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ABSTRACT

The topology of a power system changes when a line outage is en-
countered. Identifying which line has failed in the shortest possible
time is of importance due to the cascading nature of such failures. In
this work, we propose a state estimation based sequential hypothe-
sis testing procedure to locate the failed line. We focus on single line
outages as these are the most frequently occurring failures. Earlier
work on state estimation based sequential testing procedure used a
DC approximation model assuming that the sensors provided angle
and voltage information. This is known to be a coarse model but
results in a simpler linear estimation problem. In this work, we look
at a finer nonlinear model of power measurements and treat phase
angles and voltages as hidden states. After a local linearization,
we propose a Kalman filter based state estimation followed by a
generalized likelihood ratio testing procedure to determine which
of the lines has failed. We consider both centralized and decentral-
ized approaches. In the centralized case, measurements from every
installed meter is made available to the system operator. In the
decentralized case, only limited aggregated information is made
available because of, for example, communication capacity con-
straints. We test our algorithms on the IEEE 14 and 118 bus systems
and show that all high risk link failures are quickly identified.
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1 INTRODUCTION

A power system is a network of a large number of substations, trans-
formers and transmission lines. A transmission line outage due to
faults could overload other transmission lines leading to cascading
failures [11, 16]. Examples include the US-Canada blackouts in 2003
[14], the Arizona - Southern California outages in 2011 [13], the
Italy and Switzerland blackouts in 2003 [30] and the North Indian
blackout [5, 24]. If grid operators have sufficient tools to identify
single line outages in real time, immediate corrective action can be
taken, and the cascading failures leading to blackouts could can be
prevented. Towards this, operating conditions of a power system are
monitored by Supervisory Control And Data Acquisition (SCADA)
systems. These provide critical telemetry data on transmission line
statuses and network topology. Despite such safeguards, there have
been at least two blackout instances (North America, 2003 and 2011)
caused by erroneous records and telemetry data. Certain lines in the
network were either overloaded or were near overload in the 2011
blackout, yet operators could not detect these because the model
was not up-to-date which resulted in inaccurate state estimates [13].
Reliable signal processing techniques for system identification can
assist in identifying such network topology changes, faults and line
outages. Our goal in this paper is to design algorithms to identify
single line outage network topology changes in near real time.

1.1 The Setting and Our Contributions

We propose the use of state-estimation based sequential hypothesis
testing to detect single line outages. For a given power grid with
n links, each link outage is a hypothesis /; where i € {1,2,...,n}
along with the hypothesis /i referring to the situation with no link
outages. We consider a nonlinear power flow model with power
flow measurements, and treat phase angles and voltages as hidden
states. We assume that the measurements are such that the power
system is "observable" under any single line outage; see subsection
1.2 for a description of the notion of observability.

Our contributions can be summarized as follows.

1. We propose a generalized log-likelihood ratio statistic in a
sequential hypothesis testing procedure. The measurements are
received at regular time intervals (say 1 second). At each time
instant, the central operator processes the received information
and either declares that a particular line is in outage (or none is
in outage) or proceeds to gather more data before a declaration.
We thus have a stopping problem that gathers as much data as
needed before a declaration. The decision to stop is based on a fixed
and predetermined threshold set to meet a given false detection
constraint. The main challenge here is to set the threshold at an
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appropriate level that keeps the detection delay small subject to
meeting the given false detection constraint.

2. Keeping in mind the communication limitations under cen-
tralized operation, we also propose a decentralized dynamic state
estimation method using the so-called Unscented Kalman Filter
(UKF) [22, 32, 36] to perform a multi-area state estimation followed
by line outage identification. Again a generalized likelihood ratio
testing procedure, similar to the centralized setting but this time
with data aggregated over regions, is used to identify the partic-
ular line in outage (if there is one). The main challenges here are
to identify the computations that can be delegated to the edge
and intermediate nodes and those that need to be retained by the
system operator, without affecting the ability to detect single line
outages, in addition to setting an appropriate threshold that keeps
the detection delay small subject to the false detection constraint,
as before.

3. We then test our proposed algorithms on the IEEE 14 bus and
the IEEE 118 bus transmission line test systems to demonstrate
their validity. Performance study outcomes are provided in the
simulations section.

1.2 Related Works and Placement of Our
Contributions

We first begin with some remarks on observability. Dynamic state
estimation tracks the current state of the system (see the textbook
[21]). Accurate state estimation requires sufficient measurements
from a suitable set of locations [1]. If a set of measurements are
sufficient to make state estimation possible, then we say that the
power system is observable. Meters are usually placed at appro-
priate locations to ensure observability [35]. But if observability is
not ensured either additional measurements are advised or pseudo-
measurements, which are derived from historical data, should be
used to obtain good estimates [6]. In this paper we assume that the
measurements are such that the power system is observable under
any single line outage.

Our proposal involves the use of state estimation for line outage
detection. This idea is not new. The topology of the power system is
suspected whenever the measurements associated with a transmis-
sion line or a bus are flagged as outliers by a state estimation based
residual test. A technique for computing indices which quantify the
degree of correlation between the estimated quantities and those
likely to occur under configuration errors is presented in [9]. The
use of normalized residuals obtained from state estimation proce-
dures for the purpose of detection of topology errors is proposed in
[34]. The reference [19] proposed a method to detect the network
model by comparing state estimation results without topological
errors and with topological errors. Topology determination using
least absolute value state estimation is presented in [26].

Further, the works [2, 7, 8] have proposed various other tech-
niques to detect and identify topology errors. A method for detec-
tion of topology errors within an “unobservable” portion of the
system was proposed in [2], while [8] presented a normalized La-
grange multipliers technique. A geometric interpretation of the
residual error is provided in [7] which is then used to identify
topology errors in power system. The reference [18] proposed a
preprocessing method for detecting and identifying topology errors
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and bad data measurements prior to doing state estimation. A ro-
bust Huber preprocessing method based on a new state estimation
model is proposed in [20]. Since the development of PMUs, over the
conventional power measurements, recent studies have used phase
angle measurements to detect and identify line outages [12, 28, 37]
based on the difference between the phase angles of PMU measure-
ments obtained before and after the outage, to identify line outage
via hypothesis testing [28], sparse vector estimation [37], or mixed
integer nonlinear optimization [12].

