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Abstract—A multi-armed bandit with finitely many arms is
studied when each arm is a homogeneous Markov process on an
underlying finite state space. The transition law of one of the
arms, referred to as the odd arm, is different from the common
transition law of all other arms. A learner, who has no knowledge
of the above transition laws, has to devise a sequential test to
identify the index of the odd arm as quickly as possible, subject
to an upper bound on the probability of error. For this problem,
we derive an asymptotic lower bound on the expected stopping
time of any sequential test of the learner, where the asymptotics
is as the probability of error vanishes. Furthermore, we propose
a sequential test, and show that the asymptotic behaviour of
its expected stopping time comes arbitrarily close to that of the
lower bound. Prior works deal with iid arms, whereas our work
deals with Markov arms.

I. INTRODUCTION

We consider a multi-armed bandit with finitely many arms,
in which each arm is identified with a homogeneous, irre-
ducible and aperiodic discrete time Markov process, evolving
on a common finite state space. The state evolution on one
of the arms is according to a transition probability matrix
P1, while that on every other arm is according to P2, where
P1 6= P2. The arm with transition matrix P1 will be termed
as the odd arm. A learner, who has no knowledge of P1 or
P2, has to identify the index of the odd arm in the shortest
possible time, while ensuring that the probability of identifying
a wrong index is below a tolerance level ε > 0.

The learner attempts to discover the unknown index of the
odd arm by devising a sequential and adaptive arm selection
scheme as follows: in every time slot, one out of the finitely
many arms is selected; a state transition is observed on the
selected arm; all other arms remain rested and do not exhibit
state transitions in this time slot. The choice of which arm to
select in any given time slot is based only on the history of arm
selections and observations in all the previous time slots. For
every such sequential strategy (or policy) of the learner, we
aim to characterise the asymptotic behaviour of its expected
stopping time, where the asymptotics is as ε ↓ 0. Identifying
the optimal policy for a fixed ε > 0 may be difficult [1, pp.
755]. As we shall see in this paper, the asymptotic analysis as
ε ↓ 0 (see (8) and (22)) is tractable.

A. Prior Work

Our setting of rested and Markov arms is not very restrictive,
and is shown in [2, Chapter 1] to closely model a host of real-
life applications. The same setting also appears in Gittins’s

work [3] where it is assumed that the transition laws of each
of the arms is known, and the goal is to devise policies that
maximise the sum of average discounted rewards over an
infinite duration of time. In a related problem of stochastic
adaptive control, Agarwal et al. [4] strengthen Gittins’s results
to the case when the transition laws of the arms are not known,
and are parametrised by an unknown parameter coming from
a known, finite parameter space. While [3] and [4] deal with
a problem of maximising reward or minimising regret over an
infinite duration of time, ours is one of optimal stopping.

The problem of odd arm identification for iid observa-
tions can be embedded within the frameworks developed by
Chernoff [1] and Albert [5]. There is a growing literature
on this and related topics for iid observations. We provide
a quick summary of only the most closely related works on
odd arm identification. Vaidhiyan and Sundaresan [6] consider
the special case of iid Poisson observations from each arm.
Prabhu et al. [7] provide a more general treatment of iid
observations coming from a generic exponential family. These
works [5]–[7] provide lower bounds on the expected stopping
time of any sequential policy for identifying the index of the
odd arm, and in addition, also provide explicit schemes that
achieve these lower bounds in the asymptotic regime as error
probability vanishes. See [8]–[11] for many related works on
iid observations. Our results are similar in spirit to those of
[5]–[7], for the important setting of Markov arms.

B. Challenges in the Markov Setting

Markov observations offer some key challenges which must
be overcome in the analysis. First, Wald’s identity for iid
settings, which greatly simplifies the analysis of the lower
bounds in [6], [9], is not applicable. Next, we note that the
scheme of [6] for iid Poisson observations is based on the
important result [6, Prop. 3] that every arm may be chosen
with a strictly positive probability. Such a result may not be
available in other more general settings such as for Markov
observations considered in this paper.

