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Abstract—This paper presents a case study for the use
of an IoT-driven digital twin for energy optimization in an
automated Surface Mount Technology (SMT) PCB assembly
line containing legacy machines. The line was instrumented
with multiple sensors for measuring machine-wise activity and
energy consumption. A software platform for data aggregation
and a discrete-event digital twin of the line were built entirely
using open-source tools. Based on the insights gained from
data collected over several days, we propose a buffering-based
solution for improving the energy efficiency of the line, and
evaluate its impact using simulations of the digital twin. The
results show that a 2.7x reduction in the energy consumption is
possible via buffer insertion without significantly affecting line
throughput.

Index Terms—Internet-of-Things, Digital Twin, Manufactur-
ing

I. INTRODUCTION

Modern Industry 4.0 era machines will come equipped with
inbuilt sensors and standardized interfaces to provide real-
time information about the machine’s operational state and
performance metrics such as throughput, energy consump-
tion, raw-material consumption patterns, quality of output
and diagnostics information. This machine data will stream
from every networked system on the factory floor. Real-time
analytics will work on the data to help unlock performance
and efficiency improvements as envisioned by the Industry
4.0 revolution [1]. The analytics engine can take the form
of a digital twin of the real networked system. A digital
twin refers to a virtual representation of the real physical
system that mirrors its state and behavior. A digital twin of
the networked factory floor can be used for prediction and
simulation-based optimization studies [2].

In this case study, we consider an SMT PCB assembly
line located at a manufacturing facility in Mysuru, India con-
sisting primarily of legacy machines. The machines provide
very limited real-time performance information over propri-
etary interfaces. The quality of output from these machines
relies on the alertness and skill of human operators. The
throughput is dependent on how quickly drifts in calibration,
exhaustion of raw material and machine faults are identified
and corrected by the operators. The power consumption and
machine-activity patterns are not known as there is limited
information about the machine’s operational state.

With the goal of energy optimization in mind, we have
equipped each of these legacy machines with external sensors
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that monitor the machine’s real-time energy consumption and
operational state. A networked IoT infrastructure consisting
of edge gateway-computers streams data from these sensors
to a middleware platform. The sensor deployment and the
IoT infrastructure details are described in detail in Section
III. Large amounts of data from the sensors were recorded
for a period of 3 months and various statistical techniques
were used for inferring the machine state from multiple
sensing modalities. The insights gained from the data are
summarized in Section IV. In Section V we describe a
digital twin of the assembly line built using an open source
discrete-event simulation library. The digital twin was used
for performing “what if” analysis of various process and
configuration options. Based on the insights gained about the
throughput bottlenecks and the energy consumption profile in
the line, we propose a buffering-based solution for reducing
the energy consumption in the line and evaluate its impact
using simulations of the digital twin. The simulation results
are presented in Section VI. We observe that up-to 2.7x
reduction in the average energy consumption is possible via
buffer insertion. In summary, this case study demonstrates the
application of an IoT framework and digital twin technology
for process optimization in assembly lines containing legacy
machines.

II. RELATED WORK

The use of discrete-event simulation for process optimiza-
tion in the SMT PCB assembly process has been reported in
the past [3]–[6]. In the absence of real-time data streaming
from the assembly line, the model needs to be quite detailed
in order to get reasonably accurate estimates for the cycle
time and other performance measures. For instance, the
processing delays for each machine are highly dependent on
the particular PCB design, including the exact number and
types of components to be placed, the position and type of
component feeders in the placement machine, the stock levels
of consumables, etc. On the other hand, a digital twin driven
by data measured from the real assembly line can be modelled
at a coarser level. For instance, the processing delays can be
specified simply as a distribution. Not only is such a model
easier to specify, but it can accommodate factors that are
outside the cognizance of the operator, such as delays due
to manual inspection, breakdowns, etc. Further, the model
parameters can be kept continuously in sync with the state
of the real assembly line. Case studies for the use of IoT-
based digital twins in manufacturing have been described in
[7], [8] and [9]. In this paper we describe the insights gained
from data and the utility of a digital twin in an SMT PCB
assembly process.