The aforementioned works rely on only the current sample and
(in some methods) the immediately preceding sample, and do not
exploit the fact that once a line outage occurs, outage persists until
the line is brought back into service. In this work we use persistence
of line outages to our advantage to enable reliable detection.

Our proposed methods use sequential hypothesis testing (see,
for e.g., the classic [4]) to identify single line outages. Closest to
our work is [3] which proposed a method to detect and identify
transmission line outage assuming only phase angle measurements
from PMUs (based on a DC approximation model of a power system)
and by using the theory of quickest change detection. The DC
approximation model is known to be a coarse model. In this work,
we look at a finer nonlinear model of the power measurements and
treat phase angles and voltages as hidden states. This forces us to
deal with nonlinearity of the power measurements in the states,
for which a modified approach is needed, in return for much fewer
measurements.

The need of both fast and accurate state estimation techniques
for wide area monitoring, protection and control is highlighted
in [29]. But the distributed nature of the measurement devices
poses the communication challenge of transfer of large amounts of
state and measurement vector data to a central operator. Numerous
multi-area based state estimation techniques have therefore been
proposed in [17, 25, 27, 33], where the entire power system is di-
vided into smaller nonoverlapping areas with each area containing
its own local operator processing all its local measurements. These
are then harmonized with data from neighboring areas. A decentral-
ized dynamic state estimation method using the Unscented Kalman
Filter (UKF) was proposed in [36].

In our work, we use a version of the UKF proposed in [22, 32]
to perform multi-area state estimation. But our work differs from
[22, 32, 36] in that the estimations, based on data aggregated over
regions, are but a step leading to the generalized likelihood ratio
testing (GLRT) procedure for identifying the particular line in out-
age (if there is one). The UKF based local procedure has the added
advantage of eliminating the need for the measurement Jacobian at
the central operator. This significantly reduces not only the commu-
nication overhead but also a computational overhead. However, the
optimality of the proposed GLRT method for line outage detection
needs further investigation.

2 MODEL DESCRIPTION

A power system will be represented as a graph ¢ = (1, §), where
{ is set of buses (or nodes) and § is the set of links (or branches).
Suppose N = |V| and n = |§| represent the number of buses and
links, respectively. If one of the links i € § went down, the infor-
mation about its effect on the power system will embedded in the
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state estimates. By efficiently using this information we can infer
the graph of the power system.

Let # € {ho,f1,h2,...,lin} denotes the set of hypothesis,
where /iy denotes the network with none of the links down, /i1
denotes the network with only the first link down, etc. There are
n + 1 possible hypothesis for the given network. Next we present
centralized and decentralized state estimation approaches on an
approximate linear model of the power system, with measurements
being nonlinear functions of the system state, which will lead us to
our eventual goal of state estimation based topology identification.

3 CENTRALIZED STATE ESTIMATION

3.1 State and Measurements Models

For ease of reference, we provide a list of notations used just before
the list of references.

Suppose there are N buses in the system. Suppose that 6; ; and
Vi,+ are the phase angle and voltage, respectively, at the bus i at
time ¢. Then state x; of the power system at time ¢ is taken to be

o
(Usually the first bus of the system is taken to be the slack bus for
which the phase angle 0y ; is taken as 0, and hence the number of
state variables is 2N — 1. We will however continue to view the
state as in 2N-dimension). We consider a simple approximate linear
model for the time evolution of the system state as in [10]. This
model states that the state at time ¢ + 1 will be same as the state
at time t, except for some uncertainty which is represented by a
random variable. This model is represented by

xt = [01,4,02¢,- . ON, £ V1,0, Vo, bs - VNt

@
where &; is a zero mean Gaussian noise vector with covariance
matrix Q; and x; is 2N X 1 vector of state variables. Suppose there
are M measurements z; = [21,¢,22,¢, - - - ,zM,t]T obtained at time ¢
from various parts of the system. Usually these measurements con-
sist of power injections at the buses, power flows through the lines,
and voltage magnitudes. Instead of using PMUs, we assume that
power measurements are available, and voltage (root-mean-square)
magnitudes are available but only at power generation buses. These
measurements are considered to be the standard set of measure-
ments for state estimation. The measurements and state variables
are related through a nonlinear function plus the measurement
noise. This relationship can be expressed as

zt = h(xt) + Yr ®3)
where ; is zero mean Gaussian noise and h(x;) is M X 1 vector
of nonlinear functions. Using the Taylor series to linearize these

equations around the previous operating point x;_1, and by using
Azy = zy — h(x¢—1), the measurement model becomes

Xt+1 =Xt + &

Azy = Hp—1Ax + 1, 4

where Ax; = xy — x;—1 and Hy—1 = H(x;_1) is the measurement Ja-
cobian matrix. Construction of measurement Jacobian is explained
in [21]. The term 7; contains both linearization error and measure-
ment noise. Yet 1; is assumed to be zero mean Gaussian noise vector,
a common assumption in power systems analysis, with covariance
matrix R;. These models are used together for state estimation
in power systems. In addition, non-Gaussianity in errors can also
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arise due to outlier mechanisms in measurements. Such outliers
are usually filtered out in a data clean-up step. See the books [21]
and [15]. Note that h without any subscript is used to denote the
measurement function and /i; with subscript i is used to denote a
hypothesis.

3.2 State Estimation

The Kalman filter is a recursive algorithm that can be used in an
online estimation framework. The Kalman filtering estimation al-
gorithm consists of two steps: prediction and correction. In the
prediction step, it predicts the state and covariance matrix. In next
step, it updates the so-called Kalman gain, the state estimate and
the covariance matrix. Given eq. (2), the state will be predicted by
taking the previous state of the system. We then have the following
standard prediction and correction rules.