C. Contributions

We provide a lower bound for the expected stopping time
of any policy that identifies the index of the odd arm without
the knowledge of the transition matrices P1 and P2. This
involves a generalisation of a result in [9] to the case of
Markov observations since Wald’s identity used in [9] is not
applicable. We explicitly identify a configuration-dependent
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constant in the lower bound that is a function of P1 and P2.
This constant has the interpretation that it quantifies the effort
required by any policy to learn the true index of the odd arm,
by guarding itself against a nearest alternative with incorrect
odd arm index. We then present a sequential scheme that is a
modification of the generalised likelihood ratio test (GLRT).
This modification is obtained by replacing the maximum
appearing in the numerator of the usual GLR statistic with
an average computed with respect to an artificial prior. We
also borrow the idea of “forced exploration” from Albert’s
work [5] which guarantees that each arm is selected with a
strictly positive probability, as in [6]. While this overcomes
the need for proving the analogue of [6, Prop. 3] for Markov
observations, it results in a penalty in the performance of our
scheme. We show that this penalty can be made arbitrarily
close to zero for a suitable choice of the forced exploration
parameter. Using this, we show that the expected stopping time
of our scheme can be made arbitrarily close to that given by
the lower bound in the regime when ε ↓ 0. In [12], we provide
simulation results showing the performance of our policy.

II. NOTATIONS

We fix K ≥ 3, and consider a multi-armed bandit with
K arms. We let A = {1, 2, . . . ,K} denote the set of arms.
We associate with each arm a homogeneous, irreducible and
aperiodic discrete time Markov process on a common finite
state space S, independent of the Markov processes of the
other arms. Without loss of generality, let S = {1, 2, . . . , |S|},
where |S| denotes the cardinality of S. Hereinafter, we use
the phrase ‘Markov process of arm a’ to refer to the Markov
process associated with arm a ∈ A.

In every time slot n = 0, 1, 2, . . . , one out of the K arms
is selected and its state is observed. We let An denote the
arm selected in slot n, and let X̄n denote the state of arm
An. We treat A0 as the zeroth arm selection and X̄0 as the
zeroth observation. Selection of an arm in slot n is based
on the history (An−1, X̄n−1) of past observations and arms
selected; here, X̄k (resp. Ak) is a shorthand notation for the
sequence X̄0, . . . , X̄k (resp. A0, . . . , Ak). We shall refer to
such a sequence of arm selections and observations as a policy,
which we generically denote by π. For each a ∈ A, we denote
the Markov process of arm a by (Xa

k )k≥0. We denote by
Na(n) the number of times arm a is selected by a policy up
to (and including) slot n. Further, for each a ∈ A and states
i, j ∈ S , we denote by Na(n, i) and Na(n, i, j) respectively
the number of times up to (and including) slot n the Markov
process of arm a is observed to exit out of state i and to exit
out of state i and enter into state j. Thus,

Na(n) =

n∑
t=0

1{At=a}, Na(n, i) =

Na(n)−1∑
m=1

1{Xa
m−1=i}, (1)

Na(n, i, j) =

Na(n)−1∑
m=1

1{Xa
m−1=i,Xa

m=j}. (2)

Our setting is one in which one of the arms is anomalous
(hereinafter referred to as the odd arm). We let Hh denote the

hypothesis that the index of the odd arm is h ∈ A. We assume
that the transition matrix of the Markov process of arm h is
P1 = (P1(j|i))i,j∈S , while that of all other arms is P2 =
(P2(j|i))i,j∈S ; here, P (j|i) is the entry in the ith row and
jth column of matrix P . Further, we let µ1 and µ2 denote the
unique stationary distribution of P1 and P2 respectively. We
denote by ν the distribution of the initial state of each Markov
process. In other words, for arm a ∈ A, we have Xa

0 ∼ ν, and
this is the same distribution for all arms. We assume that the
transition matrices and their associated stationary distributions
are unknown to the learner.

We refer to the triplet C = (h, P1, P2) as a configuration.
For each a ∈ A, we denote by (Zah(n))n≥0 the log-likelihood
process of arm a under the above configuration. Using the
notations introduced thus far, we have

Zah(n) =



0, Na(n) = 0,

log ν(Xa
0 ), Na(n) = 1,

log ν(Xa
0 )

+
Na(n)−1∑
m=1

logP ah (Xa
m|Xa

m−1), Na(n) ≥ 2,

(3)
where P ah (j|i) is the conditional probability under hypothesis
Hh of observing state j on arm a given that state i was
observed on arm a at its previous sampling instant. Clearly,

P ah (j|i) =

{
P1(j|i), a = h,

P2(j|i), a 6= h.
(4)

We denote by (Zh(n))n≥0 the log-likelihood process under
hypothesis Hh of all observations and arm selections up to
(and including) slot n. Then, using (3) and the independence
of the Markov processes across arms, Zh(n) =

∑K
a=1 Z

a
h(n).

