2355 ≈ 114. Similarly for Fig. 3, where R1 = 45
and R2 = 48, the above calculation suggests an average
increase in stopping time of (R1+ R2)/D∗+log(K −1)/D∗ =
93/0.02238 + log(7)/0.02238 ≈ 4242. Both the values are
close to the difference in the empirical average stopping time
of the modified GLRT πM (L) and the lower bound, as seen
in Fig. 2 and Fig. 3.

In Fig. 4 we compare the performance of πM (L) against
the following scenarios: (a) the decision maker can observe all
the processes at every time slot, and (b) the decision maker
samples the locations in a round-robin sequence. In the former
case, the only control is on when to stop. In the latter case
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the decision maker does not optimally choose the location
to sample. The stopping criterion is the same for the three
sampling schemes – observe-all, round-robin, and πM (L). We
also plot the lower bounds for the three policies.

Let us first identify the lower bound for observe-all. This
follows easily from Proposition 2. Indeed, for the observe-
all case, following the optimisation steps in the proof of
Proposition 2, the optimum drift can be calculated to be

D(i, R1, R2)

:= min
R′

1,R′
2, j : j �=i

[
D(R1||R′

2)

+ D(R2||R′
1) + (K − 2)D(R2||R′

2)
]

= D(R1||Rave) + (K − 2)D(R2||Rave),

where

Rave = R1 + (K − 2)R2

(K − 1)
.

The drift for the round-robin case is simply D(i, R1, R2)/K .
This too follows from Proposition 2 by observing that the
sampling distribution is uniform on the K locations.

As expected, the slopes of the three policies match with their
lower bounds corroborating our theory. Further, πM (L) per-
forms better than round-robin, justifying the need for choosing
the location to sample carefully, but worse than observe-all
since πM (L) gets very limited information per sample.

VI. APPLICATION TO VISUAL SEARCH

In this section we apply our results to the visual search
experiments of Sripati and Olson [4]. These experiments were
motivated by Sripati’s and Olson’s desire to quantify the notion
of the so-called “perceptual distance”, a problem set in the
context of their larger goal of understanding how objects are
represented in our brains. Two images (say two faces) may be
very close to each other in their pixel representation. Yet they
may be easily recognised by a human subject as two distinct
faces. The objects then have small “pixel distance”, but are
far apart in “perceptual space” and are separated by a large
perceptual distance.

How do we measure perceptual distances between objects?
Neuroscientists have proposed an ingenious method to quan-
tify this distance between pairs of images, say Ii and I j . For
concreteness, consider two images I1 and I2. A subject is
shown a picture with K images of which K −1 are identically
I1 (distracters) and the oddball image is I2 (target). The subject
does not know the location of the oddball image. The subject
is then asked to identify, as quickly as possible and without
guessing, the location of the oddball image. The time taken
to identify the location of the oddball, from the onset of the
K images, is measured across several trials and subjects, and
then averaged. The inverse of this average time is taken to be
an estimate of the perceptual distance separating I2 from I1.
Often, the distance estimate is symmetrised by repeating trials
with the role of I1 and I2 reversed, and by averaging the time
to decision across all trials.

A decision-theoretic perspective to this problem was pro-
vided by Vaidhiyan et al. [5]. Assume that the images I1 and I2
are known, but which of the two is the oddball target is not
specified. The location of the oddball is unknown. In the visual
search model of Vaidhiyan et al. [5], it was assumed that
subjects can focus at any location of their choice (a control).
Given a chosen focus location, the image at that location
elicited, in a population of neurons, a spiking pattern according
to a multi-dimensional Poisson point process. Also, given the
firing rates, the processes were assumed to be independent
of each other. The goal of the human subject was then to
identify the oddball as quickly as possible. The human subject
would make this decision through a series of decisions on
whether sufficient confidence has already been gained to stop
and make a decision on the oddball location, or if not, where
to focus next.

It is well-established (see Sripati and Olson [4] and refer-
ences therein) that neurons that respond to gross-level object
attributes and features, in macaque monkey brains, reside in
the region of the brain called the inferotemporal cortex. Sripati
and Olson [4] made extensive measurements in this region
on how neurons responded to the images, say Ii and I j .
They then proposed the L1 distance between the vector of
observed average neuronal firing rates (in macaque monkeys),
a neuronal dissimilarity index, as an alternative measure of
perceptual distance between Ii and I j . They then demonstrated
that this neuronal dissimilarity index, obtained from measure-
ments on macaque monkeys, correlated exceedingly well with
the inverse of the symmetrised and averaged search times that
human subjects took to tell apart Ii and I j in the visual search
experiments, across several pairs of images Ii and I j .

The goal of Vaidhiyan et al. [5] was to argue that the
L1 distance between the average firing rates of neurons does
not have a sound decision theoretic basis as a notion of
perceptual distance. Instead, following an approach similar to
this paper, they proposed a relative entropy based dissimilarity
index, denoted D̃i j . This was the inverse of the constant to
which E[τ (i, j)/ log(L)], conditioned on Ii being the oddball,
converges as L → ∞, where 1/L is the constraint on the
probability of false detection and τ (i, j) is the stopping time
of the optimal policy to locate oddball Ii among distracters I j .
It was assumed that the firing rate of the neurons, under the
two images, were known. The D̃i j dissimilarity index had the
added feature that it was asymmetric, a property that the L1
dissimilarity index does not have. Object search is known to
be asymmetric. For example, identifying a ‘Q’ in a sea of ‘O’s
is easier that identifying an ‘O’ in a sea of ‘Q’s. The choice
of D̃i j as a neuronal dissimilarity index naturally brings out
the asymmetry, and has a decision theoretic basis.

We discussed two dissimilarity indices: for a pair of images
Ii and I j , the dissimilarity indices are D̃i j and the L1 distance
between the associated neuronal average firing rates. There
are also several other natural ones, for example, the relative
entropy and the Chernoff entropy between the two multi-
dimensional Poisson point processes associated with average
firing rate vectors. Which of these best explains the obser-
vations in the experiments with human subjects? This too
was investigated in [5]. An ideal neuronal dissimilarity index
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TABLE I

CORRELATION WITH DIFFERENT INFORMATION DISSIMILARITY INDICES

between a pair of images Ii and I j , say diff(i, j), would satisfy
E[τ (i, j)]diff(i, j) = constant, for any image pair (i, j). The
constant should be independent of the image pair. Vaidhiyan
et al. [5] proposed tests of equality of means to measure the
dispersion of E[τ (i, j)]diff(i, j), across image pairs, about a
common mean (the constant). A natural statistic to test the
dispersion of group means about a common mean is the ratio
of arithmetic mean (AM) to geometric mean (GM) of the
group means. It turns out that (AM/GM) is the statistic for
a GLRT based equality of means test for gamma distributed
random variables under a fixed shape parameter assumption
(see [5]). The test for equality of means across groups
for Gaussian random variables is the well-known one-way
ANOVA test. ANOVA is also widely used for non-Gaussian
random variables also because of its robustness. On these
dispersion measures, the relative entropy based dissimilarity
index D̃i j outperformed the L1 distance and other natural
metrics. These results from [5] are highlighted in Tables I
and II, and will be discussed shortly.

