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ABSTRACT

The problem of identifying an anomalous arm from a set
of K arms, with fixed confidence, is studied in a sequen-
tial decision-making scenario. Each arm’s signal follows a
distribution from the vector parameter exponential family.
The actual parameters of the anomalous and regular arms
are unknown. Further, the decision maker incurs a cost for
switching from one arm to another. A sequential policy based
on a modified generalised likelihood ratio statistic is pro-
posed. The policy, with a suitable threshold, is shown to
satisfy the given constraint on the probability of false detec-
tion. Further, the proposed policy is asymptotically optimal
in terms of the total cost among all policies that satisfy the
constraint on the probability of false detection.

Index Terms— conjugate prior, hypothesis testing, se-
quential analysis, search problems, switching costs.

1. INTRODUCTION

We consider the problem of detecting an anomalous arm from
a set of K arms of a multi-armed bandit under a fixed confi-
dence setting, i.e., with a constraint on the probability of false
detection. Each arm follows a distribution from the vector ex-
ponential family parameterised by the natural vector parame-
ter η. As the name suggests, all arms except the “anomalous”
one have the same parameter. The actual parameters of the
anomalous and regular arms are unknown. At each succes-
sive stage or round, the decision maker chooses exactly one
among the K arms for observation. The decision maker also
incurs a cost whenever he switches from one arm to another.
The goal is to minimise the overall cost of expected time for
a reliable decision plus total switching cost, subject to a con-
straint on the probability of false detection. The above serves
as a model of how one acquires data during a search task [1].
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A commonly used test in such problems with unknown
parameters is the generalised likelihood ratio test (GLRT) [2].
In our case, taking a cue from [3], we use a modified GLRT
approach where the numerator of the statistic is replaced by
an averaged likelihood function. The average is computed
with respect to an artificial prior on the unknown parameters.
The modified GLRT approach allows us to use a time invari-
ant and a simple threshold policy that meets the constraint on
probability of false detection.

Our interest in the exponential family is for three reasons.
• It unifies most of the widely used statistical models

such as normal, Binomial, Poisson, and Gamma dis-
tributions.

• The generalisation forces us to rely on, and therefore
bring out, the key properties of the exponential family
that make the analysis tractable. These include the use-
fulness of the convex conjugate (or convex dual) of the
log partition function, the existence of easily amenable
formulae for relative entropy, and the usefulness of the
conjugate prior in the analysis.

• The existence of conjugate priors enables extremely
easy posterior updates. This is of great value in prac-
tice.

1.1. Related work

In [1], the authors have considered the anomalous arm iden-
tification problem with switching costs, but the statistics of
the observations were assumed to be known and Poisson-
distributed. In [3], the authors have considered a learning
setting where the parameters of the Poisson distribution were
not known but the switching costs were not taken into ac-
count. This work provides a significant generalisation of
the results in [3] to the case of a general vector exponential
family. This work also analyzes the effect of switching cost
on search complexity in the presence of learning, thereby ex-
tending the results in [1] where the parameters were assumed
known. For connections to, and limitations of, the works
of Chernoff [4] and Albert [5], see [3, Sec. I-A]. A longer
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version of our paper is available in [6].

1.2. Our contributions

• We provide a significant generalisation of the anoma-
lous arm identification problem in [3], which dealt with
the special case of Poisson observations, to the case of
general vector exponential family observations.

• We modify the policy in [3] to incorporate switching
costs based on the idea of slowed switching in [1], [7]
and [8].

• We show that the proposed policy, which incorporates
learning, is asymptotically optimal even with switching
costs; the growth rate of the total cost, as the probabil-
ity of false detection and the switching parameter are
driven to zero, is the same as that without switching
costs.

• We provide a method to verify an assumption that each
arm is sampled at a nontrivial rate. Our rather gen-
eral approach here, compared to [3], provides a simple
proof of such a result for Poisson observations.

2. PRELIMINARIES

2.1. Vector exponential family basics

A probability distribution is a member of a vector exponential
family if its probability density function (or probability mass
function) can be written as

f (x|η) = h (x) exp
(
ηTT(x)−A (η)

)
∀x, (1)

where η is the natural vector parameter of the family, η ∈ Rd
for some d > 0 (or η is in some open convex subset of
Rd), T(x) ∈ Rd is the sufficient statistic for the family, and
A (η) : η → R is a convex function known as the log par-
tition function. The exponential family can also be parame-
terised using the expectation parameter defined as κ(η) :=
Eη[T(x)] = ∇ηA (η) whenever A(·) is continuously differ-
entiable.