To be formal, the observation process (X̄n)n≥0 and the arm
selection process (An)n≥0 are assumed to be defined on a
common probability space (Ω,F , P ). All stopping times are
defined with respect to the filtration (Fn)n≥0 given by

Fn = σ(An, X̄n), n ≥ 0. (5)

Let τ(π) = τ denote the stopping time of policy π. For each
a ∈ A and each i, j ∈ S, let Na(τ), Na(τ, i) and Na(τ, i, j)
denote the quantities in (1)-(2), with n replaced by τ .

We write Eπ[·|C] and Pπ(·|C) to denote expectations and
probabilities computed under policy π, given that the true
configuration of the arms is C. Given a tolerance parameter
ε > 0, our interest is in the class of policies whose probability
of error at stoppage for any underlying configuration of the
arms is at most ε. We denote this class of policies by Π(ε):

Π(ε) =

{
π : Pπ(I(π) 6= h|C) ≤ ε ∀ C = (h, P1, P2)

}
, (6)

where I(π) denotes the index of the odd arm output by policy
π at stoppage. We re-emphasise that π cannot depend on the
knowledge of P1 or P2, but could attempt to learn these along
the way.
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Remark 1. Fix an odd arm index h, and consider the simpler
case when P1, P2 are known, P1 6= P2. Let Π(ε|P1, P2) denote
the set of all policies whose probability of error at stoppage
is within ε. From the definition of Π(ε) in (6), it follows that

Π(ε) =
⋂

P1,P2:P1 6=P2

Π(ε|P1, P2). (7)

That is, policies in Π(ε) work for any P1, P2, with P1 6= P2.
It is not a priori clear whether the set Π(ε) is nonempty. That
it is nonempty for the case of iid observations was established
in [1]. In this paper, we show that Π(ε) is nonempty even for
the setting of rested and Markov arms.

III. LOWER BOUND

For any two transition probability matrices P and Q of
dimension |S| × |S|, and a probability distribution µ on S,
define D(P ||Q|µ) as the quantity

D(P ||Q|µ) :=
∑
i∈S

µ(i)
∑
j∈S

P (j|i) log
P (j|i)
Q(j|i)

,

with the convention 0 log 0 = 0. The following proposition
gives an asymptotic lower bound on the expected stopping
time of any policy π ∈ Π(ε), as ε ↓ 0.

Proposition 1. Let C = (h, P1, P2) denote the true configu-
ration of the arms. Then,

lim
ε↓0

inf
π∈Π(ε)

Eπ[τ(π)|C]

log 1
ε

≥ 1

D∗(h, P1, P2)
, (8)

where D∗(h, P1, P2) is a configuration-dependent constant
that is a function only of P1 and P2, and is given by

D∗(h, P1, P2)

= max
0≤λ≤1

{
λD(P1||P |µ1) + (1− λ)

(K − 2)

(K − 1)
D(P2||P |µ2)

}
.

(9)

In (9), P is a transition probability matrix whose entry in the
ith row and jth column is given by

P (j|i) =
λµ1(i)P1(j|i) + (1− λ) (K−2)

(K−1)µ2(i)P2(j|i)

λµ1(i) + (1− λ) (K−2)
(K−1)µ2(i)

. (10)

Proof: See Section VII-A of the online version [12].
Our proof, while broadly following the outline of the proof

of the lower bound in [9], requires a generalisation. Wald’s
identity for iid settings cannot be applied for Markov obser-
vations. Instead, a change of measure technique to generalise
[9, Lemma 18] is used. Furthermore, for any arm a ∈ A,
the long run frequency of observing the arm exit out of state
i ∈ S is equal to that of observing the arm enter into state
i. We then note that this common frequency is the stationary
probability of observing the arm in state i. This is the reason
for the appearance, in (9), of the unique stationary distributions
µ1 and µ2 of the odd arm and the non-odd arms respectively.
This step is possible due to the rested nature of the arms, and
may not hold in the general “restless” bandit setting in which
the unobserved arms continue to undergo state transitions.

Remark 2. The right hand side of (9) is a function only of
the transition matrices P1 and P2, and does not depend on the
index h of the odd arm. This is due to symmetry in the structure
of arms. However, we retain the index h in D∗(h, P1, P2) to
be consistent with the notation C = (h, P1, P2) used to denote
arm configurations.