Often, in experiments with human subjects, the oddball
and distracter images are not disclosed up front. They are
unknown and have to be learnt along the way by the subject.
This latter problem then falls within the framework of this
paper, and was our main motivation for studying the problem
formulated in this paper. This decision theoretic problem has
a similar limiting E[τ (i, j)/ log(L)], and the corresponding
neuronal dissimilarity index is the D∗(i, R1, R2) of this paper
(Theorem 8), where i is the oddball image, R1 is the firing
rate of a single neuron responding to image i , and R2 is the
firing rate of the distracter.

The model described in this paper was the simplified one-
dimensional Poisson point process. This is equivalent to mak-
ing decisions based on observations from a single neuron that
responds differently to two images. However, all our results on
the one-dimensional Poisson point process (one neuron case)
extend naturally to multi-dimensional Poisson point processes
(multiple neurons firing independently). Hence, the exten-
sion of D∗(i, R1, R2) to D∗(i, R1, R2) for vectors of rates
R1, R2 is straightforward – formula (11) continues to hold
with R1, R2, R̃ replaced by vectors R1, R2, R̃ respectively,
and D(Ri , R̃) replaced by D(Ri , R̃) = ∑

d D(Ri (d)‖R̃(d)),
where the summation is over neurons indexed by d .

TABLE II

EQUALITY OF MEANS TEST USING VARIOUS TEST STATISTICS

Table I shows the correlation values for different informa-
tion dissimilarity indices (from Vaidhiyan et al. [5]). We call
these neuronal dissimilarity indices because these information
dissimilarity indices are computed based on firing rates of
neurons gathered in the measurement experiments of Sripati
and Olson [4]. We see that the inverse of the proposed D∗,
as are the inverses of other indices, is strongly correlated with
the average decision delay.

Table II shows the statistics related to ANOVA and
(AM/GM) tests. As with other indices, D∗ fails the equality
of means tests (indicated by the p-values for ANOVA in the
second column; similarly for log(AM/GM) tests). When the
statistics are used to rank order the indices, from the ANOVA
statistic (smaller the better), we see that D∗ is ranked below D̃,
but above the other indices. From the log(AM/GM) statistics
we see that D∗ is ranked below D̃ and the KL indices, but
above Chernoff and L1.

The slight degradation in performance of D∗ with respect
to D̃ may be attributed to the particular experimental setup
of Sripati and Olson [4]. The search tasks associated with
a given image pair belonged to the same block of trials,
and hence were contiguous. This may have possibly cued the
human subject about the upcoming image pair, and the subject
may have already ‘learnt’ the firing rates. This violates our
assumption on the lack of prior knowledge of the image pairs
to the decision maker at the beginning of each experiment.
Of course, a more thorough experimentation with a wide
variety of image pairs and few repetitions is required for a
good evaluation of the performance of D∗. But the fact that
D∗ is close to the top is encouraging. We believe that this
paper may provide the necessary theoretical basis to carry out
similar analysis of other experimental data.

Our paper focussed on the regime of large samples although
our motivation came from a neuroscience application where it
is generally difficult to have a large number of samples. We
feel that the regime of large samples may yet be applicable.
Typical error rates observed by Sripati and Olson [4] in their
experiments are 1/L = 0.04 to 0.05. This yields L = 20 to 25
or log(L) ≈ 3 to 3.2. Observe from Fig. 2 and Fig. 3 that
asymptotic linearity is already apparent at these error rates.
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VII. CONCLUSION

We studied the problem of detecting an odd Poisson point
process having a rate different from the common rate of others.
We developed a lower bound on the conditional expected
stopping time for any policy that satisfies the given constraint
on the probability of false detection. We proposed a modified
GLRT based algorithm, that we called πM and showed that it
satisfies the given constraint on the probability of false detec-
tion, and that it is asymptotically optimal with respect to the
conditional expected stopping time. The proposed algorithm
employs a simple threshold criterion for stopping. Interest-
ingly, we also showed that, independent of the configuration,
the sampling probability for each process is strictly above a
positive constant.

We applied our results to the visual search experiments
of Sripati and Olson [4]. We proposed D∗ as a candidate
neuronal dissimilarity index. D∗ correlated strongly with the
behavioral data. The performance of D∗ was only mar-
ginally inferior to the neuronal dissimilarity index proposed by
Vaidhiyan et al. [5], and this is quite encouraging.

This work was restricted to Poisson processes. Extension
to other class of distributions, especially exponential family is
under consideration. Extension to general class of distributions
will be an interesting extension.

APPENDIX A
PROOF OF PROPOSITION 3

Let us rewrite (11) as

λ∗(k, θ1, θ2)(k)

= arg max
0≤λ≤1

[

λD(θ1‖θ̃ ) + (1 − λ)
(K − 2)

(K − 1)
D(θ2‖θ̃ )

]

,

where θ̃ , as in (12), is given by

θ̃ = λθ1 + (1 − λ) (K−2)
(K−1) θ2

λ + (1 − λ) (K−2)
(K−1)

. (47)

We have abused notation and have used λ to denote the scalar
λ(k) of (11). We first show that the second derivative of the
objective function in the above optimisation is negative for all
λ to establish concavity. Define the objective function as

f (λ) := λD(θ1‖θ̃ ) + (1 − λ)
(K − 2)

(K − 1)
D(θ2‖θ̃ ),

where θ̃ , a function of λ, is as in (47). We then have

d f

dλ
= D(θ1‖θ̃ ) − (K − 2)

(K − 1)
D(θ2‖θ̃ ) (48)

+
(

λD′(θ1‖θ̃ ) + (1 − λ)
(K − 2)

(K − 1)
D′(θ2‖θ̃ )

)
d θ̃

dλ
(49)

= D(θ1‖θ̃ ) − (K − 2)

(K − 1)
D(θ2‖θ̃ ), (50)

where, we recall, D′(x‖y) is the derivative of D(x‖y) with
respect to the second argument y, which turns out to be
1 − x/y. Equality (50) follows from (16), which ensures that

the term within the parenthesis is identically zero. Differenti-
ating once again,

d2 f

dλ2 =
(

D′(θ1‖θ̃ ) − (K − 2)

(K − 1)
D′(θ2‖θ̃ )

)
d θ̃

dλ

=
((

1 − θ1

θ̃

)

− (K − 2)

(K − 1)

(

1 − θ2

θ̃

))
d θ̃

dλ

= − θ̃

λ + (1 − λ) (K−2)
(K−1)

×
((

1 − θ1

θ̃

)

− (K − 2)

(K − 1)

(

1 − θ2

θ̃

))2

≤ 0, (51)

where we have used the fact that

d θ̃

dλ
= − θ̃

λ + (1 − λ) (K−2)
(K−1)

×
((

1 − θ1

θ̃

)

− (K − 2)

(K − 1)

(

1 − θ2

θ̃

))

.