Define F(κ) as the convex conjugate of A(η) evaluated
at an arbitrary κ given by

F (κ) := sup
η∈Rd

{ηTκ−A (η)}. (2)

SinceA(·) is convex, we can recoverA(·) as the convex con-
jugate of F(·). We assume henceforth that F(·) and A(·)
are twice continuously differentiable at all points where they
are finite. Optimising (2) over η, we get that the optimis-
ing η satisfies κ(η) = ∇ηA(η) which is the expectation pa-
rameter evaluated at η. Similarly, optimizing A(η), we get
η(κ) = ∇κF(κ). Thus, the optimising η and κ are dual to
each other and are in one-one correspondace. From [9, Sec-
tion 3.3.2], we get

F (κ) +A (η) = ηTκ (3)

The expressions for the Kullback-Leibler (KL) divergence or
relative entropy in terms of the natural parameter and in terms
of the expectation parameter using (3) are

D (η1||η2) := D (f(·|η1)||f(·|η2))

= (η1 − η2)
T
κ1 −A (η1) +A (η2) (4)

= (κ2 − κ1)
T
η2 + F (κ1)−F (κ2) . (5)

2.2. Problem model

Let K ≥ 3 be the number of arms available to the decision
maker. Let the triplet ψ = (i,η1,η2) denote the configura-
tion of the arms, where the first component is the index of
the anomalous arm, the second and the third components are
the natural parameters of the anomalous and regular arms, re-
spectively. We assume η1 6= η2. Let P (K) be the set of
probability distributions on {1, 2, . . . ,K}.

Let Π (α) be the set of admissible (desirable) policies that
meet the following constraint on the probability of false de-
tection:

Π (α) = {π : P (δ 6= i|ψ = (i,η1,η2)) ≤ α,
∀ψ such that η1 6= η2},

(6)

with δ being the decision made when the algorithm stops. We
define the stopping time of the policy as

τ (π) := inf{n ≥ 1 : An = (stop, ·)}, (7)

where An is the action taken by the policy at any stage n: An
has two components (continue, ·) or (stop, ·). In the former
case, the second argument indicates the arm to sample; in the
latter case, it indicates the decision. The total cost will be
the sum of the accumulated switching costs and the delay in
arriving at a decision as in [7].

3. LOWER BOUND

A lower bound on the expected stopping time for any policy
that satisfies the constraint on probability of false detection
for the anomalous arm detection problem is given in the fol-
lowing proposition.

Proposition 1. Fix α with 0 < α < 1. Let ψ = (i,η1,η2) be
the true configuration. For any π ∈ Π (α), we have

E [τ |ψ] ≥ db (α, 1− α)

D∗ (i,η1,η2)
(8)

where db (α, 1− α) is the binary relative entropy function
and D∗ (i,η1,η2) is defined as

D∗ (i,η1,η2) = max
0≤λ(i)≤1

[
λ (i)D (η1||η̃) + (9)

(1− λ (i))
K − 2

K − 1
D (η2||η̃)

]
,
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with

η̃ = η (κ̃) and κ̃ =
λ (i)κ1 + (1− λ (i)) K−2

K−1κ2

λ (i) + (1− λ (i)) K−2
K−1

. (10)

Also, the λ that maximises the expression in (9) is of the form

λ∗ (i,η1,η2) (j) =

{
λ∗ (i,η1,η2) (i) , if j = i
1−λ∗(i,η1,η2)(i)

K−1 , if j 6= i.
. (11)

As the constraint on the probability of false detection
approaches zero, α → 0, we have db (α, 1− α) / log (α) →
−1. Hence, we get that the conditional expected stopping
time of the optimal policy scales at least as− log (α) /D∗ (i,η1,η2).
The quantity D∗ (i,η1,η2) thus characterises the “complex-
ity” of the learning problem at (i,η1,η2). A proof of the
result may be found in the longer version of our paper [6].

Corollary 2. We have E[C (π) |ψ] ≥ db(α,1−α)
D∗(i,η1,η2) .

Proof. With the switching costs added, we have C (π) ≥
τ (π), and the corollary follows from Proposition 1.

A closed form expression for λ∗(i,η1,η2) is not yet
available. Hence, we make the following assumption.

Assumption 3. Fix K ≥ 3. Let λ∗ maximise (9). There
exists a constant cK ∈ (0, 1), independent of (i,η1,η2) but
dependent on K, such that λ∗ (k,η1,η2) (j) ≥ cK > 0 for
all j ∈ 1, 2, . . . ,K and for all (i,η1,η2) such that η1 6= η2.

In [6], we show that the assumption holds true for a wide
range of members from the exponential family. The assump-
tion suggests that a policy based on λ∗(i,η1,η2) samples
each arm at least cK fraction of time independent of the
ground truth. In case Assumption 3 does not hold, we could
use a sampling policy with a forced exploration component
as in [10] along with the modified GLRT approach.