2018 International Conference on Internet of Things and Intelligence System (IOTAIS)

978-1-5386-7358-4/18/$31.00 ©2018 IEEE 85



Pick & 
Place 1

Pick & 
Place 2

Reflow OvenScreen
Printer

Line
Loader

Sensor Key

Proximity sensor

Vibration sensor

Energy meter

Fig. 1. Schematic of the SMT PCB assembly line and the location of sensors deployed.

III. THE IOT FRAMEWORK AND DEPLOYMENT

A typical configuration for an SMT assembly process
consists of the following automated machines connected in
sequence: A Line Loader loads PCBs one-by-one from a
stack onto the conveyor belt. A Screen Printer performs
application of the solder paste onto the board. Pick and
Place machines select individual components from reels and
place them onto the board. The boards are then forwarded to
the Reflow Oven which consists of a conveyor belt moving
inside a heated chamber. Here, the solder paste melts to form
contacts.

A schematic of the assembly line chosen for this case study
is shown in Fig. 1. An IoT framework consisting of sensors,
edge gateways and a middleware platform was developed
and deployed on the factory floor to enable real-time data
streaming and offline analytics on a remote cloud. The posi-
tions of the sensors deployed onto the line are also indicated
in Fig. 1. Energy meters (comprising 3-phase VAF meters
and current transformers) were deployed for measuring the
instantaneous power drawn by each machine. A three axis
vibration sensor (developed in-house) was attached to the
body of each machine. The vibration signatures were used
along with the energy meters for identifying the operational
states and the corresponding power drawn in each machine.
IR-based Proximity sensors were placed at the entry and exit
of every machine to detect the flow of PCBs. The vibration
data was sampled at 75 Hz whereas a sampling rate of 1
Hz was used for the energy meter. The non-intrusive nature
of these sensors allowed for their seamless deployment on a
fully operational line.

The sensors communicate with edge gateways which are
single board computers (Raspberry Pi Zero W+). The gate-
ways support multiple interfaces such as MODBUS, I2C
and BLE for communication with the sensors. Our edge
gateway architecture has provisions for time synchronization
and data stream buffering. An NTP service helps synchronise
the clocks of all the IoT gateways to the accuracy of a few
milliseconds. Each gateway runs an MQTT broker service
using the open source Eclipse Mosquitto broker. The sensor
data samples arriving at the gateway are timestamped and
buffered, and then forwarded to a middleware layer over a
dedicated WiFi network using REST APIs. The middleware
layer consists of an ElasticSearch database hosted on a server-
grade system located inside the factory. The middleware acts
like an immediate data sink for the gateways and regularly

synchronises the local copy of the sensor data with the data
stored on the cloud for analysis.

IV. INSIGHTS FROM DATA

Sensor data was used for identifying operational states in
each of the machines. The data revealed causal relationships
among machines on the serial assembly line, with each
individual machine cycling through distinct states. As an
example, Fig. 2 presents a snapshot of the time-series data
recorded from the Line Loader’s vibration sensor and the
Screen Printer’s RMS current sensor. The operational states
were identified using window-based variance and threshold-
ing of the streaming data. The Screen Printer is seen to cycle
through three distinct states, namely printing, cleaning and
idling. The cleaning operation is seen to occur periodically
after printing two boards. Using the automated state identifi-
cation, average values for the duration and the power drawn
in each state were measured for each of the machines. These
values were then plugged in as parameters in the discrete-
event digital twin for simulations. The data also revealed the
production shifts and the usage patterns for the machines.
For example, the Reflow oven was found to be turned off
only on non-working days. Analysis of data collected over
several days showed that the Reflow oven clearly accounts
for the largest fraction of energy consumed among all the
machines in the line. On an average, the Reflow oven was
seen to account for more than 85% of the total energy
consumption in each production period. A comparison of
the average processing latencies for each of the machines
revealed that the Pick and Place operation is typically the
throughput bottleneck in the line.