Going further, we let λ∗ denote the value of λ that achieves
the maximum in (9). We then define λopt(h, P1, P2) =
(λopt(h, P1, P2)(a))a∈A as the probability distribution

λopt(h, P1, P2)(a) :=

{
λ∗, a = h,
1−λ∗
K−1 , a 6= h.

(11)

In the next section, we construct a policy that, at each time
step, chooses arms with probabilities that match with those in
(11) in the long run, in an attempt to reach the lower bound.
While it is not a priori clear that this yields an asymptotically
optimal policy, we show that this is indeed the case.

IV. ACHIEVABILITY

In this section, we present a scheme that is a modification of
the classical generalised likelihood ratio (GLR) test. Suppose
that each arm is selected once in the first K time slots.
Note that this does not affect the asymptotic performance.
Then, under configuration C = (h, P1, P2), the log-likelihood
process Zh(n) may be expressed for any n ≥ K as

Zh(n) =

K∑
a=1

log ν(Xa
0 ) +

∑
i,j∈S

Nh(n, i, j) logP1(j|i)

+
∑
i,j∈S

∑
a6=h

Na(n, i, j) logP2(j|i), (12)

from which the likelihood process under C, denoted by
f(An, X̄n|C), may be written as

f(An, X̄n|C) =

K∏
a=1

ν(Xa
0 )
∏
i,j∈S

(P1(j|i))Nh(n,i,j)

·
∏
i,j∈S

(P2(j|i))
∑
a 6=h

Na(n,i,j)

. (13)

Let Dir(1, . . . , 1) denote a Dirichlet distribution with |S|
parameters α1, . . . , α|S| with αj = 1 for all j ∈ S. Then,
denoting by P(S) the space of all transition probability
matrices of size |S| × |S|, we specify a prior on P(S)
using the above Dirichlet distribution as follows: for any
P = (P (j|i))i,j∈S ∈P(S), P (·|i) is chosen according to the
above Dirichlet distribution, and is independent of P (·|j) for
all j 6= i. Further, for any two matrices P,Q ∈P(S), the rows
of P are independent of those of Q. Then, it follows that under
this prior, the joint density at (P1, P2) for P1, P2 ∈P(S) is

D(P1, P2) :=
∏
i∈S

∏
j∈S

(P1(j|i))αj−1

B(1 . . . , 1)

∏
i∈S

∏
j∈S

(P2(j|i))αj−1

B(1 . . . , 1)

=
1

B(1, . . . , 1)2|S| , (14)
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where B(1, . . . , 1) denotes the normalisation factor for the
distribution Dir(1, . . . , 1), and the second line above follows
by substituting αj = 1, j ∈ S.

We denote by f(An, X̄n|Hh) the average of the likelihood
in (13) computed with respect to the prior in (14). From
the property that the Dirichlet distribution is the appropriate
conjugate prior for the observation process,

f(An, X̄n|Hh) =

K∏
a=1

ν(Xa
0 )
∏
i∈S

B((Nh(n, i, j) + 1)j∈S)

B(1, . . . , 1)

∏
i∈S

B((
∑
a6=h

Na(n, i, j) + 1)j∈S)

B(1, . . . , 1)
, (15)

where B((Nh(n, i, j) + 1)j∈S) above denotes the normal-
isation factor of a Dirichlet distribution with parameters
(Nh(n, i, j) + 1)j∈S . Let P̂nh,1 and P̂nh,2 denote the maximum
likelihood estimates of transition matrices P1 and P2 respec-
tively, under hypothesis Hh. Taking partial derivatives of the
right hand side (13) with respect to P1(j|i) and P2(j|i) for
each i, j ∈ S, and setting the derivatives to zero, we get

P̂nh,1(j|i) =
Nh(n, i, j)

Nh(n, i)
, P̂nh,2(j|i) =

∑
a6=h

Na(n, i, j)∑
a 6=h

Na(n, i)
. (16)

Plugging these back into (13), we get the maximum likelihood
of all observations and actions under hypothesis Hh:

f̂(An, X̄n|Hh) := max
C=(h,·,·)

f(An, X̄n|C)

=

K∏
a=1

ν(Xa
0 )
∏
i,j∈S

{(
Nh(n, i, j)

Nh(n, i)

)Nh(n,i,j)