Since f (λ) is concave in λ, and since f (0) = f (1) = 0, and
f ′(0) > 0 and f ′(1) < 0, the maximiser λ∗ satisfies

D(θ1‖θ̃ ) − (K − 2)

(K − 1)
D(θ2‖θ̃ ) = 0. (52)

We do not know of a closed form expression for λ∗ from (52).
Let λ̂ denote a parametrisation of λ of the form

λ̂ := λ

λ + (1 − λ) (K−2)
(K−1)

, (53)

so that θ̃ = λ̂θ1 + (1 − λ̂)θ2. We recognise that λ̂ is increasing
in λ. Let λ̂∗ denote the re-parametrisation for λ∗ according
to (53). Hence, to show that λ∗ is bounded away from 0 and 1,
it suffices to show that λ̂∗ is bounded away from 0 and 1. Let
us first consider the case when θ1 < θ2. The case when θ1 > θ2
has similar arguments. Let us consider a new parametrisation
of (52). Let v denote

v = θ2

θ2 − θ1
, (54)

so that

v − 1 = θ1

θ2 − θ1
, (55)

and

θ̃

θ2 − θ1
= λ̂θ1 + (1 − λ̂)θ2

θ2 − θ1
(56)

= v − λ̂. (57)

The left-hand side of (52) can now be written in terms of
v and λ̂ as

D(v − 1‖v − λ̂) − (K − 2)

(K − 1)
D(v‖v − λ̂). (58)

Let λ̂r (v) denote the solution to

D(v − 1‖v − λ̂) − r D(v‖v − λ̂) = 0. (59)

Fig. 5 gives a geometric interpretation of λ̂∗. Note that λ̂∗(v) =
λ̂r (v) for r = (K − 2)/(K − 1). For each v ≥ 1, we also have
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Fig. 5. Geometric interpretation of λ̂∗.

that λ̂r (v) decreases with r . Furthermore, 0.5 ≤ (K − 2)/
(K − 1) ≤ 2. We then have λ̂2(v) < λ̂∗(v) < λ̂0.5(v).
Hence, to show that λ̂∗(v) is bounded away from 0 and 1
for all v, it suffices to show that supv≥1 λ̂0.5(v) < 1, and that
infv≥1 λ̂2(v) > 0.

We now obtain a Taylor’s series based alternate expression
for D(v−a‖v−b) when v ≥ 1 and 0 ≤ a, b ≤ 1. The alternate
expression replaces the log terms in (58) with infinite sums and
enables easier bounding of (58).

Lemma 9: Let v ≥ 1. Let 0 ≤ a, b ≤ 1. Let D(x‖y) =
x log(x/y) − y + x denote the relative entropy between two
Poisson random variables with means x and y. Then,

D(v − a‖v − b) = (v − a) log

(
v − a

v − b

)

− (v − a) + (v − b)

=
∑

l≥1

1

vl l(l + 1)

(
al+1 − bl(a + (a − b)l)

)
.

Proof: Case 1: Let v > 1. Let 0 ≤ a, b ≤ 1.
Using the Taylor’s series expansion for − log(1 − x) =

∑
l≥1

x1

l , when |x | < 1, we get

D(v − a‖v − b)

= (v − a) log

(
1 − a/v

1 − b/v

)

− (v − a) + (v − b)

= −(v − a)
∑

l≥1

al

vl l
+ (v − a)

∑

l≥1

bl

vl l
+ (a − b)

= (−a + b) +
∑

l≥2

1

vl−1l

(
bl − al

)

+
∑

l≥1

1

vl l

(
al+1 − abl

)
+ (a − b)

=
∑

l≥1

1

vl(l + 1)

(
bl+1 − al+1

)
+
∑

l≥1

1

vl l

(
al+1 − abl

)

=
∑

l≥1

1

vl l(l + 1)

(
al+1 − bl(a + (a − b)l)

)
.

Case 2: Let v = 1. Let 0 < a, b < 1. The same arguments
as above holds.

Fig. 6. Variation of (1 − cl (1 + l − 0.5cl)) with l.

Case 3: Let v = 1. Let a = 1, b < 1. Then,
∑

l≥1

1

l(l + 1)

(
1 − bl(1 + (1 − b)l)

)

=
∑

l≥1

[
1

l
− 1

(l + 1)
− bl

l
+ bl+1

l + 1

]

= (1 − b)

= D(0‖1 − b).

Case 4: Let v = 1. Let a < 1, b = 1. Then, both
D(v − a‖v − b) and the infinite sum are infinity.

Case 5: Let v = 1. Let a = 1, b = 1. Then both
D(v − a‖v − b) and the infinite sum are zero.

We now show that λ̂0.5(v) < 0.9 for all v ≥ 1. For this,
it suffices to show that for c = 0.9, D(v − 1‖v − c) − 0.5
D(v‖v − c) < 0 for all v ≥ 1.

D(v − 1‖v − c) − 0.5D(v‖v − c)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl(1 + (1 − c)l) − 0.5cl+1l

)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl(l + 1) + cl+1l − 0.5cl+1l

)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl(l + 1 − 0.5cl

)
.

Let us first consider the case when v = 1 and c = 0.9.
We then have

D(v − 1‖v − c) − 0.5D(v‖v − c)

= D(0‖0.1) − 0.5D(1‖0.1)

= 0.1 − 0.5(log(10) − 0.9)

< 0. (60)

Thus, λ̂0.5(1) < 0.9. For v > 1 and c = 0.9, we observe that
(1 − cl(1 + l − 0.5cl)) is initially negative and then becomes
positive in l (See Fig. 6). Thus, there exists M > 1 such that

(1 − cl(1 + l − 0.5cl))

{
≤ 0 ∀ l < M

≥ 0 ∀ l ≥ M.
(61)
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Then, for c = 0.9, we have

D(v − 1‖v − c) − 0.5D(v‖v − c)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl((l + 1) − 0.5cl

)

≤
∑

1≤l<M

1

vMl(l + 1)

(
1 − cl((l + 1) − 0.5cl

)

+
∑

l≥M

1

vM l(l + 1)

(
1 − cl((l + 1) − 0.5cl

)
(62)

= 1

vM

∑

l≥1

1

l(l + 1)

(
1 − cl((l + 1) − 0.5cl

)

= 1

vM (D(0‖1 − c) − 0.5D(1‖1 − c))

= 1

vM (D(0‖0.1) − 0.5D(1‖0.1))

< 0. (63)

Inequality (62) is obtained by upperbounding 1) the initial
negative terms, till l < M , by replacing vl by a larger vM ,
and 2) the later non-negative terms, for l ≥ M , by replacing
vl by a smaller vM . Inequality (63) follows from (60). Thus,
we have shown that λ̂0.5(v) < 0.9 for all v ≥ 1.