Prediction :
Xp|e-1 = Xp—1)1-1 (5)
Zpe-1 = Zpo1)e-1 + Qr—1 (6)
Correction :
Kte1 = z,“_lHtT,lQ;llt_l 7)
Qjr-1 = Hro13y i HE + Ry (8)
Xelr = X¢)e-1 + Keerlze — He—1%4)21] )
o = = KeerHe—1]34 021 (10)
where
X¢je-1 = Blxe 271
Zt|t—1 = E[(x - xt|t—1)(xt - xt|t—1)T|2t71]
Zy|p-1 = Elz¢|z'™1]
Qt|t—1 = E[(z¢ - Zt|t—1)(Zt - Zt\t—l)T|Zt71]
271 = (20, 21, . . . ,Zp—1)

and I is the identity matrix of appropriate order.

3.3 State Estimation Under Outage

Suppose that the outage occurred at link i. We call the resulting net-
work configuration hypothesis as /2;. The state evolution equation
and the measurement model under the hypothesis /2; become

xre1(Ri) = xe(Ri) + &
Azy = Hp—1(fii)Axe(fii) + 1t

(11)
(12)

where Hy_1(/i;) is the measurement Jacobian matrix under the
hypothesis fi;, Az;(h;) = z; — h(x;-1(;)) and Axy(f;) = x: () —
x¢-1(fi;). We assume that Q;, R; do not depend on the configuration.
(If they do, this can be easily incorporated into the equations.)

Now the Kalman filtering equations for prediction and the cor-
rection under the hypothesis /; can be written analogously as
Prediction :

(13)
(14)

Xp|e-1(fi) = Xp_q)e-1(R4)
2t|t—1(fli) = zt—1|t—l(fli) + Q-1
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Correction :
Kroa(hi) = gy (h)H]_ (i )Qtlt 1 (i) (15)
Qpp-1(fi) = Ht—l(ﬁi)zﬂtfl(ﬁi)H[_l(hi) + Ry (16)
Zp1p(Ri) = x1p21(fi) + Keen(Ri)lze — He—1(Ri)xp 1 (R3)] (17)
Ze(hi) = [T = Kee1(Ri)He—1(R:)]2 -1 () (18)

Before we describe the topology identification method, we quickly
describe the decentralized method as well.

4 DECENTRALIZED STATE ESTIMATION

Future power systems are likely to have much more buses and
lines than today’s systems. Performing state estimation at a central
location requires that much more communication and computa-
tional resources. Instead, if the power system can be divided into
multiple subareas, then local state estimation followed by transfer
of only aggregated information to the central location will reduce
the communication and computational complexity. Assume that
the power system is divided into L number of nonoverlapping areas.
Individual areas are connected to each other by tie lines across
boundary buses, i.e., buses that have lines going out of the area.
Each area contains its own set of measurements to run its local
state estimation. An unscented Kalman filter (UKF), to be described
soon, is used for local state estimation, but there will be disagree-
ment at the boundary buses due to lack of sufficient information to
get globally consistent local estimates. A consensus algorithm as
explained in [22] is then used to obtain the final estimates. We now
provide the details.

4.1 State and Measurement Models

Assume that the power system is divided into L number of nonover-
lapping areas. The local state vector in area j € {1,2,...,L} at time
step ¢ + 1, is a simple linear discrete time transition of states given
by

+ &t (19)
where xj ; is the local state vector of area j at time ¢ and consists
of voltage magnitudes and phase angle of all the buses in the area
Jj. The vector & s ~ N(0, Qj ;) is white Gaussian noise with zero
mean and covariance matrix Qj, ; at time step ¢. The measurement
model for each area j at time ¢ can be expressed as

Xj,t+1 = Xj, ¢

zj,t = hj(xjt) +nj¢ (20)

where hj(xj ;) is the jth area’s nonlinear function of local state
variables x;j ¢, and nj,+ ~ N(0,Rj ;) is the white Gaussian noise
with mean zero and covariance matrix R; ;. Unlike the centralized
Kalman filter approach, the UKF avoids the Jacobian matrix as
explained below.

4.2 UKEF State Estimation

Suppose the state vector xj ;-1 at time step t — 1 and covariance
matrix Xj ;—1 are known. Let N; be the number of buses and let
2N; be the dimension of state vector in the area j. Set weight fac-

tors {W(l)}4N’ and {W(l)}4N’
subscrlpt m stands for mean and subscript ¢ stands for covariance.
The decentralized UKF is performed in four steps.

whose use is explained below. The

Step 1: Generate 4N; + 1 of the so-called sigma points {X}(',l)t—l}lzo
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using xj,;—1 and % ;1. See Appendix A.
Step 2 : Kalman filter state prediction is done as follows:

4N,
- D D
- IZ—: Wm] J.t—1 (21)
D ® 0
- -\T
= IZ] Wi (X =% )X =) 1+ Qg1 (22)
=0
Step 3 : Kalman filter state correction is done as follows.
Generate 4N + 1 sigma points {X (l) }l 0  using x , and ZJTt,
and propagate them through measurement update functlon
1 1
2 = e ). (23)

Prediction mean yj, ;, covariance Q;j ; and cross covariance Cj,; of
the measurements are obtained by

4N,
) —(1
Wit = Z Wr(nj z;, Y (24)
1=0
o ! ] ]
Q= Zw“u DG -V R (29)
=0
1 1 1
CJt_ZW() ](t) ]t)( ()_/li,t)T]' (26)

Now calculate the filter gain K ;, state update xj,; and covariance
) j,¢+ using the equations

Kj: =cj,t971 (27)
xj,t = +K] t[zj t — Hj,t t] (28)
Zj,t :2;1‘_ j,tQ',tKj,t (29)

Each area will perform the above steps independently, but there
will be disagreements at boundary buses and external buses over
tie lines. All the areas need to communicate with their neighbors
across the tie lines because the measurements within a local area are
in general insufficient to obtain globally consistent state estimates.
A consensus algorithm explained in Step 4, is then used to obtain a
consistent state estimate %, ; and covariance 3; ;. These feed the
UKEF for the next iteration. We now briefly discuss the consensus
algorithm.