4. PROPOSED POLICY

Let Nn
j denote the number of times the arm j was chosen for

observation up to time n, i.e., Nn
j =

∑n
t=1 1{At=j}, where

At is the arm chosen at time t. Clearly, we also have n =∑K
j=1N

n
j . Let Ynj denote the sum of the sufficient statistic of

arm j up to time n, i.e.,Ynj =
∑n
t=1 T(Xt)1{At=j}. Let Yn

denote the total sum of the sufficient statistic of all arms up to
time n, i.e., Yn =

∑K
j=1 Ynj .

When the parameters are unknown, a natural conjugate
prior on η1(j) and η2(j) enables easy updates of the poste-
rior distribution based on observations. The conjugate prior
is taken to be a product distribution with each marginal once
again coming from an exponential family of the same form
and characterised by the hyper-parameters τ and n0, i.e.,

f (ψ = (j,η1 (j) ,η2 (j)) |H = j)

= H (τ , n0) exp{τTη1 (j)− n0A (η1 (j))}
×H (τ , n0) exp{τTη2 (j)− n0A (η2 (j))}, (12)

for a suitable normalisationH (τ , n0).

4.1. Modified GLR statistic

The modified GLR is defined as

Zij (n) := log
f̃ (Xn, An|H = i)

f̂ (Xn, An|H = j)
(13)

= log
{ H (τ , n0)

H (Yni + τ , Nn
i + n0)

}
+ log

{ H (τ , n0)

H (Yn − Yni + τ , n−Nn
i + n0)

}
−η̂T1 (j) Ynj +Nn

j A (η̂1 (j))− η̂2 (j)
T (Yn − Ynj

)
+
(
n−Nn

j

)
A (η̂2 (j)) , (14)

where f̃ is the average likelihood function at time n, averaged
over the conjugate prior in (12) over all configurations with
H = i and f̂ is the maximum likelihood of observations till
time n under H = j. Let Zi(n) := min

j 6=i
Zij(n) denote the

modified GLR of i against its nearest alternative.

4.2. The policy πSM (L, γ)

Fix L ≥ 1 and 0 < γ ≤ 1. We now define the ‘Sluggish,
Modified GLR’ policy πSM (L, γ) as follows:

At time n:
• Let i∗ (n) = arg maxi Zi (n), an arm with the largest

modified GLR at time n. Resolve ties uniformly at ran-
dom.

• If Zi∗(n) < log ((K − 1)L) then choose An+1 via:
– Generate Un+1, a Bernoulli(γ) random variable

independent of all other random variables with
γ > 0.

– If Un+1 = 0, then An+1 = An.
– If Un+1 = 1, then sample An+1 according to the

probability distribution
λ∗ (i∗ (n) , η̂n1 (i∗ (n)) , η̂n2 (i∗ (n))) .

• If Zi∗(n) ≥ log ((K − 1)L) stop and declare i∗ (n) as
the anomalous arm location.

5. ANALYSIS OF THE PROPOSED POLICY

The steps in this section verify that the proposed policy
stops in finite time (Proposition 4), belongs to the desired
set of policies (Proposition 5), and is asymptotically optimal
(Proposition 6). Detailed proofs of these results are provided
in the longer version of this paper [6, Appendix B]

Proposition 4. (Stoppage) Fix the threshold parameter L ≥
1. Policy πSM (L, γ) stops in finite time with probability 1,
that is, P (τ (πSM (L, γ)) <∞) = 1.

Proposition 5. (Admissibility) Fix α. Let L = 1/α. We then
have πSM (L, γ) ∈ Π (α).
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Fig. 1: Performance of πSM (L, γ) for Gaussian distribution with unknown means and unknown variances.
µ1 = 0, σ2

1 = 2, µ2 = 1, σ2
2 = 10, K = 8 , gmax = 1 and D∗ = 0.1653.

Proposition 6. (Achievability) Consider policy πSM (L, γ).
Let ψ = (i,η1,η2) be the true configuration. Then,

lim sup
L→∞

τ (πSM (L, γ))

log (L)
≤ 1

D∗ (i,η1,η2)
a.s., (15)

lim sup
L→∞

E[τ (πSM (L, γ)) |ψ]

log (L)
≤ 1

D∗ (i,η1,η2)
, (16)

and, furthermore,

lim sup
L→∞

E[C (πSM (L, γ)) |ψ]

log (L)
≤ 1 + gmaxγ

D∗ (i,η1,η2)
. (17)

With these ingredients, we next state the main achievabil-
ity result.

