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ABSTRACT

The problem of identifying an anomalous arm from a set
of K arms, with fixed confidence, is studied in a sequen-
tial decision-making scenario. Each arm’s signal follows a
distribution from the vector parameter exponential family.
The actual parameters of the anomalous and regular arms
are unknown. Further, the decision maker incurs a cost for
switching from one arm to another. A sequential policy based
on a modified generalised likelihood ratio statistic is pro-
posed. The policy, with a suitable threshold, is shown to
satisfy the given constraint on the probability of false detec-
tion. Further, the proposed policy is asymptotically optimal
in terms of the total cost among all policies that satisfy the
constraint on the probability of false detection.

Index Terms— conjugate prior, hypothesis testing, se-
quential analysis, search problems, switching costs.

1. INTRODUCTION

We consider the problem of detecting an anomalous arm from
a set of K arms of a multi-armed bandit under a fixed confi-
dence setting, i.e., with a constraint on the probability of false
detection. Each arm follows a distribution from the vector ex-
ponential family parameterised by the natural vector parame-
ter 7. As the name suggests, all arms except the “anomalous”
one have the same parameter. The actual parameters of the
anomalous and regular arms are unknown. At each succes-
sive stage or round, the decision maker chooses exactly one
among the K arms for observation. The decision maker also
incurs a cost whenever he switches from one arm to another.
The goal is to minimise the overall cost of expected time for
a reliable decision plus total switching cost, subject to a con-
straint on the probability of false detection. The above serves
as a model of how one acquires data during a search task [1].
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A commonly used test in such problems with unknown
parameters is the generalised likelihood ratio test (GLRT) [2].
In our case, taking a cue from [3], we use a modified GLRT
approach where the numerator of the statistic is replaced by
an averaged likelihood function. The average is computed
with respect to an artificial prior on the unknown parameters.
The modified GLRT approach allows us to use a time invari-
ant and a simple threshold policy that meets the constraint on
probability of false detection.

Our interest in the exponential family is for three reasons.

It unifies most of the widely used statistical models
such as normal, Binomial, Poisson, and Gamma dis-
tributions.

* The generalisation forces us to rely on, and therefore
bring out, the key properties of the exponential family
that make the analysis tractable. These include the use-
fulness of the convex conjugate (or convex dual) of the
log partition function, the existence of easily amenable
formulae for relative entropy, and the usefulness of the
conjugate prior in the analysis.

* The existence of conjugate priors enables extremely
easy posterior updates. This is of great value in prac-
tice.

1.1. Related work

In [1], the authors have considered the anomalous arm iden-
tification problem with switching costs, but the statistics of
the observations were assumed to be known and Poisson-
distributed. In [3], the authors have considered a learning
setting where the parameters of the Poisson distribution were
not known but the switching costs were not taken into ac-
count. This work provides a significant generalisation of
the results in [3] to the case of a general vector exponential
family. This work also analyzes the effect of switching cost
on search complexity in the presence of learning, thereby ex-
tending the results in [1] where the parameters were assumed
known. For connections to, and limitations of, the works
of Chernoff [4] and Albert [5], see [3, Sec. I-A]. A longer
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version of our paper is available in [6].

1.2. Our contributions

¢ We provide a significant generalisation of the anoma-
lous arm identification problem in [3], which dealt with
the special case of Poisson observations, to the case of
general vector exponential family observations.

* We modify the policy in [3] to incorporate switching
costs based on the idea of slowed switching in [1], [7]
and [8].

* We show that the proposed policy, which incorporates
learning, is asymptotically optimal even with switching
costs; the growth rate of the total cost, as the probabil-
ity of false detection and the switching parameter are
driven to zero, is the same as that without switching
costs.

* We provide a method to verify an assumption that each
arm is sampled at a nontrivial rate. Our rather gen-
eral approach here, compared to [3], provides a simple
proof of such a result for Poisson observations.