V. A DISCRETE-EVENT DIGITAL TWIN OF THE SMT-PCB
ASSEMBLY LINE

We have built a detailed, parameterized model of the
assembly line using SimPy [10], a discrete-event simulation
library in Python. The model is open source and freely
available at [11]. Individual machines, conveyor belts and
human operators in the line are modelled as SimPy processes
and PCBs are modelled as passive objects flowing between
the machines over the conveyor belts. The behavior of each
machine is defined by the set of states that it can be in (for
example, idle, waiting to output, processing/printing) and the
transitions between them. Some of the machines also have
consumables (for example, solder paste or component reels).
A human operator is interrupted whenever the level of a
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Fig. 2. Identification of the operational states in the Screen Printer using
data from the vibration and current sensors. The detected states are indicated
using red and blue regions in the plot. The printer is seen to cycle through
cleaning, printing and idle states.

consumable falls below a set threshold and the machine stalls
until the consumable is refilled. The frequency and duration
of the refill operations, the state-wise processing delays and
power ratings for each machine, and the conveyor belt speeds
are some of the model parameters. The parameter values are
set to correspond to the sensor data from the real line over a
specified time interval. For the simulation-based optimization
results presented in this paper, the parameter values were set
to match the line data over a period of three days.

Each simulation run generates a detailed activity log along
with aggregate performance measures such as the average
cycle-time and energy consumption per-PCB, average system
throughput, and machine-wise utilization and energy profiles.
The model has been validated by comparing the aggregate
performance measures predicted by the model to those in-
ferred from the real line data. A cross-platform graphical
user interface (GUI) for the model has been implemented
using Kivy, an open-source Python framework for interactive
application development. Fig. 3 presents some screenshots
of the simulator. The GUI is targeted for use by the factory
floor-manager for prediction and what-if analyses, whereas
a text-based parameter setup can be used for the automated
optimization runs.

VI. ENERGY OPTIMIZATION VIA BUFFERING

From the data collected over several days we observe
that the Reflow oven alone accounts for more than 85%
of the total energy consumption. However the throughput
bottleneck in the line is often the Pick and Place operation
which has the highest latency. Each Pick and Place machine

Fig. 3. Screenshots of the simulator’s GUI. The simulator is available for
download at [11].

can process only a single PCB at a time. As a result, the
arrival rate of PCBs at the entry of the Reflow oven is much
lower than the maximum rate that it can support. Thus the
Reflow oven remains powered-on, yet unutilized for a large
fraction of the time. This is, in-fact a common concern in
high-mix low volume production lines. To address this, some
Reflow oven manufacturers provide additional energy-saving
(sleep/hibernate) modes in recent designs.

However, for assembly lines containing legacy machines,
the energy efficiency of the Reflow oven remains a concern.
For such lines, buffering may help improve the utilization
of the Reflow oven thereby improving the energy efficiency.
PCBs can be buffered after the Pick and Place operation
and sent through the Reflow oven in a burst. While the
buffer fills up, the Reflow oven can remain powered off, thus
improving the energy efficiency of the line. Fig. 4 shows the
configuration of the assembly line with buffering introduced
between the Pick and Place and Reflow operations. The
buffering module consists of vertical stacks for holding the
PCBs, and capability for automatic loading and unloading
of the PCBs one at-a-time. Vertical PCB buffering modules
suited to such a purpose are available from major SMT
equipment manufacturers.

We perform simulations of the digital twin to evaluate
the impact of such a buffering-based solution on the en-
ergy consumption and the throughput of the line. For this
evaluation we consider two types of buffering schemes: a
single buffering scheme and a double buffering scheme. For
each scheme, the buffer-size (that is, the maximum number
of PCBs that can be stored in the buffer) is an optimization
parameter.