Step 4 : A review of the max- and min-consensus algorithm.

The max- and min-consensus algorithms’ goals are to provide
interaction rules that specify the information exchange between
one area and all its neighbors. Based on %; ; and by j,¢» an ellipsoid is
constructed for each area. The idea is that the intersection of these
ellipsoids contains the true estimates of the boundary buses. A local
set is defined as the smallest axes-aligned box bounding each area
ellipsoid. Each area, say j, processes its own measurements zj, ; to
obtain a local set. The global set must lie inside the intersection
of the all these local sets. The global set can be computed by ex-
changing maximum and minimum quantities between neighboring
areas. The minimum point of a global set can be computed by using
the min-consensus algorithm and maximum point of a global set
can be computed by the max-consensus algorithm. See [22] for the
detailed min- and max-consensus algorithms.
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At each iteration, each area j updates its own shared bus states
using the shared bus states of the neighboring areas. While per-
forming the max-consensus algorithm, area j compares its shared
bus states to those of its neighbors and always keeps the maxi-
mum value. In max-consensus algorithm each shared bus value
converges to the maximum value {j.”f ,(+) (+ for maximum) among
all its neighbors, where d denotes the dth shared bus. Similarly, the
min-consensus algorithm converges to the minimum ¢ ft(—) =’
for minimum).

After performing max- and min-consensus algorithm, a new
axes-aligned box is obtained for each area j. For each area, the box
is bounded by another ellipsoid by minimizing the volume of the
ellipsoid. The center of the ellipsoid X} ; and diagonal entries of the
associated matrix can be computed by

%o = 5, = (0 + L 2yeY

i;j,’td = (gj'c,it(+) - gj{?t(_))z/z.

(30)
(31)

The UKF is performed again by using j,; and ) j,¢ instead of x;j s
and X ¢, respectively. Finally the new x; ; and X; ; are used in the
next iteration for the filtering process. See [22] for details.

4.3 State Estimation Under Outage

Even though the state estimation procedure outlined above is de-
centralized, topology identification requires a central operator to
make the final decision. Each area performs a state estimation pro-
cedure for each hypothesis /1;. Note that the consensus algorithm
will require each area to maintain state estimates for all hypothe-
sis including those that are for line outages outside the area. The
measurement model under hypothesis /; can be written as

xj,e41(f0) = x50 (i) + &t (32)
zj,¢ = (hjxj,e))(ii) + mje- (33)

Then, the filtering equations become
K 1(hi) = Cjy o ()95 1 (Ri) (34)

4N;
Q1) = >, Wl Vi) = i e, D) = i o (Ri)T)
1=0

+ R]”t (35)
Xj,e(hi) = xj,¢ (i)™ + Kj o (Ri)lzj, e = pj, e (Ri)] (36)
S, 0(he) = %, 1(he) ™ = Kj e (hi)Q, 1 (R)K 1 (Ai). (37)

After each area performs its local state estimation, a consensus
algorithm [22] computes global estimates, one for each hypothesis.
Once the complete estimation is performed each area transfers
its local covariance Q; r(/;) and measurement error e; ((fi;) =
zj,+(R) — pj, ¢ (A;) to the central operator. The central operator will
use this information to infer outages. We describe the decentralized
state estimation based topology inference in section 5.2. Let us note
in passing that the state estimation procedure need not converge
and yet can be used for sequential hypothesis testing and line outage
identification.
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5 IDENTIFICATION OF LINE OUTAGES USING
SEQUENTIAL HYPOTHESIS TESTING

We assume a known initial state xp. A sequential hypothesis testing
using log-likelihood ratio is used to identify line outages (hypothesis
fi; for outage in line i). The log-likelihood ratio at time ¢ can be
expressed as

=1 P (g |25
zt = Slog % (38)
o Paylalh

where % (zx |zk_1) is the probability of observing measurement
2y at time k under to hypothesis /i; and given the past observations.
This equation 38 utilizes the information from previous samples.
Hence, any persistence in outage will be detected. Assuming that
the state-observation system is Gaussian, i.e., x¢ is fixed and &, n;
are iid Gaussian with mean 0 and covariance matrices Q; and R;
respectively, we have

P (2271 ~ Nz o1, Q-1 (h).

Then, the log-likelihood ratio becomes

;o li og [ k-1 ()]
fily — 2 - 19 -1 (F0)]
+ ek(ﬁj)TQ;fk_l(/ij)ek(ﬁj) - ek(/ii)TQzllk_l(/il-)ek(/il-)

(39)

where ex (i) = z(hi) — Hx_1(Ri)xg|k—1(Ai) is the measurement
error under the hypothesis /i;. Let

t_ ot
Z, =minZ, ., (40)

T
denote the log-likelihood ratio of hypothesis /i with respect to its
nearest alternative i’ among {f, /i1, . .., /i, }. Our proposal for the
candidate decision /i; at the time ¢ is

hy = argm/?lefl. (41)
Suppose £ is the true hypothesis. We would like
Pi[A: £ #] <, (42)

i.e., the probability that the decision is incorrect is small. As done
n [31], this tolerance criterion is attained when

), (43)

where n is the number of links in the power system. The central

n+1

t
maxzﬁt > log( .

operator can stop and declare hy if eq. (43) holds at time ¢. If eq. (43)
does not hold, the central operator continues to sample and contin-
ues with the estimation. This ensures that at the time of stoppage
and declaration, eq. (42) holds and thus the probability of error is
within the tolerance limit.