2. PRELIMINARIES

2.1. Vector exponential family basics

A probability distribution is a member of a vector exponential
family if its probability density function (or probability mass
function) can be written as

f(xln) = h(z)exp (n" T(x) = A(m) Ve, (D)

where 7 is the natural vector parameter of the family, n € R?
for some d > 0 (or m is in some open convex subset of
RY), T(x) € R? is the sufficient statistic for the family, and
A(m) : m — R is a convex function known as the log par-
tition function. The exponential family can also be parame-
terised using the expectation parameter defined as k(n) =
En[T(z)] = V,A(n) whenever A(-) is continuously differ-
entiable.

Define F (k) as the convex conjugate of A(n) evaluated
at an arbitrary K given by

F () := sup {n"r — A(n)}.
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Since A(+) is convex, we can recover .A(+) as the convex con-
jugate of F(-). We assume henceforth that F(-) and A(-)
are twice continuously differentiable at all points where they
are finite. Optimising (2) over 7, we get that the optimis-
ing n satisfies k(1) = V,.A(n) which is the expectation pa-
rameter evaluated at 7). Similarly, optimizing A(n), we get
n(k) = VF(k). Thus, the optimising 7 and k are dual to
each other and are in one-one correspondace. From [9, Sec-
tion 3.3.2], we get

F(k)+Am) =n"k )
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The expressions for the Kullback-Leibler (KL) divergence or
relative entropy in terms of the natural parameter and in terms
of the expectation parameter using (3) are

D (n4(In2) D (f(-[m)If(-[n2))
(m —m)" k1 — A(my) +A(ny) @)
(k2 — K1)" My + F (k1) = F (K2) .(5)

2.2. Problem model

Let K > 3 be the number of arms available to the decision
maker. Let the triplet ¢» = (i,1,,75) denote the configura-
tion of the arms, where the first component is the index of
the anomalous arm, the second and the third components are
the natural parameters of the anomalous and regular arms, re-
spectively. We assume 7, # 1,. Let P (K) be the set of
probability distributions on {1,2,..., K}.

Let IT («) be the set of admissible (desirable) policies that
meet the following constraint on the probability of false de-
tection:

H(O{) = {ﬂ— : P((S ?é 7’|¢ = (i7771;772)) S a,
Vi) such that n, # ny},

with ¢ being the decision made when the algorithm stops. We
define the stopping time of the policy as

(6)

7(7) :=inf{n > 1: A, = (stop,-)}, (7)
where A,, is the action taken by the policy at any stage n: A,
has two components (continue, -) or (stop,-). In the former
case, the second argument indicates the arm to sample; in the
latter case, it indicates the decision. The total cost will be
the sum of the accumulated switching costs and the delay in
arriving at a decision as in [7].

3. LOWER BOUND

A lower bound on the expected stopping time for any policy
that satisfies the constraint on probability of false detection
for the anomalous arm detection problem is given in the fol-
lowing proposition.

Proposition 1. Fix a with0 < « < 1. Let ) = (i,m1,m5) be
the true configuration. For any € II (a), we have

< dp (0,1 — )

Blrlv] = D* (i,m1,M2)

®)

where dy, (o, 1 — &) is the binary relative entropy function
and D* (i,my,m5) is defined as

DGm,me) = max (A@Dmln)+ O
K =2 _
(1=2G6) 7D mall?) |-



with for a suitable normalisation H (7, ng).
A(@) k1 + (L= X (i) K3 ko
M)+ (L= (0) 5=

Also, the )\ that maximises the expression in (9) is of the form

1 =mn(K) and k = (10)  4.1. Modified GLR statistic
The modified GLR is defined as

f(X™ A" H =)