We now show the second part of the proof, i.e., λ̂2(v) >
0.1 > 0. For this, it suffices to show that for c = 0.1,
D(v −1‖v − c)−2D(v‖v − c) > 0 for all v ≥ 1. For c = 0.1,
we have

D(v − 1‖v − c) − 2D(v‖v − c)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl(1 + (1 − c)l) − 2cl+1l

)

=
∑

l≥1

1

vl l(l + 1)

(
1 − cl(1 + l + cl)

)

=
∑

l≥1

1

vl l(l + 1)

(
1 − (0.1)l(1 + l + (0.1)l)

)
(64)

> 0, (65)

where (65) follows as each term inside the summation in (64)
is positive. Thus, when θ1 < θ2 and for all v ≥ 1, we have
shown that

0.1 ≤ λ̂2(v) ≤ λ̂∗(v) ≤ λ̂0.5(v) < 0.9.

We now consider the case when θ1 > θ2. Let

v ′ = θ1

θ1 − θ2
,

so that

v ′ − 1 = θ2

θ1 − θ2
,

and

θ̃

θ1 − θ2
= λ̂θ1 + (1 − λ̂)θ2

θ1 − θ2

= v ′ − 1 + λ̂.

Equation (52) can now be written in terms of v ′ and λ̂ as

D(v ′‖v ′ − 1 + λ̂) − (K − 2)

(K − 1)
D(v ′ − 1‖v ′ − 1 + λ̂) = 0.

(66)

Let λ̂∗(v ′) be the solution to (66). Recognise that (66) has
the same form as in the previous case for θ1 < θ2, with only
the multiplicative constant being different. From arguments
similar to the ones used in the previous case of θ1 < θ2, we
can show that

0.1 < (1 − λ̂∗(v ′)) < 0.9,

or equivalently, 0.1 < λ̂∗(v ′) < 0.9.
Thus, we have shown that λ̂∗ is bounded away from

0.1 and 0.9 for all θ1 and θ2.

APPENDIX B

We stated the main properties of the proposed policy πM

in Section IV. We prove them in this Appendix.
The organisation of this Appendix is as follows. This also

outlines the structure of the proof of achievability given in
Proposition 7. First, in Appendix B-A, we prove Proposition 4
which is that the policy πM (L) stops with probability 1.
Next, in Appendix B-B, we prove Proposition 6 which is
that the log-likelihood ratio under the policy π̃M grows at the
correct rate, i.e., the normalised log-likelihood ratio converges
to D∗(i, R1, R2) almost surely. Finally, in Appendix B-C,
we prove Proposition 7 which establishes the desired upper
bound on τ (πM (L))/ log L almost surely and in expectation.
The beginning of each subsection outlines the plan for that
subsection.

A. Proof of Proposition 4 and Associated Ingredients

Before we prove Proposition 4, which is that policy πM (L)
stops with probability 1, we develop some convergence results
for πM (L).

In Proposition 10, we show that under the non-stopping
policy π̃M , the empirical rate associated with a process con-
verges to the true rate of that process. The results are akin
to convergence results for independent random variables, but
applied to the dependent random variables in our setting with
the dependency being induced by the policy. This is then
crucially used in establishing that the log-likelihood ratios
of the correct hypothesis against each incorrect hypothesis,
Zi j (n) has a strictly positive drift under the non-stopping
policy π̃M (Lemma 11). These are then quickly put together
to establish Proposition 4. We then end this subsection with
assertions that the maximum likelihood estimate of the odd-
ball location and all relevant estimates of the rates of point
processes for each location converge to the correct values
(Proposition 12). This result will then be used in the next
subsection.

We now begin with the convergence of empirical rate
convergences.

Proposition 10: Fix K ≥ 3. Let � = (i, R1, R2) be the
true configuration. Consider the non stopping policy π̃M . As
n → ∞ the following convergences hold almost surely,

Y n
j

Nn
j

→
{

R1 if j = i,

R2 if j �= i,

Y n − Y n
i

n − Nn
i

→ R2, (67)
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and

R′
min ≤ lim inf

n→∞
Y n − Y n

j

n − Nn
j

≤ lim sup
n→∞

Y n − Y n
j

n − Nn
j

≤ R′
max for all j �= i, (68)

where

R′
min = (1 − cK ) min{R1, R2} + cK max{R1, R2} (69)

and

R′
max = cK min{R1, R2} + (1 − cK ) max{R1, R2}, (70)

and cK is as in Proposition 3.
Proof: Let Fl−1 denote the σ -field generated by

(Xl−1, Al−1). Consider the martingale difference sequence

Sn
i = Y n

i − Nn
i R1 =

n∑

l=1

(Xl − R1)1{Al=i}.

Given the Poisson assumption on Xl , we have
E
[
(Xl − R1)

21{Al=i}|Fl−1
]

< ∞ for all l. Then,
by the convergence result for martingales, see
De la Pena [20, Th. 1.2A], for any ε > 0, there exists
cε > 0 such that

P(Sn
i > nε) ≤ e−cεn, (71)

which in turn, by the Borel-Cantelli Lemma [21, Sec. 4.2],
implies

Sn
i

n
→ 0 almost surely. (72)

Similarly arguing, we conclude that convergence result
holds for other Sn

j /n, for j = 1, 2, . . . , K . Further, from
Proposition 3, we have

lim inf
n→∞

Nn
i

n
> cK > 0 almost surely. (73)

Combining (72) and (73), we have,

Sn
i

Nn
i

→ 0 almost surely,

or equivalently,

Y n
i

Nn
i

→ R1 almost surely.

Similar result hold for other j , with R1 replaced by R2, and
we have established (67). Furthermore, these results imply that

(Y n − Y n
j ) −∑

k �= j Nn
k Rk

(n − Nn
j )

→ 0almost surely. (74)

Consequently, we get

(Y n − Y n
i )

(n − Nn
i )

→ R2 almost surely. (75)

Fix j �= i , we then have
∑

k �= j Nn
k Rk

(n − Nn
j )

= Nn
i

n − Nn
j

R1 +
∑

k �= j,i Nn
k

n − Nn
j

R2.

We do not yet have a convergence result for Nn
k /n for any k.

Proposition (3) only says that at every slot and for each
process, the probability of choosing that process is greater
than cK . Thus, we are not in a position to say, as n → ∞,
whether

Y n − Y n
j

n − Nn
j

→ constant .

However, from Proposition 3, we get the following bound

(1 − cK ) min{R1, R2} + cK max{R1, R2}
≤ lim inf

n→∞

∑
k �= j Nn

k Rk

(n − Nn
j )

≤ lim sup
n→∞

∑
k �= j Nn

k Rk

(n − Nn
j )

≤ cK min{R1, R2} + (1 − cK ) max{R1, R2} “a.s.”. (76)

Thus, (74) combined with (76) yields (68).
We now state a lemma that asserts that, under the non-

stopping policy π̃M , Zi (n), the test statistic associated with
the index of the odd process, drifts off to infinity.

