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EXTENDED ABSTRACT

Different random graph models have been proposed as
an attempt to model individuals’ behavior. Each of these
models proposes a unique way to construct a random
graph that covers some properties of the real-world
networks. In a recent work[4], the proposed model tries
to capture the self-optimizing behavior of the individuals
in which the links are made based on the cost/benefit of
the connection. In this paper, we analyze the asymptotics
of this graph model. We prove the model locally weakly
converges [1] to a rooted tree associated with a branching
process which we named Erlang Weighted Tree(EWT)
and analyze the main properties of the EWT.

The graph construction starts with a complete graph
Kn = ([n], En) and a random function Wn that assigns
positive integers to the nodes and non-negative real
values to the edges of Kn, independently. The value of
the node i is distributed as P (·) and indicates the number
of neighbors that s/he wants to connect to. The value
assigned to each edge is an exponentially distributed
random variable with parameter 1/n that represents the
cost of the edge. Thereafter, each node i selects the
W (i) lowest cost incident edges and declares them to be
preferred edges. The random graph Gn = ([n], Ẽn) is
constructed by keeping the edges of En that is preferred
by both end nodes.

As the first step to analyze the asymptotics of the
random graph model, we prove E(UGn

), where UGn
is

the uniform measure generated by Gn over the space
of rooted graphs, converges weakly to Er(P ), the uni-
modular probability measure associated with EWT. Next,
we derive the main properties of the EWT such as the
probability of extinction, emergence of phase transition,
growth/extinction rate, etc.

The branching process EWT is defined as follows;
let Nf = ∪k≥0Nk, where N0 := φ as a convention.
Each i ∈ Nf is associated with three types of ran-
dom variables: 1)ni which is the potential number of

neighbors of node i, 2)vi which is the mark of node
i, and, 3){ζ(i,j)}ni

j=1 which represents the marks over
the potential links {i, (i, j)} for j ∈ {1, 2, . . . , ni}. The
probability distribution of nφ is given by P ∈ P(Z+)—
which is assumed to have positive finite mean and
P (0) = 0—and the probability distribution of ni for
i ∈ Nf \N0 is given by shifted distribution P̂ ∈ P(Z+),
i.e., P̂ (k− 1) = P (k) for all k ≥ 1. Conditioned on ni,
vi is distributed as Erlang(ni + 1, 1) . Conditioned on
ni and vi, {ζ(i,j)}ni

j=1 are ni independent and uniformly
distributed random variables over the interval [0, vi].
Define a rooted tree T = (V,E, φ,w), rooted at φ, by
putting an edge of length ζ(i,j) between the nodes i and
(i, j) if and only if ζ(i,j) < v(i,j), where the function
w(·) is the mark function that operates over the nodes
and the edges of the tree T ,

w : V → N× R, w(i) = (ni, vi)

w : E → R, w({i, (i, j)}) = ζ(i,j)

The random rooted tree T is called an Erlang Weighted
Tree with potential degree distribution P and the prob-
ability distribution of [T ] in the space of rooted graphs
is denoted by Er(P ). We follow the technique in [2]
to prove the local weak convergence of the finite graph
model to EWT.

Theorem 1 (Local Weak Convergence). The finite graph
model converges to EWT in local weak sense,

E(UGn)
w−→ Er(P )

The EWT has an interdependent structure. As a re-
sult, the degree distribution of different generations are
different. However, conditioned on the type of a node,
its degree is given as follows,

P (Di = d|ni = m, vi = x) =

Bi

(
d;m,

∫ x

0

1

x

∞∑
k=1

P (k)F̄k(y)dy

)
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where Bi stands for binomial distribution,

Bi(d;m,λ) =

(
m

d

)
λd(1− λ)m−d

Next, we demonstrate the existence and uniqueness of
the Perron-Frobenius eigenvalue and left/right eigenfunc-
tions of the one-step growth operator. The approach we
take is introduced by Harris in [3]; however, his results
does not apply to our setting.

Let Ml(x,m;A, k − 1) denotes the expected number
of nodes at depth l of type (z, k−1) for z ∈ A, given the
mark of the root node is (x,m) and let ml(x,m; z, k−1)
denotes its density at z ∈ R. Then the following theorem
holds.

Theorem 2. Assume that the moment generating func-
tion of nφ exists for some small enough θ > 0. Let β0

to be the largest positive zero of the function L(β, 0)
where,

L(β, x) =

∞∑
i=0

Gi(x)

(
−1

β

)i
and the function Gi(x) is defined recursively as follows,

Gi(x) =

∫ ∞
x

∫ ∞
z=y

g2(z)Gi−1(z)dzdy ∀i > 0

G0(x) = 1

Define f0(x) := L(β0, x). Then 0 < β0 < E[nø]− 1 is
the unique eigenvalue of M1 in R. The corresponding
eigenfunctions are given as follows

Right eigenfunction: µ(x,m) =
m

x
f0(x)

Left eigenfunction: ν(z, k − 1) = P (k)
e−zzk−1

(k − 1)!
f0(z)

These eigenfunctions are the unique non-negative eigen-
functions and all the other eigenvalues of M1 are smaller
than β0 in magnitude. Moreover, there exists 0 < ∆ < 1
independent of x, m, z and k such that for all x ∈ R+,
y > 0, k ≥ 1 and m ≥ 0,

ml(x,m; z, k − 1) =

β0
lµ(x,m)ν(z, k − 1)×

(
1 +

O(∆l)

g2(z)f0(z)
2

)
Specifically, as l goes to∞ the density ml(x,m; z, k−1)
converges to β0

lµ(x,m)ν(z, k − 1).

An immediate corollary is that the branching process
extincts whenever β0 ≤ 1 and, it explodes with positive
probability given β0 > 1. However, to get the exact
probability of extinction, more works need to be done.

Theorem 3. The probability of extinction conditioned
on the mark of the root node to be (x,m) is given by,

P ({extinction}) =

∞∑
m=1

P (m)

∫ ∞
x=0

e−xxm

m!
(q(x))mdx

where q(·) is the smallest fixed point of the operator
T : Ω(R+, [0, 1])→ C1(R+, [0, 1]), defined as,

T (f)(x) :=
1

x

∞∑
k=1

P (k)

∫ x

y=0

(∫ y

z=0

e−zzk−1

(k − 1)!
dz

+

∫ ∞
z=y

e−zzk−1

(k − 1)!
f(z)k−1dz

)
dy

Equivalently, the function q(·) is the point-wise limit of
T l(0)(·) as l goes to infinity, where the function 0(·) is
the null function, i.e., 0(x) = 0 ∀x,

q(x) = lim
l→∞

T l(0)(x)
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