·


∑
a6=h

Na(n, i, j)∑
a6=h

Na(n, i)


∑
a 6=h

Na(n,i,j)}
. (17)

For any two hypotheses Hh and Hh′ , where h′ 6= h,
we define the modified GLR statistic of hypothesis Hh with
respect to hypothesis Hh′ , along the lines of [6], as

Mhh′(n) := log
f(An, X̄n|Hh)

f̂(An, X̄n|Hh′)
, n = 0, 1, 2 . . . (18)

Thus, our modified GLR statistic is one in which the maximum
in the numerator of the usual GLR statistic is replaced by
an average computed over the space P(S) with respect to
the artificial prior introduced in (14). Letting Mh(n) :=
min
h′ 6=h

Mhh′(n) denote the modified GLR of hypothesis Hh with

respect to its nearest alternative, we now describe our policy
π?(L, δ). Here, L and δ are two parameters for the policy.

Policy π?(L, δ):
Fix L ≥ 1 and δ ∈ (0, 1). Let (Bn)n≥1 be a sequence of
iid Bernoulli(δ) random variables such that Bn+1 is inde-
pendent of the sequence (An, X̄n) for all n ∈ {0, 1, 2, . . .}.
Choose each of the K arms once in the first K time slots

n = 0, . . . ,K − 1. For each n ≥ K − 1, at the end of slot n,
follow the procedure described below.
(1) Let h∗(n) = arg max

h∈A
Mh(n), the index with the largest

modified GLR after n slots; resolve ties uniformly at random.
(2) If Mh∗(n)(n) < log((K−1)L), choose the next arm An+1

based on (An, X̄n) as per the following rule:
(a) If Bn+1 = 1, choose an arm uniformly at random.
(b) If Bn+1 = 0, choose An+1 according to the distribution

λopt(h
∗(n), P̂nh∗(n),1, P̂

n
h∗(n),2), where for each i, j ∈ S ,

the (i, j)th entries of the matrices P̂nh∗(n),1 and P̂nh∗(n),2

are as in (16), with h in (16) replaced by h∗(n).
(3) If Mh∗(n)(n) ≥ log((K−1)L), stop selections and declare
h∗(n) as the true index of the odd arm.

In the above policy, h∗(n) is the best guess of the odd arm
at the end of time slot n. If the modified GLR statistic of arm
h∗(n) is sufficiently larger than that of its nearest incorrect
alternative (≥ log((K − 1)L)), then the learner is confident
that h∗(n) is the odd arm, stops taking further samples, and
declares h∗(n) as the odd arm. If not, the learner continues to
obtain further samples.

We refer to the rule in item (2) above as forced exploration
with parameter δ. A similar rule also appears in [5].

We now provide results on the performance of π?(L, δ).
The main result on positive drift of the modified GLR statistic
is as described in the following proposition.

Proposition 2. Fix L ≥ 1, δ ∈ (0, 1), and consider the version
of the policy π?(L, δ) that never stops. Let C = (h, P1, P2)
be the true configuration. Then, for all h′ 6= h,

lim inf
n→∞

Mhh′(n)

n
> 0, a.s. (19)

Proof: The proof is based on the key idea that forced
exploration with parameter δ ∈ (0, 1) results in sampling each
arm with a strictly positive rate that grows linearly with time.
For details, see [12, Section VII-B].

Prop. 2 forms the most important step in our analysis. It
is in showing a similar result in [6] that the authors therein
use their result of [6, Prop. 3] on guaranteed exploration at
a positive rate. Indeed, it is not clear if this property holds
in general. Instead, we appeal to [5] for the idea of forced
exploration. See [8] on how to carry out forced exploration at
a sublinear rate.

The result in (19) implies that for any given value of L, the
modified GLR exceeds the threshold log((K − 1)L) for some
finite n, almost surely. Therefore, it follows from Prop. 2 that
policy π?(L, δ) stops in finite time almost surely.

Next, we have the following result which shows that the
parameter L may be set appropriately so that π?(L, δ) ∈ Π(ε)
for any given choice of ε > 0. We show later how δ may be
chosen to achieve a desired performance of the policy.

Proposition 3. Fix ε > 0, δ ∈ (0, 1). Then, for L = 1/ε, we
have π?(L, δ) ∈ Π(ε).