Lemma 11: Fix K ≥ 3. Let � = (i, R1, R2) be the true
configuration. Consider the non-stopping policy π̃M . Then for
all j �= i , we have

lim inf
n→∞

Zi j (n)

n
> 0 almost surely. (77)

Proof: Without loss of generality assume R1 < R2.
Observe that we have R1 < R′

min < R′
max < R2. Recall

that

D(x‖y) := x log(x/y) − x + y,

the relative entropy between two Poisson distributions with
means x and y. We can lower bound (29) by (79), as shown
at the top of the next page, where the inequality (78), as shown
at the top of the next page, follows from the lower bound for
the gamma function �(x + 1) = x ! ≥ x xe−x

√
2πx [22, p.54],

and the equality (79) follows from the use of the formula for
D(x‖y) and some rearrangement of terms.

We now study the convergence of each of the terms in (79).
All convergence statements are in the almost sure sense.
Consider the first term in (79). From Proposition 10 and
Proposition 3, as n → ∞, we have

Y n
i

Nn
i + 1

→ R1, lim inf
n→∞

Y n − Y n
j

n − Nn
j

≥ R′
min ,

and

lim inf
n→∞

Nn
i + 1

n
≥ cK .

Consequently, and using the fact that D(x‖y) is monotone
increasing in y, for y > x , we have

lim inf
n→∞

Nn
i + 1

n
D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

≥ cK D
(
R1‖R′

min

)
> 0.
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Zi j (n) = log

(
�(Y n

i + 1)

(Nn
i + 1)(Y

n
i +1)

�(Y n − Y n
i + 1)

(n − Nn
i + 1)(Y

n−Y n
i +1)

)

− Y n
j

(

log

(
Y n

j

Nn
j

)

− 1

)

− (Y n − Y n
j )

(

log

(
Y n − Y n

j

n − Nn
j

)

− 1

)

≥ Y n
i log

(
Y n

i

Nn
i + 1

)

− Y n
i + log

(√
2πY n

i

Nn
i + 1

)

+ (Y n − Y n
i ) log

(
Y n − Y n

i

n − Nn
i + 1

)

− (Y n − Y n
i )

+ log

(√
2π(Y n − Y n

i )

n − Nn
i + 1

)

−
[

Y n
j log

(
Y n

j

Nn
j

)

− Y n
j + (Y n − Y n

j ) log

(
Y n − Y n

j

n − Nn
j

)

− (Y n − Y n
j )

]

(78)

= (Nn
i + 1)D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

+ (n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)

− Nn
j D

(
Y n

j

Nn
j
‖ Y n − Y n

i

n − Nn
i + 1

)

− (n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖ Y n − Y n

i

n − Nn
i + 1

)

− Y n − Y n
i

n − Nn
i + 1

− Y n − Y n
j

n − Nn
j

+ log

(√
2πY n

i

Nn
i + 1

)

+ log

(√
2π(Y n − Y n

i )

n − Nn
i + 1

)

. (79)

Similarly, for the the second term in (79), we have

Y n − Y n
i − Y n

j

n − Nn
i − Nn

j
→ R2, lim sup

n→∞
Y n − Y n

j

n − Nn
j

≤ R′
max ,

and

lim inf
n→∞

n − Nn
i − Nn

j

n
≥ (K − 2)cK ≥ cK .

Consequently, and using the fact that D(x‖y) is monotone
decreasing in y, for y < x , we have

lim inf
n→∞

n − Nn
i − Nn

j

n
D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)

≥ cK D(R2‖R′
max ) > 0.

Consider the third term in (79). From Proposition 10,
as n → ∞, we have

Y n
j

Nn
j

→ R2 and
Y n − Y n

i

n − Nn
i + 1

→ R2.

Consequently,

D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)

→ D(R2‖R2) = 0.

Similarly, for the fourth term in (79) we get

Y n − Y n
i − Y n

j

n − Nn
i − Nn

j
→ R2 and

Y n − Y n
i

n − Nn
i + 1

→ R2.

Consequently,

D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖ Y n − Y n

i

n − Nn
i + 1

)

→ D(R2‖R2) = 0.

Consider the fifth and sixth terms in (79). From
Proposition 10, we have

Y n − Y n
i

n − Nn
i + 1

→ R2 and lim sup
n→∞

Y n − Y n
j

n − Nn
j

≤ R′
max .

Consequently, when divided by n and as n → ∞, both the
terms go to zero, i.e.,

1

n

Y n − Y n
i

n − Nn
i + 1

→ 0 and lim sup
n→∞

1

n

Y n − Y n
j

n − Nn
j

= 0.

Consider the seventh and eight terms in (79). Both the terms
go to negative infinity, but only logarithmically in n, and hence
when divided by n and as n → ∞, we get

1

n
log

(√
2πY n

i

Nn
i + 1

)

→ 0 and
1

n
log

(√
2π(Y n − Y n

i )

n − Nn
i + 1

)

→ 0.

Thus, we have

lim inf
n→∞

Zi j (n)

n

≥ lim inf
n→∞

[
(Nn

i + 1)

n
D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

+ (n − Nn
i − Nn

j )

n
D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)]

(80)

≥ cK D(R1‖R′
min ) + cK D(R2‖R′

max) (81)

> 0.

This completes the proof of Lemma 11.
Proof of Proposition 4: We now have the ingredients to

prove Proposition 4. The following inequalities hold almost
surely,

τ (πM (L)) ≤ τ (π i
M (L))

= inf{n ≥ 1|Zi(n) > log((K − 1)L)}
≤ inf{n ≥ 1|Zi j (n

′) > log((K − 1)L)

for all n′ ≥ n and for all j �= i}
< ∞, (82)

where the last inequality follows from Lemma 11.
While in Proposition 10 we established that under the non-

stopping policy π̃M Y n
k /Nn

k → Rk almost surely, the question
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of convergence of Nn
k /n to some real constant under the π̃M

policy remained to be established. We now show that under
the π̃M policy it does converge to a real constant. Furthermore,
we show that (Y n −Y n

j )/(n−Nn
j ) also converges to a constant.

Proposition 12: Fix K ≥ 3. Let � = (i, R1, R2) be the true
configuration. Consider the non-stopping policy π̃M . Then as
n → ∞, the following convergences hold almost surely,

(i)

i∗(n) → i, (83)

(ii)

θ̂n
i∗(n),1 → R1, (84)

(iii)

θ̂n
i∗(n),2 → R2, (85)

(iv)

λ∗(i∗(n), θ̂n
i∗(n),1, θ̂

n
i∗(n),2) → λ∗(i, R1, R2), (86)

(v)

Nn
j

n
→ λ∗(i, R1, R2)( j) for all j = 1, 2, . . . , K ,

(87)

(vi)

Y n − Y n
j

n − Nn
j

→ R̃(λ∗(i, R1, R2)(i)) for all j �= i,

(88)
where R̃ is as in (12).

Proof: From Lemma 11 we have

lim inf
n→∞ Zi (n) = lim inf

n→∞ min
j �=i

Zi j (n) > 0 almost surely. (89)

Fix j �= i . Then, the following inequalities hold almost surely,

lim sup
n→∞

Z j (n) = lim sup
n→∞

min
k �= j

Z jk(n)

≤ lim sup
n→∞

Z j i(n)

≤ lim sup
n→∞

−Zi j (n)

≤ − lim inf
n→∞ min

k �=i
Zik(n)

= − lim inf
n→∞ Zi (n)

< 0.