We now apply this to the power system. The point is, if these is an
outage, the measurements will reflect those changes as explained in
[4]. By performing sequential hypothesis testing, state estimation
tries to fit those measurements to all possible line outage cases
and tries to find the best fit topology. Naturally this can be used
for identifying more than single line outages, although we have
focused only on early detection of single line outages.
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5.1 Line Outage Detection Using Centralized
State Estimation

Suppose that the measurement samples are received at the central
location once in every second. Let us assume that an outage has
already occurred before time 0. Using the measurement sample
received, the Kalman filter performs state estimation and gives the
covariance matrix Q;|,_1(fi;) and measurement error e;(£i;) at time
t. This is done for all hypothesis /i;, i € {0,2,...,n}. Then, we use
the Equations (39) to (41) to find I ¢ If eq. (43) is satisfied, stop and
declare /i; as the decision. Otherwise go to next sample to gather
more information about line outage.

Computational complexity. A straightforward complexity calcu-
lation indicates that the complexity of our proposed centralized
algorithm is, at each time step, O(nN(N + M)?) with a small constant
multiplier. This is because, at each time and for each hypothesis, the
correction step involves triple matrix multiplications and a matrix
inversion. These involve O(N(N + M)?) calculations. With similar
calculations involving n + 1 hypotheses, we see the O(nN(N + M)?)
complexity. The actual likelihood ratio computations (39) and the
minimization in (40) are of lower order complexity. This raises a
very interesting question of faster Kalman filter updates. There has
been some recent interest in reduced complexity Kalman filtering;
see for example [23]. The problem of reducing this further or a
study of optimality are interesting future directions. See Appendix
B.1 for a pseudocode of the algorithm.

5.2 Line Outage Detection Using Decentralized
State Estimation

In the centralized setting, the central operator has access to all
measurements. But only the centralized analogs of Qp|x_1(h;) and
er(hi) are required for every k and every h;. These are exactly
what we have computed and have made available to the central
operator in the decentralized case as well, with only a notation
change. Suppose there are L number of areas. Then the covariance
matrix and measurement error for hypothesis /i; are obtained as
shown below:

Q1,¢(;) 0 0
=] O Gl )
: . : 0
0 .. 0 Qp s(fy)

er(fii) = e, 1 (Ri), et (i), - - . ver, ()17,

where Q; ,(f;) is as in eq. (25) for hypothesis /i; on area [ at time ¢.
Note that the covariance matrix is assumed to be block diagonal.
This assumption is valid because the error vector blocks come from
measurement errors in different blocks each of which represents a
different geographical location. We then calculate the log-likelihood
ratio at time ¢ using

1 124 (1))
zt == |log 25
'Zhihj 2 kZ=1 og 10k (h1)] (@5)

+ e ()" (er(h)) — e ()T Q (Ri)ere(Bi) |-
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We then use the Equations (39) to (41) to find Ry I eq. (43) is sat-
isfied, declare A ¢ as the decision, otherwise proceed to the next
measurement sample. Repeat this procedure until eq. (43) is satis-
fied.

Computational complexity. The computational complexity per
regional update is O(N;(N; + M, j)z). Summing this across all regions
we get O(X; N;j(Nj + Mj)z). The consensus algorithms are of lower
order complexity. Multiplying the above by the number of hypothe-
ses n + 1, we see that the complexity is O(n(X; N;(N; + Mj)z)). See
Appendix B.2 for a pseudocode of the algorithm.

6 SIMULATION RESULTS

We test our proposed topology identification algorithm on the IEEE
14 and the IEEE 118 bus systems. We assume that all measurements
arrive at the same time without delays. Measurement samples are
generated for the respective test systems using normalized daily
load profile of Bengaluru, a large metropolitan city in south India.
Load variations are introduced at each bus of the test system ac-
cording to the normalized load profile. Load data contains a 24 hour
load profile on a per hour basis. MATLAB curve fitting tools then
provide a per second load profile. The measurements considered
are power injections at the buses, power flows in the transmission
lines and voltage magnitudes at specific buses (as indicated ear-
lier). These were generated for all possible cases of line outages,
by solving the power flow equations using the MatPower toolbox
in MATLAB [38]. Transformer outages are not considered as they
result in diverged power flow solutions. Locations of measurements
were chosen to ensure system observability for both centralized
and decentralized cases.

6.1 Centralized State Estimation

The initial state for state estimation was taken from the power flow
solution of the respective outage case. The initial covariance Q(/t)
and Qyo(/) were taken to be diagonal with entries set to 1076, Also,
the elements of diagonal matrix Q; were kept constant at 107°
during the whole simulation. Errors in measurements of power in-
jections, power flows and voltage magnitudes were added assuming
Gaussian distribution with zero mean and standard deviation of
0.1% and 2% of base case voltages and powers respectively.

6.1.1  The 14 bus system. We simulated two cases using IEEE 14 bus
system shown in Figure 1. First, we assumed that measurements are
available at every location. In this case the measurement vector con-
tains all measurements other than phase angles, which constitutes
a total of 122 measurements. Second, to make the algorithm more
realistic, we assumed measurements are available only at some
limited locations, yet preserving observability. This set consists
of 42 measurements. Measurement set for the entire day, once in
every second was generated on IEEE 14 bus system with all lines in
service which is considered as base case. For each line outage case
also, the measurement set is generated for use in the hypothesis
testing procedure. Note that the measurement locations are same
for base case and line outage cases. We used the generated data,
generated every second, to perform the topology identification as
explained in section 5.1. The algorithm was tested with € values of
0.1, 0.01 and 0.001. Results for the first case, assuming availability



Sequential Testing for Identifying a Transmission Line Outage in a Power System

THREE  WINDING
TRANSFORMER EgUIVALENT

(©) ceneratons

(© sicrironous 3 7
CONDENSERS

AEP 14 BUS TEST SYSTEM BUS CODE DIAGRAM

Figure 1: IEEE 14 Bus Test System

of all measurements except phase angles is presented in the Table 1.
Results for the second case are presented in Table 2.