2018 International Conference on Internet of Things and Intelligence System (IOTAIS)

978-1-5386-7358-4/18/$31.00 ©2018 IEEE 87



OPERATOR

COMPONENT REELS

REFLOW OVEN

PCB
STACK

SINK

CONVEYOR
BELT

REFILL

BUFFER

SOLDER  ADHESIVE

SOURCE
LINE

LOADER
SCREEN
PRINTER

PICK AND
PLACE

1

PICK AND
PLACE

2

Fig. 4. SMT-PCB assembly line configuration with buffering.

In the single buffering scheme, the buffering module
consists of a single stack that can hold at-most N PCBs. The
module can be in one of two modes: filling and emptying.
In the filling mode the buffer accepts PCBs leaving the Pick
and Place machines and stores them onto the stack. When
the buffer is full, it enters the emptying mode and entry of
PCBs from upstream is blocked. The Reflow oven is turned
ON and PCBs already stored onto the stack are then unloaded
one-by-one and sent to the Reflow oven. When the stack is
empty, the oven is turned OFF and the cycle repeats. Thus,
in the single-stage buffering, the throughput is limited as the
entry of items into the buffer is blocked while the buffer is
emptying.

In the double buffering scheme, the buffering module
consists of two stacks, each of capacity N . PCBs leaving
the Pick and Place machine fill up into the input-side stack
while PCBs already stored on the output-side stack can
be simultaneously unloaded towards the Reflow oven, thus
allowing for a higher throughput. Whenever the input-side
stack is full and the output-side stack is empty, the positions
of the two stacks are interchanged. Thus the entry and exit
of PCBs from the buffer can occur simultaneously, leading
to a higher throughput. In fact, the use of double-buffering
for decoupling the input and output has been widely used in
domains such as computer graphics.

For SMT PCB assembly, there are a few factors which limit
the extent of buffering possible in a line. The tack time for
a PCB refers to the maximum time that can elapse between
the placement and the Reflow operations for reliable contact
formation. The tack time depends largely on the composition
of the solder paste and typically varies between 8 to 24 hours.
Introduction of a buffering module can increase the cycle
time but must not violate the limit on the tack time. As a
conservative limit, we assume that the total cycle time for
a PCB must not exceed six hours. Further, the buffer has a
limited capacity (typically varying between tens to hundreds
of items). In addition, each time the Reflow oven is turned off
and then turned on again, it incurs a setup delay. Whenever
the oven is turned off, its temperature decays with time (in
a manner governed by Newton’s law of cooling). When it
is turned on again, the setup time depends on the difference
between the current and the preset oven temperatures. The

No Buffering

Single Buffering (N=128) Double Buffering (N=128)

OFF
setup
ON_empty

ON_occupied

Fig. 5. Fraction of time spent by the Reflow Oven in each of its states.

total amount of time spent in the setup state must not be
very large as the setup state draws a large current and this
may offset the energy savings. We consider all of the above
constraints and limitations during simulations for evaluating
the impact of buffering.

We perform simulations with varying buffer sizes (N ) and
compare the performance measures to those obtained for
the original (unbuffered) line. Each simulation is run until
a single batch (of 1024 PCBs) is processed completely. For
each simulation, we assume that the buffer size N is fixed and
is a power of two. The simulation results are listed in Table
I. We observe that the energy consumption drops and the
cycle time increases with increasing buffer capacity (N ). The
constraint on cycle time (maximum cycle time ≤ 6 hours) is
satisfied for N ≤ 128. Thus at N = 128 indicated by the
shaded rows, a reduction in the energy consumption of about
2.3x is seen for the single buffering scheme and 2.7x for the
double buffering scheme. In the single buffering case, the
reduction in energy is achieved at the cost of a 20% drop
in the system throughput, whereas in the double buffering
case the throughput remains largely unaffected. In Fig. 5 we
plot the fraction of the total production time spent by the
Reflow oven in each of its states (OFF, SETUP and ON)
in the original as well as the buffered line. The buffering
eliminates the time spent in the ON and unutilized state, but
also increases the fraction of the time spent in the setup state.
The net effect however is a significant reduction in the total
energy consumption.