Theorem 7. Consider K arms with configuration ψ =
(i,η1,η2). Let

(
α(n)

)
n≥1

be a sequence of tolerances such

that lim
n→∞

α(n) = 0. Then, for each n, the policy πSM (Ln, γ)

with Ln = 1/α(n) belongs to Π
(
α(n)

)
. Furthermore,

lim inf
n→∞

inf
π∈Π(α(n))

E[C (π) |ψ]

log (Ln)
(18)

= lim
γ↓0

lim
n→∞

E[C (πSM (Ln, γ)) |ψ]

log (Ln)
=

1

D∗ (i,η1,η2)
.

Here, we discuss the proofs briefly. We first show that un-
der the true configuration, the test statistic has a positive drift
and therefore crosses the threshold log((K − 1)L) in finite
time almost surely, thereby proving the result in Proposition
4. To prove admissibility in Proposition 5, we use elementary
change of measure properties and the result that the policy
stops and makes the decision when the statistic crosses the
threshold. The use of the modified GLR statistic as opposed
to the conventional GLR statistic simplifies this proof. For
Proposition 6, we show that the positive drift of the statistic
under the true configuration is equal to D∗(i,η1,η2). This
relies on the convergence of the estimated parameters and the
estimated anomalous arm location to the true values, some-
thing that is also proven along the way. The proof of Theorem
7 then follows from Propositions 1, 5 and 6.

6. SIMULATION RESULTS

Fig.1 shows (a) the empirical average delay versus log(L) for
different values of γ, (b) the empirical average total cost (de-
lay+switching costs) versus log(L) for different values of γ
and (c) the ratio of empirical average total cost to log(L)
versus γ averaged over 500 independent runs for the vec-
tor parameter Gaussian (both mean, variance unknown). The
switching parameter in (a) and (b) is varied from 0.1, which
corresponds to the sluggish implementation, to 1 when the
policy switches according as per sampling strategy at each
stage. As expected, we can observe that, in both (a) and
(b), the slopes for policy match the slope of the lower bound,
thereby validating the asymptotic optimality of the policy. In
(c), as log(L) → ∞, the ratio of empirical average total cost
to log(L) approaches the lower bound.

Also observe that in (a) for smaller values of γ, the aver-
age delay in arriving at a decision increases (due to low explo-
ration) whereas, in (b) as γ decreases, the total cost decreases
due to reduced switching (γ around 0.4 to 0.5 seems to be
the best choice in this case). But, as γ ↓ 0, policy becomes
sluggish and requires more number of samples in making a
decision, thereby resulting in an increased total cost as seen
in (b). More simulation results for other distributions from the
vector exponential family can be found in [6, Section VII].

7. CONCLUSION

We considered the problem of detecting an anomalous arm
when the distributions are from a general vector exponential
family. The parameters of the distributions are unknown. A
sequential policy based on the modified GLR statistic was
proposed. We showed that the proposed policy, which in-
corporates learning, is asymptotically optimal in terms of the
total cost among all policies that satisfy a upper bound con-
straint on the probability of false detection.

91



8. REFERENCES

[1] Nidhin Vaidhiyan, Sripati P Arun, and Rajesh Sundare-
san, “Neural dissimilarity indices that predict oddball
detection in behaviour,” IEEE Transactions on Informa-
tion Theory, vol. 63, no. 8, pp. 4778–4796, 2017.

[2] H. Vincent Poor, An Introduction to Signal Detection
and Estimation (2Nd Ed.), Springer-Verlag New York,
Inc., New York, NY, USA, 1994.

[3] Nidhin Koshy Vaidhiyan and Rajesh Sundaresan,
“Learning to detect an oddball target,” IEEE Transac-
tions on Information Theory, vol. 64, no. 2, pp. 831–
852, 2018.

[4] Herman Chernoff, “Sequential design of experiments,”
The Annals of Mathematical Statistics, vol. 30, no. 3,
pp. 755–770, 1959.

[5] Arthur E Albert, “The sequential design of experiments
for infinitely many states of nature,” The Annals of
Mathematical Statistics, pp. 774–799, 1961.

[6] Gayathri R. Prabhu, Srikrishna Bhashyam, Aditya
Gopalan, and Rajesh Sundaresan, “Learning to detect
an oddball target with observations from an exponential
family,” CoRR, vol. abs/1712.03682, 2018.

[7] Nidhin Koshy Vaidhiyan and Rajesh Sundaresan, “Ac-
tive search with a cost for switching actions,” in Infor-
mation Theory and Applications Workshop (ITA), 2015.
IEEE, 2015, pp. 17–24.

[8] S Krishnaswamy, PT Akhil, A Arapostathis, S Shakkot-
tai, and R Sundaresan, “Augmenting max-weight with
explicit learning for wireless scheduling with switching
costs,” in Proc. IEEE INFOCOM, 2017, pp. 352–360.

[9] Stephen Boyd and Lieven Vandenberghe, Convex opti-
mization, Cambridge University Press, 2004.
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