The first column in the results indicates the link outage consid-
ered in the simulation. The second column represents false iden-
tification probability, i.e., how many times the algorithm failed to
identify the faulty link for a given value of €. The third column rep-
resents average delay (average number of samples) for a decision.
For example, in Table 1, in case of hypothesis k1, i.e., when there is
outage of the line between buses 1 and 2, the algorithm correctly
identified h; as true every time out of iﬂ experiments with an
average delay of 1 sample (1 second). For detecting outage of line
12-13, the algorithm took an average 4 samples to make a decision
and was correct every time in the % experiments. Similarly, out-
age of line 10-11 took an average delay of 3 samples for detection.
We found that these line outages do not change the resultant power
flow appreciably and hence more samples are needed for detection
of their outages.

In Table 2 one can observe that average delay turns out to be
one sample for all the line outages. For both the tables € = 0.01 was
chosen mainly for illustration purposes and quick simulation. One
anticipates that the expected time for a decision grows with € as

log(1/€) [31].

6.1.2 The 118 bus system. The IEEE 118 bus system shown in
Figure 2 is used to test the scalability of our proposed algorithm.
Simulation results on the IEEE 118 bus system assuming measure-
ments other than phase angles are available at all locations are
presented in Table 3. Here the results for top 5 critical line outages,
obtained from contingency analysis, are presented. Initializations
for 118 bus case are the same as for the 14 bus system. From Table 3
one can observe that outage of the line 88-89 takes longer time to
identify. We have chosen € = 0.01 for all the cases.
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Table 1: Simulation results for 14 bus system, assuming all
measurements are available except phase angles.

Line € False Identifica- Average Delay
Outage tion Probability
1-2 0.01 0 1
1-5 0.01 0 1
2-3 0.01 0 1
2-4 0.01 0 1
2-5 0.01 0 1
3-4 0.01 0 1
4-5 0.01 0 1
6-11 0.01 0 1
6-12 0.01 0 1
6-13 0.01 0 1
9-10 0.01 0 1
9-14 0.01 0 1
10-11 0.01 0 3
12-13 0.01 0 4
13-14 0.01 0 1

Table 2: Simulation results for 14 bus system, assuming only
subset of measurements are available.

Line € False Identifica- Average Delay
Outage tion Probability
1-2 0.01 0 1
1-5 0.01 0 1
2-3 0.01 0 1
2-4 0.01 0 1
2-5 0.01 0 1
3-4 0.01 0 1
4-5 0.01 0 1
6-11 0.01 0 1
6-12 0.01 0 1
6-13 0.01 0 1
9-10 0.01 0 1
9-14 0.01 0 1
10-11 0.01 0 1
12-13 0.01 0 1
13-14 0.01 0 1

Table 3: Simulation results for 118 bus system with central-
ized state estimation, assuming all measurements are avail-
able except phase angles.

Line € False Identifica- Average Delay
Outage tion Probability

82-83 0.01 0 1

83 -85 0.01 0.01 2.16

89-90  0.01 0 1

85 -89 0.01 0 1

88 - 89 0.01 0 4
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Figure 2: IEEE 118 Bus Test System
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Figure 3: IEEE 14 Bus Test System divided into 4 nonoverlap-
ping areas.

6.2 Decentralized State Estimation

In this section we present the results of decentralized state esti-
mation based topology identification method presented in section
5.2.

6.2.1 The 14 bus system. The IEEE 14 bus system is divided into
4 nonoverlapping areas as shown in Figure 3. Here we presented
two cases: assuming all measurements available and only subset
of them available. For the second case measurement locations are
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Table 4: Bus partition of IEEE 14 bus system.

Area Internal buses ~ Boundarybuses External buses
1 2,5 34

2 8 34,7 2,5,9

3 12 6,11,13 5,14

4 14 9,10 4,7,11

Table 5: Simulation results for 14 bus system with decentral-
ized state estimation, assuming full set of measurements are
available except phase angles.

Line € False Identifica- Average Delay
Outage tion Probability

1-2 0.01 0 1
1-5 0.01 0 1
2-3 0.001 0.774 4.153
2-4 0.001 0 1.096
2-5 0.01 0 1
3-4 0.01 0 1
4-5 0.001 0 2.2
6-11 0.001 0 1.841
6-12 0.01 0 1
6-13 0.01 0 1
9-10 0.001 0 2.419
9-14 0.01 0 1
10-11 0.001 0.74 11.75
12-13 0.001 0 2.16
13-14  0.001 0 1.37

indicated in Figure 3. Table 4 shows the corresponding bus parti-
tioning. Initializations for the decentralized case are the same as in
the centralized case. All areas perform their local estimators and
then use the consensus algorithm to obtain global estimates. These
are then sent to the central operator. The central operator uses this
information to test hypotheses and find line outages. Table 5 and
Table 6 provide the simulation results for the 14 bus system in the
decentralized setting, with the full set of measurements and with a
subset of measurements, respectively.

In both cases line outages at (1-2), (1-5), (2-5), (3-4) and (6-13)
are identified very quickly with e = 1072, However, line outages at
(2-4), (4-5), (6-11), (9-10), (12-13) and (13-14) took more than one
second to identify with € = 1073, Every outage case is repeated
for 12—0 times to check the accuracy for a given €. In many cases,
our perfect detection seems to suggest that our choice of € may be
conservative. Even so, our algorithm failed to identify line outages
(2-3) and (10-11). As shown in Figure 3 these lines represent the
lines between the areas. Outage at these lines causes insufficient
flow of information between areas, making state estimation results
inaccurate. Work is under progress to see if these could be identified
as well.

6.2.2 The 118 bus system. The partitioned IEEE 118 bus system
is shown in Figure 4. The entire system is divided into 3 nonover-
lapping areas. Table 7 contains the partitioning details. Simulation
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Table 6: Simulation results for 14 bus system with decen-
tralized state estimation, assuming only subset of measure-
ments are available.

Line € False Identifica- Average Delay
Outage tion Probability

1-2 0.01 0 1
1-5 0.01 0 1
2-3 0.001 0.862 8.623
2-4 0.001 0 1.948
2-5 0.01 0 1
3-4 0.01 0 1
4-5 0.01 0 2.32
6-11 0.001 0 2.913
6-12 0.001 0 1.043
6-13 0.01 0 1
9-10 0.01 0 1.8
9-14 0.001 0 1

10 - 11 0.001 0.835 7.017
12-13  0.001 0.002 2.16
13-14  0.001 0 1.84

Figure 4: IEEE 118 Bus Test System divided into 3 nonover-
lapping areas.