A (4,my,m2) (4) = {1—,\*(1',;1,7722)(1) ., D i () gf (X7, An|H = j) 13
I 7 I ifj#i. 2 (T n )
5 100
As the constraint on the probability of false detection - log{,H (Y} +7,N"+ ﬂo)}
approaches zero, & — 0, we have dp, (o, 1 — «) /log (o) — ! ’ ;_[( )
—1. Hence, we get that the conditional expected stopping +log { _ ! T,M0 _ }
time of the optimal policy scales at least as — log («t) /D* (4,11, 15). HY" = Y] +7,n = NP +n0)
The quantity D* (i,m,,n,) thus (characteri)ses the “complex- —il (5) Y[ + NIA(R (7)) — 72 (j)T (Y" - Y?)
ity” of the learning problem at (i,71;,7,). A proof of the — N A (o (i 14
result may be found in the longer version of our paper [6]. * (n J ) (2 (7)) (14
Corollary 2. We have E[C () |¢] > % . where f is the average likelihood function at time n, averaged

] o over the conjugate prior in (12) over all configurations with

Proof. With the switching costs added, we have C(m) 2 H =and f is the maximum likelihood of observations till

7 (), and the corollary follows from Proposition 1. O time n under H — j. Let Zi(n) := min Z;;(n) denote the
J#i

A closed form expression for \*(i,7,,75) is not yet — modified GLR of i against its nearest alternative.
available. Hence, we make the following assumption.

Assumption 3. Fix K > 3. Let \* maximise (9). There 4.2. The policy 7sar (L,7)

exists a constant cxc € (0,1), independent of (i,my,my) but g 1 > 1and 0 < v < 1. We now define the ‘Sluggish,

dependent on K, such that \* (k,m,,m,) (j) = ¢ > 0for  \1o46 4 GLR’ poli )
' c L, ) as follows:
allj € 1,2,...,K and for all (i,m,,n5) such that 1, # 1. ocue policy s (L, ) as follows

At time n:

In [6], we show that the assumption holds true for a wide e Let i* (n) = argmax; Z; (n), an arm with the largest
range of members from the exponential family. The assump- modified GLR at time n. Resolve ties uniformly at ran-
tion suggests that a policy based on A\*(i,m,,7,) samples dom.
each arm at least cx fraction of time independent of the o If Zj« () <log ((K — 1) L) then choose A,,; 1 via:
ground truth. In case Assumption 3 does not hold, we could — Generate U, a Bernoulli(y) random variable
use a sampling policy with a forced exploration component independent of all other random variables with
as in [10] along with the modified GLRT approach. v > 0.

- If Un+1 = 0, then An+1 = An.
4. PROPOSED POLICY - If U,4+1 = 1, then sample A, 1 according to the
probability distribution

Let NJ’»L denote the number of times the arm j was chosen for A (7 (), 07 (i (n)), 03 (% (n))) .
observation up to time n, i.e., N' = >t 1 l{a,=j}, where o If Zj- () > log ((K — 1? L) stop and declare i* (n) as
A, is the arm chosen at time ¢. Clearly, we also have n = the anomalous arm location.
Zfil N}'. Let Y7 denote the sum of the sufficient statistic of
arm j up to time n, i.e..Y; = Sy T(Xe)l{a,—j3 Let Y" 5. ANALYSIS OF THE PROPOSED POLICY
denote the total sum of the sufficient statistic of all arms up to
time n, i.e., Y' = Zf: L Y;L. The steps in this section verify that the proposed policy

When the parameters are unknown, a natural conjugate  Stops in finite time (Proposition 4), belongs to the desired
prior on 77, (j) and 17,(j) enables easy updates of the poste-  set of policies (Proposition 5), and is asymptotically optimal

rior distribution based on observations. The conjugate prior  (Proposition 6). Detailed proofs of these results are provided
is taken to be a product distribution with each marginal once  in the longer version of this paper [6, Appendix B]
again coming from an exponential family of the same form

Proposition 4. (Stoppage) Fix the threshold parameter L >
and characterised by the hyper-parameters T and ny, i.e., P (Stoppase) P "

1. Policy wgpr (L, ) stops in finite time with probability 1,
fW=0m ). n: () H =j) that is, P (7 (s (L, 7)) < 00) = 1.
= H(r,no)exp{r n, (j) — noA(n, (j))} Proposition 5. (Admissibility) Fix c. Let L = 1/ov. We then
xH (1, 10) exp{r"n, () = noA(n, ()}, (12)  have wsar (L,7) € IL(a).
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Fig. 1: Performance of wgs (L, y) for Gaussian distribution with unknown means and unknown variances.
p1=0,0? =2, 0 =1,03 =10, K =8, gmaz = 1 and D* = 0.1653.