It further implies, i∗(n) = maxk Zk(n) = i almost surely. This
proves (i).

All convergence statements are in the almost sure sense.
From (i) and Proposition 10 we get

θ̂n
i∗(n),1 = Y n

i∗(n)

Nn
i∗(n)

→ Y n
i

Nn
i

→ R1,

and similarly we get,

θ̂i∗(n),2 = Y n − Y n
i∗(n)

n − Nn
i∗(n)

→ Y n − Y n
i

n − Nn
i

→ R2.

This proves (ii) and (iii).
From (i), (ii) and (iii) we have

λ∗(i∗(n), θ̂n
i∗(n),1, θ̂

n
i∗(n),2) → λ∗(i, θ̂n

i,1, θ̂
n
i,2)

→ λ∗(i, R1, R2),

where we have used that fact that λ∗(i, x, y) is jointly con-
tinuous in (x, y), a fact that follows from Berge’s Maximum
Theorem [23].
Consider the martingale sequence Nn

j − ∑n
l=1 λ∗(i∗(n),

θ̂n
i∗(n),1, θ̂

n
i∗(n),2)( j). From (iv) and martingale convergence

arguments, as used in (72), we get

Nn
j

n
→ 1

n

n∑

l=1

λ∗(i∗(n), θ̂n
i∗(n),1, θ̂

n
i∗(n),2)( j)

→ λ∗(i, R1, R2)( j).

For ease of notation, let λ∗(i) denote λ∗(i, R1, R2)(i). We can
rewrite (Y n − Y n

j )/(n − Nn
j ) as

Y n − Y n
j

n − Nn
j

= Y n
i + Y n − Y n

i − Y n
j

n − Nn
j

=
[

Nn
i

n

Y n
i

Nn
i

+ n − Nn
i − Nn

j

n

Y n − Y n
i − Y n

j

n − Nn
i − Nn

j

]
n

n − Nn
j
.

Then, from (v) we have the following convergence in almost
sure sense,

Y n − Y n
j

n − Nn
j

→ λ∗(i)R1 + (1 − λ∗(i)) (K−2)
(K−1) R2

λ∗(i) + (1 − λ∗(i)) (K−2)
(K−1)

= R̃(λ∗(i)).

This completes the proof of the Proposition.

B. Proof of Proposition 6 and Some of Its Consequences

This subsection is organised as follows. We first establish
Proposition 6 which is that log-likelihood ratio associated
with the oddball index, under the non-stopping policy, has
the correct drift. Lemmas 13 and 14 are then some immediate
consequences on the corresponding stopping policy πM (L).

Proof of Proposition 6: We already established (79).
Using Proposition 12, we now recognise that all the fractions
converge to their respective quantities. Hence,

lim inf
n→∞

Zi j (n)

n

≥ lim inf
n→∞

[
(Nn

i + 1)

n
D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

+ (n − Nn
i − Nn

j )

n
D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)]

(90)

= (λ∗(i, R1, R2)(i))D(R1‖R̃)

+ (1 − (λ∗(i, R1, R2)(i)))
(K − 2)

(K − 1)
D(R2‖R̃) (91)

= D∗(i, R1, R2) almost surely. (92)

Similarly, by using �(x + 1) = x ! ≤ x xe−x+1
√

2πx , and
following the steps leading to (79) with limsup instead of lim-
inf, it can be shown that lim supn→∞

Zi j (n)
n ≤ D∗(i, R1, R2)
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almost surely. It follows that

lim
n→∞

Zi (n)

n
= D∗(i, R1, R2) almost surely,

which establishes Proposition 6.
From Proposition 1 we know that the expected stopping

time, E [τ (πM (L))], grows to infinity as L → ∞, but we
now show that τ (πM (L)) grows to infinity in almost sure sense
also.

Lemma 13: Fix K ≥ 3. Let � = (i, R1, R2) be the true
configuration. Consider the policy πM (L). Then,

lim inf
L→∞ τ (πM (L)) → ∞ almost surely. (93)

Proof: It is evident that the sequence of random variables
τ (πM (L)), indexed by L, is non-decreasing in L. Hence, it
suffices to show that, as L → ∞,

P (τ (πM (L)) < n) → 0 for all n. (94)

To see this, observe that

lim sup
L→∞

P (τ (πM (L)) < n)

= lim sup
L→∞

P

(

max
1≤l≤n

Z j (l) > log((K − 1)L) for some j

)

≤ lim sup
L→∞

K∑

j=1

n∑

l=1

P
(
Z j (l) > log((K − 1)L)

)
(95)

≤ lim sup
L→∞

1

log((K − 1)L)

K∑

j=1

n∑

l=1

E
[
l + 2(Y l)2

]
(96)

≤ lim sup
L→∞

1

log((K − 1)L)

K∑

j=1

n∑

l=1

[
l + 2l2(max{R1, R2}

+ (max{R1, R2})2)
]

= 0. (97)

Inequality (95) follows from union bound. In inequality (97)
we have used the convexity of x2 to bound E[(∑l

k=1 Xk)
2] <

l2 E[(Xk)
2], and also that for Poisson random variables

E[X2] = E[X] + E[X]2. Inequality (96) is obtained by using
the Markov inequality and by bounding Z j (l) as follows:

Z j (l) = log

(
f (Xl , Al |H = j)

maxk �= j f̂ (Xl , Al |H = i)

)

≤ log

(
f̂ (Xl , Al |H = j)

f̂ (Xl , Al |H = k)

)

for some k �= j (98)

= Y l
j log

(
Y l

j

Nl
j

)

− Y l
j

+ (Y l − Y l
j ) log

(
Y l − Y l

j

l − Nl
j

)

− (Y l − Y l
j )

−
[

Y l
k log

(
Y l

k

Nl
k

)

− Y l
k

+ (Y l − Y l
k) log

(
Y l − Y l

k

l − Nl
k

)

− (Y l − Y l
k)

]

(99)

≤ (Y l
j )

2 + (Y l − Y l
j )

2 + l

−
[

Nl
k D

(
Y l

k

Nl
k

‖1

)

+ (l − Nl
k)D

(
Y l − Y l

k

l − Nl
k

‖1

)]

(100)

≤ (Y l
j )

2 + (Y l − Y l
j )

2 + l (101)

≤ 2(Y l)2 + l. (102)

Inequality (98) follows by upper bounding the numerator
in by the maximum likelihood function and lower bound-
ing the denominator by choosing the maximum likelihood
function with respect to an arbitrary k �= j instead of the
maximiser. Inequality (100) follows by recognising that the
terms inside square brackets in (99) can be written as a sum
of relative entropy terms minus an l. Also, we upper bound
x log(x/N) − x by x2. Inequality (101) follows by ignoring
the negative terms. Inequality (102) follows by upper bounding
Y l

j and Y l − Y l
j by Y l .