Table 7: Bus partition of IEEE 118 bus system.

Area Internal buses ~ Boundarybuses External buses

1 1-18, 20-22, 25- 19, 23, 30, 33 24, 34, 37, 38
29, 31, 32, 113-
115, 117

2 35, 36, 39-46, 48, 34,37,38,47,49, 19,30, 33, 68, 69
50-64, 66, 67 65

3 70-112, 116, 118 24, 68, 69 23, 47, 49, 65
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Table 8: Simulation results for 118 bus system with decen-
tralized state estimation, assuming all measurements are
available except phase angles.

Line € False Identifica- Average Delay
Outage tion Probability

82-83 0.01 0 1

83 -85 0.01 0 1

89-90 0.01 0 1

85-89  0.01 0 1

88-89  0.01 0 5.64

results with full measurement set are presented in Table 8. Simula-
tion results for critical line outages are presented with e = 1072, It
can be observed from the table that the line outage 88-89 takes a
longer time to identify with an average delay of 5.64 seconds. The
decentralized line outage estimation with minimal set of measure-
ments for this system is under progress.

6.3 Comparison with a Previous Work

The results of [3] on the more frequently sampled PMU data show
that the average detection delay for the 118-bus system varies be-
tween 1-2 samples (0.03-0.06 seconds) for some link outages to
between 100-150 samples (3-5 seconds) depending on the ‘mean
time to false alarm’ constraint imposed on the policy. Our simula-
tion results indicate that our decentralized algorithm takes between
1 sample (1 second) to 5-6 samples (5.64 seconds) for detecting a
line outage, depending on the false identification probability. We
thus see that the decentralized algorithm with less frequently sam-
pled power measurements comes close to the performance attained
with the more frequently sampled PMU data.

7 CONCLUSIONS

In this paper, we presented an approach to identify single line
outages by exploiting the statistical properties of state estimation
results. We also proposed a decentralized state estimation based
line outage detection approach. We assumed that the measurements
are obtained once every second and state estimation was performed
dynamically. By sequentially processing the information obtained
from state estimation, our algorithm was able to identify single line
outages within a few samples. As one can see from the simulations,
the decentralized algorithm takes a little longer to detect line outage,
but has lesser communication and computational overhead.

Even though state estimation is decentralized, line outage detec-
tion algorithm is still centralized. In future work we plan to include
the design of decentralized line outage detection algorithms to
further reduce the computational burden and a design of fully de-
centralized state estimation algorithms.

NOMENCLATURE

€ False alarm probability

Nt Zero mean Gaussian noise vector of dimension M X 1
nj,¢t Zero mean Gaussian noise vector

& Set of links (or branches)

G Graph representing a power system
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Ry i-th hypothesis

H Set of all possible hypothesis

P, Probability function under hypothesis h;

1% Set of buses (or nodes)

z ’tll_ n, Log-likelihood ratio between the hypothesis h; and h; at
’ time ¢

Hj,t Measurement mean in ares j at time ¢

Qj ¢ Measurement error covariance matrix in area j at time ¢

Qj +(h;) Measurement error covariance matrix in area j at time ¢

under hypothesis /i;
Zero mean Gaussian noise vector of dimension M X 1

2t State error covariance matrix of area j at time ¢

3j,¢(h;) State error covariance matrix of area j at time t under
hypothesis /i;

0i,+ Phase angle at bus i at time ¢

& Gaussian noise vector of dimension 2N X 1

&t

Zero mean Gaussian noise vector of area j at time ¢ of
dimension 2N; X 1

4N; . . . .
{Wej} l=0] Weight factor for calculating covariance in UKF state

estimation for area j

4N . . . .
{Wimj},_, Weight factor for calculating mean in UKF state estima-

tion for area j

{XJ(.’l)t}?:Noj Sigma points of states for area j

{z;(tl)}?:NOj Sigma points of measurements for area j

C ]t Cross covariance matrix in area j at time ¢

Cj,+(f;) Cross covariance matrix in area j at time ¢ under hypothe-
sis fi;

er(fij) Measurement error at time ¢, under hypothesis /i;

h(x;)  Vector of nonlinear functions, with dimension M X 1

hj(xj,+) Vector of nonlinear functions in area j at time ¢

H; Measurement Jacobian matrix of dimension M X 2N

H;(fi;) Measurement Jacobian matrix of dimension M X 2N under
the hypothesis /i;

K; Kalman gain at time ¢

K:(fi;) Kalman filer gain at time t under hypothesis £;

Kj + Kalman gain in area j at time ¢

Kj,+(f;) Kalman gain in area j at time ¢ under hypothesis /;

M Total number of measurements

N Number of buses in a power system

n Number of links

Nj Number of buses in area j

Oy Covariance matrix of a xi; at time ¢, of dimension 2N X 2N

Q.+ Covariance matrix of a xij ; of area j at time ¢, of dimension
2N [j X 2N i

Rj ¢ Covariance matrix of 1 ;

Vit Voltage magnitude at bus i at time ¢

Xt State vector at time ¢, of dimension 2N X 1

xt(f;) State vector at time ¢, under hypothesis #;

Xj,t State vector of area j at time ¢ of dimension 2N;

Z¢ Measurement vector at t of dimension M X 1

Zj ¢ Measurement vector of area j at time ¢
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A UNSCENTED TRANSFORMATION

The accuracy of non-linear state estimation heavily depends on
the approximation of the non-linear function in the neighborhood
of the previous point. If approximation is erroneous, then state
estimation will be inaccurate. The idea of Unscented transforma-
tion (UT) is based on the principle that it is significantly easier to
approximate a Gaussian function than non-linear function. Here
we provide the generation of sigma points for each area using UT
in our simulations. Let us consider that x; ; is the state of the power
system at time ¢ in an area j, then power system model can be
written as

(46)
(47)

Xjr41 = X + &jo

Zj,t = h(xj’t)+ ’lj,t
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All the variables and notations are described in section 4.2. Now the
idea of UT is to generate a set of vectors called sigma points, using
state vector xj ;—1 and covariance Xj ;—1, which are given. Then
the sigma points are propagated through the non-linear function
h(xj, ;) to estimate the mean and covariance of z; ;.