Proof: The proof uses Prop. 2 and the fact that policy
π?(L, δ) stops in finite time almost surely. Further, the average
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in the numerator of the modified GLR statistic, in place of the
maximum in the usual GLR statistic, is what enables us to
show the result. For details, see [12, Section VII-C].

The following proposition gives a more refined characteri-
sation of the asymptotic drift of the process (Mhh′(n)/n)n≥1.

Proposition 4. Let C = (h, P1, P2) denote the true configu-
ration. Fix δ ∈ (0, 1). Then, under the non-stopping version
of policy π?(L, δ), for any h′ 6= h, we have

lim
n→∞

Mhh′(n)

n
= D∗δ (h, P1, P2) a.s., (20)

where the quantity D∗δ (h, P1, P2) is given by

D∗δ (h, P1, P2) = λ∗δ D(P1||Pδ|µ1)

+ (1− λ∗δ)
(K − 2)

(K − 1)
D(P2||Pδ|µ2), (21)

with λ∗δ = δ
K + (1 − δ)λ∗, and for each i, j ∈ S , Pδ(j|i) is

as in (10) with λ replaced by λ∗δ .

Proof: See [12, Section VII-D].
Note that the policy π∗(L, δ) works with only estimated

P̂nh∗(n),1 and P̂nh∗(n),2. To show (20), we must therefore ensure
that the estimates approach the true values and a property akin
to continuity holds, that is, taking actions based on P̂nh∗(n),1

and P̂nh∗(n),2, which are only approximately close to P1 and
P2, adds only o(1) to the drift D∗δ (h, P1, P2).

With the above ingredients in place, we now have the
following asymptotic upper bound on the performance of
policy π?(L, δ).

Proposition 5. Let C = (h, P1, P2) denote the true configu-
ration. Fix δ ∈ (0, 1). Then, under policy π = π?(L, δ),

lim sup
L→∞

Eπ[τ(π)|C]

logL
≤ 1

D∗δ (h, P1, P2)
. (22)

Proof: The proof uses Prop. 4 and involves showing
that the family {τ(π?(L, δ))/ logL : L ≥ 1} is uniformly
integrable. For details, see [12, Section VII-E].

Noting that lim
δ↓0

D∗δ (h, P1, P2) = D∗(h, P1, P2), it follows

that δ ∈ (0, 1) may be chosen to ensure that the upper bound
in (22) is as close to the lower bound in (8) as required.

V. MAIN RESULT

We now state the main result of this paper.

Theorem 1. Let C = (h, P1, P2) be the true configuration of
the arms. Let (εn)n≥1 denote a sequence of error probability
values satisfying εn → 0 as n → ∞. Then, for each n and
δ ∈ (0, 1), the policy π?(Ln, δ), with Ln = 1/εn, belongs to
the family Π(εn). Furthermore,

lim inf
n→∞

inf
π∈Π(εn)

E[τ(π)|C]

logLn

= lim
δ↓0

lim
n→∞

E[τ(π?(Ln, δ))|C]

logLn
=

1

D∗(h, P1, P2)
. (23)

Proof: The proof follows from the lower bound of Prop.
1 and from the results of Props. 3 and 5.

While those familiar with such stopping problems may
easily guess the form of D∗(h, P1, P2), the proof is not a
straightforward extension of the iid case. To re-emphasise the
challenges pointed out in Section I-B, Wald’s identity is not
available for the converse and a generalisation is needed, while
a forced exploration approach provides achievability.

VI. CONCLUSIONS

We analyse the asymptotic behaviour of policies for a prob-
lem of odd arm identification in a multi-armed rested bandit
setting with Markov arms. The asymptotics is in the regime of
vanishing probability of error. Our setting is one in which the
transition law of either the odd arm or the non-odd arms is not
known. We derive an asymptotic lower bound on the expected
stopping time of any policy as a function of error tolerance.
We identify an explicit configuration-dependent constant in
the lower bound. Furthermore, we propose a scheme that
(a) is a modification of the GLRT, and (b) uses an idea of
“forced exploration” from [5]. This scheme takes as inputs
two parameters: L ≥ 1 and δ ∈ (0, 1). We show that (a) for a
suitable choice of L, the probability of error of our scheme can
be controlled to any desired tolerance level, and (b) by tuning
δ, the performance of our scheme can be made arbitrarily close
to that given by the lower bound for vanishingly small error
probabilities. In proving the above results, we highlight how to
overcome some of the key challenges that the Markov setting
offers in the analysis.
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