Proposition 6. (Achievability) Consider policy wsas (L, 7).
Let ¢ = (i,m,,m5) be the true configuration. Then,

Jim sup — (msar (L,7) 1 a3
L—oco lOg (L) - D* (i7771a772)
i Elr (rsm (L, 7)) [¢] 1
s < 16
lzn_i)lip IOg (L) T D (Zv Ui T]2) 7 ( )
and, furthermore,
Loee IOg (L) B D* (Zv T’la 772) .

With these ingredients, we next state the main achievabil-
ity result.

Theorem 7. Consider K arms with configuration
(i,m1,my). Let (a(”))n>1 be a sequence of tolerances such

that lim o™) = 0. Then, for each n, the policy Tsns (L, )

n—oo

with L, = l/a(”) belongs to 11 (a(">). Furthermore,
E
liminf  inf M (18)
n—0o00 WGH(a(")) IOg (Ln)
=t EC sy L)l 1
710 n—o0 log (L) D* (i,m1,m2)

Here, we discuss the proofs briefly. We first show that un-
der the true configuration, the test statistic has a positive drift
and therefore crosses the threshold log((K — 1)L) in finite
time almost surely, thereby proving the result in Proposition
4. To prove admissibility in Proposition 5, we use elementary
change of measure properties and the result that the policy
stops and makes the decision when the statistic crosses the
threshold. The use of the modified GLR statistic as opposed
to the conventional GLR statistic simplifies this proof. For
Proposition 6, we show that the positive drift of the statistic
under the true configuration is equal to D*(i,1,75). This
relies on the convergence of the estimated parameters and the
estimated anomalous arm location to the true values, some-
thing that is also proven along the way. The proof of Theorem
7 then follows from Propositions 1, 5 and 6.
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6. SIMULATION RESULTS

Fig.1 shows (a) the empirical average delay versus log(L) for
different values of v, (b) the empirical average total cost (de-
lay+switching costs) versus log(L) for different values of -y
and (c) the ratio of empirical average total cost to log(L)
versus <y averaged over 500 independent runs for the vec-
tor parameter Gaussian (both mean, variance unknown). The
switching parameter in (a) and (b) is varied from 0.1, which
corresponds to the sluggish implementation, to 1 when the
policy switches according as per sampling strategy at each
stage. As expected, we can observe that, in both (a) and
(b), the slopes for policy match the slope of the lower bound,
thereby validating the asymptotic optimality of the policy. In
(c), as log(L) — oo, the ratio of empirical average total cost
to log(L) approaches the lower bound.

Also observe that in (a) for smaller values of ~, the aver-
age delay in arriving at a decision increases (due to low explo-
ration) whereas, in (b) as -y decreases, the total cost decreases
due to reduced switching (v around 0.4 to 0.5 seems to be
the best choice in this case). But, as v | 0, policy becomes
sluggish and requires more number of samples in making a
decision, thereby resulting in an increased total cost as seen
in (b). More simulation results for other distributions from the
vector exponential family can be found in [6, Section VII].

7. CONCLUSION

We considered the problem of detecting an anomalous arm
when the distributions are from a general vector exponential
family. The parameters of the distributions are unknown. A
sequential policy based on the modified GLR statistic was
proposed. We showed that the proposed policy, which in-
corporates learning, is asymptotically optimal in terms of the
total cost among all policies that satisfy a upper bound con-
straint on the probability of false detection.
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