Let Nj is the number of buses and 2Nj is the dimension of state
vector in the area j. A set of 4N; + 1 sigma points are generated by

X©) ) =%t (48)

X = xja (J(ZNj +/1)zj,H) Jl=12,....2N; (49)
1

X}fil) = Xj-1 - ( (2N; +/1)zj,t_1) ,1=1,2,...,2N; (50)
I

where (A); is the Ith column of the matrix A and the parameter A is
defined as

A = a*(2Nj + k) — 2N; (51)
where x can be 3 — 2N or 0. The parameter k can be used to reduce
the higher order error of the mean and the covariance approxima-
tions. For Gaussian distributions it is suggested to use 10* < & < 1.
Sigma points are the vectors whose components contains real num-
bers. In our simulations, we consider x = 3 — 2Nj and a = 102,

If % ;1 is positive definite matrix, the square root can be approx-
imated by X ;-1 = AAT, where A is the lower triangular matrix
obtained form Cholesky factorization of X ;1. By using Cholesky
factorization, we can avoid the complex number in sigma points as
they are real numbers.

Propagate each sigma point through the non-linear function to
obtain propagated sigma points
](tl) h(X (l)) I=1,2,.
The advantage of UT is that the mean and error covariance of the
measurements can be determined using propagated sigma points
evaluated in eq. (52). Propagated mean yj, ;, covariance Q; ; and
cross covariance Cj,; of the measurements are obtained by

L 4Nj L (52)

4N,
Hje = Z w2 (53)

1=0
Qj,t—zw(” O 0@ - (54)
Civt —Zw(” PRLEE T AT L) R CO)

The weight factors in Equations (53) to (55) can be determined using
the following formulae

o _ 4 ©) _ 3
Wi = on; w2 Vs 2N,-+/1+(1 “+p 6O
(4N (D\4N; _ 1
Wby = Wejhiy ©2(2Nj + ) 7)

in which, the typical value of § can be taken as 2 for Gaussian
distributions.
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B PSEUDOCODES

B.1 Algorithm 1: Line Outage Identification
using Centralized State Estimation

input :z;, n, €, case-data

output: i;(Line under outage)

Initializations : t < 0, fi; « hy, MAXZ; «— 0,
v

t

t t—1
zhihj — Op+1xn+1, zhihj — Op+ixn+1,

ern // ey « Error Threshold
while MAXZ! < log("}) do
lr

fori < 0tondo

Function CentralizedSE (i,z;,case-data):

X;_1|¢—1 < Obtained by performing the Power
Flow Solution using the case-data under i’ h
line outage

Initialize : Z;_q|;_1, Qr-1, Re,
Zple-1 < Zpqe-1 + Q-1

H;_; « Compute the Measurement Jacobian
using x;|¢—1

er < 2y — Ht_lxt“_l

error « etetT

while error < e;;, do

Qp1 — HraZ o HL | + Ry

T -1

Kier & ZpppaHy Q0

Repe e Xp)p-1 + Kerlze — He—1x)4-1]

Sip = = KesaHe-1124 121

H; « Update the Jacobian matrix using
new X;|;

er « z¢ — HeZyy

error < e; e?

Hy1 « Hp, Zppm1 < 2y Xp i1 < X
end
return Q;;_q, e;

End Function
Qi} « Qpp-1, eli} — e
end
fori < 0tondo
forj «— O0tondo
‘ Compute Elements ofz}tll_hj // Eq. (39)

end

end
t >t—1 t
Lhin, < Zhony * Chin,

Z! «— minZ!
h ﬁ/#ﬁ hh!

193 h

; t
hy argm}ellx‘iZf,i

te—t+1
end

return /i;

Chetan et al.

B.2 Algorithm 2 : Line Outage Identification
using Decentralized State Estimation

input :zj, €, n, case-data

output:/i;(Line under outage)

Initialization : t « 0, i; < A, MAXZIE «—0,
t

Z;lihj — Opntixn+1, z}f}; «— On+1xn+1, €rp

while Mszg < log() do

fori <0 t:) ndo
Function decentralizedSE(i,zj ¢,case-data):
input :Read xj,;—1, X} ;-1 from previous step

Initialize : Qj, =1, Rj,t) ej,t

while e; ; < e;p,, Vjdo
forj«— 1to Ldo
Function ukfSE(j, xj,t-1, %j,t-1,
Zj,t):

Run the local state estimation
using UKF to obtain %j,; and ﬁj, ¢
using Equations (19) to (30)

return X ¢, ij,t, ej

end

Construct H(j, t) and 3(j, t) using X; ¢, ij’ ‘

Perform max- and min-consensus

procedure to obtain H(j, t) and 3(j, t)

Given HO, t), fi(j, t) obtain x; ¢, ij,t

for j «— 1to Ldo
Function ukfSE(j, Xj,¢, ij, £ Zj,t)"
Run the local state estimation
using UKF to obtain xj ; and X; ;
using Equations (19) to (30)
Xj t—1 < Xj,t> 2j,t-1 < Zj ¢
return xj s—1, 2j t-1, €j, ¢

end
end

End Function
Qt — diag[Ql’t, e sQL,t]
er < [lers,...,er ¢]
end
for i «— 0tondo
for j «— 0 tondo
Compute Elements of Z;L,-hj // Eq. (45)

end
end
>t t—1 t
Zh,»hj - zhihj + zhihj
Z! «— minZ?,
h g AR

MAXZ! « max(Z ;1)
fiy h

p t

hy < arg m}zlix Zy,

te—t+1

end
return /i;
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