In Proposition 6 we showed that, as n → ∞ and under the
non-stopping policy π̃M , Zi (n)/n converges to D∗(i, R1, R2).
We now show that, as L → ∞, Zi (τ (πM (L)))/τ (πM (L)) →
D∗(i, R1, R2).

Lemma 14: Fix K ≥ 3. Let � = (i, R1, R2) be the true
configuration. Consider the policy πM (L). We then have

lim
L→∞

Zi (τ (πM (L)))

τ (πM (L))
= D∗(i, R1, R2) almost surely. (103)

Proof: It follows from Proposition 6 and Lemma 13.

C. Proof of Proposition 7

We now have all the ingredients to prove the main achiev-
ability result of Proposition 7. By the definition of τ (πM (L)),
we have that Zi (τ (πM (L)) − 1) < log((K − 1)L) at the
previous slot. Using this we get

lim sup
L→∞

Zi (τ (πM (L)) − 1)

log(L)
≤ lim sup

L→∞
log((K − 1)L)

log L
. (104)

Substituting (103) in (104), we get

lim sup
L→∞

τ (πM (L))

log(L)
= lim sup

L→∞
τ (πM (L)) − 1

log(L)
(105)

≤ 1

D∗(i, R1, R2)
. (106)

A sufficient condition to establish convergence of the expected
stopping time is to show that

lim sup
L→∞

E

[

exp

(
τ (πM (L))

log(L)

)]

< ∞.

Without loss of generality assume R1 < R2, such that R1 <
R′

min < R′
max < R2, where R′

min and R′
max are as defined in

(69) and (70), respectively. Let cK be as in Proposition 3. We
then have

lim sup
L→∞

E

[

e
τ (πM (L))

log(L)

]

= lim sup
L→∞

∫

x≥0
P

(
τ (πM (L))

log(L)
> log(x)

)

dx (107)

≤ lim sup
L→∞

∫

x≥0
P
(
τ i (πM (L)) > �log(x) log(L)�

)
dx .

(108)
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Let us now define

u(L) := exp

(
3 log((K − 1)L)

cK D(R1‖R′
min) log(L)

+ 1

log(L)

)

. (109)

For x < u(L) let us upper bound the probability by 1. We
then get the right-hand side of (108) to be

lim sup
L→∞

∫

x≥0
P
(
τ i (πM (L)) > �log(x) log(L)�

)
dx

≤ lim sup
L→∞

[

u(L)

+
∫

x≥u(L)
P
(
τ i (πM (L)) > �log(x) log(L)�

)
dx

]

.

(110)

Recognising that P
(
τ i (πM (L)) > �log(x) log(L)�) is con-

stant in the interval

x ∈
[

exp

(
n

log(L)

)

, exp

(
n + 1

log(L)

))

and recognising that the interval length is upper bounded by
exp

(
n+1

log(L)

)
, we can further upper bound (110) by (112), as

shown at the top of the next page. To show that the right-hand
side of (112) is finite, it suffices to show that for all

n ≥ �log(u(L)) log(L)� ≥ 3 log((K − 1)L)

cK D(R1‖R′
min )

and for sufficiently large L, there exist constants γ > 0 and
0 < B < ∞ such that

P (Zi (n) < log((K − 1)L)) < Be−γ n. (113)

We now show that such an exponential bound does exist.
Lemma 15: Fix K ≥ 3. Fix L > 1. Let � = (i, R1, R2) be

the true configuration. Let u(L) be as in (109). Then, there
exist constants γ > 0 and 0 < B < ∞, independent of L,
such that for all n ≥ �log(u(L)) log(L)�, we have

P (Zi (n) < log((K − 1)L)) ≤ Be−γ n. (114)

Proof: The following upper bounds for P
(
Zi (n) < log

((K − 1)L)
)

is self evident

P (Zi (n) < log((K − 1)L)))

= P

(

min
j �=i

Zi j (n) < log((K − 1)L)

)

≤
∑

j �=i

P
(
Zi j (n) < log((K − 1)L)

)
.

It now suffices to show that for every j �= i the probabil-
ity term in the above expression is exponentially bounded.
We upper bound Zi j (n) in the same way as we earlier

did in (79).

P
(
Zi j (n) ≤ log((K − 1)L)

)

≤ P

(

(Nn
i + 1)D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

+ (n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)

− Nn
j D

(
Y n

j

Nn
j
‖ Y n − Y n

i

n − Nn
i + 1

)

− (n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖ Y n − Y n

i

n − Nn
i + 1

)

− Y n − Y n
i

n − Nn
i + 1

− Y n − Y n
j

n − Nn
j

+ log

(√
2πY n

i

Nn
i + 1

)

+ log

(√
2π(Y n − Y n

i )

n − Nn
i + 1

)

< log((K − 1)L)

)

(115)

Using union bound, we upper bound (115) by a sum of
probability terms as given in (116), as shown at the top of
the next page. Let us choose 0 < ε′′ < cK /3, so that

cK (1 − ε′′)
1 − cK (1 − ε′′)

> cK (1 + ε′′). (117)

We then we choose ε′ > 0 such that

3(cK (1 − ε′′)D(R1‖R′
min ) − 8ε′) > cK D(R1‖R′

min),

so that

P

(

(Nn
i + 1)D(R1‖R′

min ) − 8ε′n

< log((K − 1)L), (Nn
i + 1) > cK (1 − ε′′)n

)

= 0 (118)

for all n under consideration, i.e., for all

n ≥ �log(u(L)) log(L)� ≥ 3 log((K − 1)L)

cK D(R1‖R′
min)

.

The last term in (116) can then be upper bounded by

P
(
(Nn

i + 1)D(R1‖R′
min) − 8ε′n < log((K − 1)L)

)

≤ P

(

(Nn
i + 1)D(R1‖R′

min) − 8ε′n

< log((K − 1)L), (Nn
i + 1) > cK (1 − ε′′)n

)

+ P
(
(Nn

i + 1) ≤ cK (1 − ε′′)n
)

= 0 + P
(
(Nn

i + 1) ≤ cK (1 − ε′′)n
)

(119)

≤ exp(−ε′′n
2

). (120)

Equality (119) follows from (118). From Proposition 3, we
recognise that (Nn

j ′ − ncK ) is a bounded difference sub-
martingale for all j ′. Hence, inequality (120) follows from
the Azuma-Hoeffding inequality for bounded difference sub-
martingales. Note that only the last term in (116) is dependent
on L. By the choice of ε′ and for all n under consideration,
and from (120), we have shown that it decays exponentially
with n, and independent of L.
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lim sup
L→∞

∫

x≥0
P
(
τ i (πM (L)) > �log(x) log(L)�

)
dx

≤ exp

(
3

cK D(R1‖R′
min)

)

+ lim sup
L→∞

∑

n≥�log(u(L)) log(L)�
exp

(
n + 1

log(L)

)

P
(
τ i (πM (L)) > n

)
dx (111)