A further optimization possible, is to overlap in time the
setup of the Reflow oven with the filling up of the buffer.
In this scheme, the buffer is used as before, but the Reflow
oven is turned on as soon as the buffer accumulates N − k
items (where k ∈ {0, 1, 2, . . . , N−1} is some fixed constant).
Thus the time taken for the buffer to accumulate k more
items to become completely full overlaps with the setup time
for the Reflow oven. For the double buffering scheme and a
fixed buffer size (N = 128) we plot the average energy and
throughput as a function of k in Fig. 6. The optimum value
for k is found to be 24 in this case, indicating that for the
current line configuration the Reflow oven should be turned
on as soon as the input-side buffer accumulates 104 items
out of its capacity of 128.
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TABLE I
SIMULATION RESULTS SHOWING THE EFFECT OF BUFFERING ON THE
AVERAGE THROUGHPUT AND ENERGY CONSUMPTION IN THE LINE.

Buffer
capacity
per-stage

(N)

Avg
Energy

per-PCB
(kJ)

Avg
throughput

(PCBs
per-hour)

Avg
cycle-time
per-PCB
(hours)

Max
cycle-time
per-PCB
(hours)

No Buffering
2,427.29 40.35 0.74 1.62

Single Buffering
4 1,411.65 40.17 0.81 1.74

8 1,328.58 40.10 0.90 1.88

16 1,438.52 34.10 1.22 2.05

32 1,463.27 30.88 1.67 2.55

64 1,316.22 30.68 2.31 3.59

128 1,042.13 32.21 3.32 5.47

256 736.76 34.64 5.03 8.90

512 516.00 36.73 8.24 15.43

1024 396.82 37.98 14.67 25.59

Double Buffering
4 1,384.90 40.31 0.82 1.75

8 1,298.07 40.40 0.89 1.70

16 1,232.62 40.58 1.06 1.60

32 1,157.41 40.96 1.36 1.83

64 1,060.68 40.91 1.94 2.60

128 910.05 40.33 3.03 4.28

256 688.54 39.68 4.88 7.59

512 487.61 39.01 8.19 13.80

1024 373.14 37.98 14.67 25.59

0 5 10 15 20 25 30
Reflow oven turn-ON threshold k

909

910

911

912

913

914

915

916

917

918

A
v
g
 E

n
e
rg

y
 p

e
r-

P
C

B
 (

kJ
)

40.2

40.4

40.6

40.8

41.0

41.2

41.4

41.6

A
v
g
 t

h
ro

u
g
h
p
u
t

Avg energy per PCB
Avg Throughput

Fig. 6. A plot of the average energy consumed per-PCB and the system
throughput as a function of the Reflow-oven turn-on threshold K for the
double buffering scheme with N = 128.

VII. CONCLUSIONS

This paper presented a case study for the deployment of
an IoT framework in an SMT PCB assembly line containing
legacy machines. Multiple sensors were installed on the line
for measuring machine-wise activity and energy consumption
profiles. A data aggregation platform and a discrete-event
digital twin of the line were built entirely using open source
tools. Data collected from the line over several days provided

insights into the performance bottlenecks and the energy
consumption patterns in the line. Based on these insights,
we proposed a buffering-based solution for improving the
energy efficiency and evaluated its impact using simulations
of the digital twin. The simulations predicted a 2.7x reduction
in the average energy consumption achievable via buffer
insertion without significantly affecting the line throughput.
The current limitations of this framework are that the sensor
data is collected at a high sampling rate, but the machine state
estimation is performed remotely on the raw data sent over
a network. In future, the machine state inference could be
implemented at the edge node itself so that only the processed
information is sent to the cloud. Further, a variable sampling
rate for the sensor data needs to be supported, so that the
sampling rate could be adjusted as per the requirements
dictated by the application.
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