≤ exp

(
3

cK D(R1‖R′
min)

)

+ lim sup
L→∞

∑

n≥�log(u(L)) log(L)�
exp

(
n + 1

log(L)

)

P (Zi (n) < log((K − 1)L)) dx . (112)

P
(
Zi j (n) ≤ log((K − 1)L)

)

≤ P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D(R1‖R′
min)

)

< −ε′n
)

+ P

(

(n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖Y n − Y n

j

n − Nn
j

)

< −ε′n
)

+ P

(

−Nn
j D

(
Y n

j

Nn
j
‖ Y n − Y n

i

n − Nn
i + 1

)

< −ε′n
)

+ P

(

−(n − Nn
i − Nn

j )D

(
Y n − Y n

i − Y n
j

n − Nn
i − Nn

j
‖ Y n − Y n

i

n − Nn
i + 1

)

< −ε′n
)

+ P

(

− Y n − Y n
i

n − Nn
i + 1

< −ε′n
)

+ P

(

−Y n − Y n
j

n − Nn
j

< −ε′n
)

+ P

(

log

(√
2πY n

i

Nn
i + 1

)

< −ε′n
)

+ P

(

log

(√
2π(Y n − Y n

i )

n − Nn
i + 1

)

< −ε′n
)

+ P
(
(Nn

i + 1)D(R1‖R′
min ) − 8ε′n < log((K − 1)L)

)
. (116)

It now suffices to show that each of the other terms in (116)
decays exponentially with n. Let us now look at the first term
in (116).

P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D(R1‖R′
min)

)

< −ε′n
)

≤ P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D(R1‖R′
min )

)

< −ε′n, Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′

)

+
∑

j ′
P
(

Nn
j ′ < cK (1 − ε′′)n

)
. (121)

All the terms inside the summation in (121) have exponen-
tial bounds from Proposition 3 and from Azuma-Hoeffding
inequality for bounded difference sub-martingales. The first
term in (121) can be further upper bounded by (122), as
shown at the top of the next page. Inequality (122) follows by

replacing D(R1‖R′
min) by a larger D

(

R1‖Y n−Y n
j

n−Nn
j

)

using the

fact that D(x‖y) is monotonically increasing in y for y > x .
Let us now consider the first term in (122). Recognise that we

have restricted
Y n−Y n

j
n−Nn

j
to lie in a compact interval [R′

min , R2].

Further, since D(x‖y) is jointly continuous in (x, y) and since
the second argument is restricted to a compact set, we can
upper bound the first term in (122), for a suitable δε , by (123),
as shown at the top of the next page. We recognise that (123)
can be expressed as the probability of the deviation of a
martingale difference sequence from zero, which we know can
be exponentially bounded using the martingale concentration
bounds of De la Pena [20, Th. 1.2A], given in (71)

Let us define R′′
min := R′

min + cK ε′′(R2 − R1) and R′′
max :=

R′
max −cK ε′′(R2− R1). Let ε′′′ > 0 be such that R′

min +2ε′′′ <

R′′
min and R′′

max + 2ε′′′ < R′
max . We then recognise that, given

the event {Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′} and (117), the event

{
Nn

i R1 + (n − Nn
i − Nn

j )R2

n − Nn
j

≥ (1 − cK (1 + ε′′))R1 + cK (1 + ε′′)R2 = R′′
min

}

is also true. Then, the following statements are true

{
Y n − Y n

j

n − Nn
j

< R′
min

}

⊆
{

Y n − Y n
j

n − Nn
j

< R′′
min − ε′′′

}
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P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D(R1‖R′
min)

)

< −ε′n, Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′

)

≤ P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D

(

R1‖
Y n − Y n

j

n − Nn
j

))

< −ε′n,

Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′,

Y n − Y n
j

n − Nn
j

≥ R′
min ,

Y n − Y n
j

n − Nn
j

≤ R2

)

+ P

(
Y n − Y n

j

n − Nn
j

< R′
min , Nn

j ′ ≥ cK (1 − ε′′)n ∀ j ′
)

+ P

(
Y n − Y n

j

n − Nn
j

> R2, Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′

)

. (122)

P

(

(Nn
i + 1)

(

D

(
Y n

i

Nn
i + 1

‖Y n − Y n
j

n − Nn
j

)

− D

(

R1‖
Y n − Y n

j

n − Nn
j

))

< −ε′n,

Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′,

Y n − Y n
j

n − Nn
j

≥ R′
min ,

Y n − Y n
j

n − Nn
j

≤ R2

)

≤ P

(∣
∣
∣
∣

Y n
i

Nn
i + 1

− R1

∣
∣
∣
∣ > δε, Nn

j ′ ≥ cK (1 − ε′′)n ∀ j ′
)

. (123)

⊆
{

Y n − Y n
j

n − Nn
j

<
Nn

i R1 + (n − Nn
i − Nn

j )R2

n − Nn
j

− ε′′′
}

⊆
{∣
∣
∣
∣
∣

Y n − Y n
j

n − Nn
j

− Nn
i R1 + (n − Nn

i − Nn
j )R2

n − Nn
j

∣
∣
∣
∣
∣
> ε′′′

}

.

(124)

Similarly, given the event {Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′}, we can

show that
{

Y n − Y n
j

n − Nn
j

> R2

}

⊆
{∣
∣
∣
∣
∣

Y n − Y n
j

n − Nn
j

− Nn
i R1 + (n − Nn

i − Nn
j )R2

n − Nn
j

∣
∣
∣
∣
∣
> ε′′′

}

.

(125)

From (124) and (125), the second and third term in (122) can
then be upper bounded by

P

(
Y n − Y n

j

n − Nn
j

< R′
min , Nn

j ′ ≥ cK (1 − ε′′)n ∀ j ′
)

+ P

(
Y n − Y n

j

n − Nn
j

> R2, Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′

)

≤ 2P

(∣
∣
∣
∣
∣

Y n − Y n
j

n − Nn
j

− Nn
i R1 + (n − Nn

i − Nn
j )R2

n − Nn
j

∣
∣
∣
∣
∣
> ε′′′,

Nn
j ′ ≥ cK (1 − ε′′)n ∀ j ′

)

. (126)

Again, we recognise that (126) can be expressed as the proba-
bility of the deviation of a martingale difference sequence from
zero, which we know can be exponentially bounded using the
martingale concentration bounds of De la Pena [20, Th. 1.2A],
given in (71).

Let us now look at the other terms in (116). The second term
is identically zero, as the left-hand side is always positive.
Arguments similar to those of the first term hold for the
third and fourth terms. For the fifth and sixth terms, the left-
hand sides converge to a constant, while the right-hand side
goes to negative infinity, and thus its straightforward to obtain
exponential bounds for these terms. Similarly, for the seventh
and eight terms, the left-hand side goes to negative infinity at
a logarithmic rate, while the right-hand side goes to negative
infinity at a faster linear rate, and again it is straightforward
to obtain exponential bounds for these terms. This completes
the proof for Lemma 15.

This completes the proof of our main achievability result of
Proposition 7.
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