Relay Placement Algorithms for Communication in
a Heterogeneous Propagation Environment

Nihesh Rathod® ?, and Rajesh Sundaresan®?
“Department of Electrical Communication Engineering,
ARobert Bosch Centre for Cyber-Physical Systems,
Indian Institute of Science, Bangalore, India. 560012

Abstract—A vast majority of the IoT devices will be connected
in a topology where edge-devices push data to a local gateway
which in turn forward the data to the cloud for analytics and
archiving. In large networks, many edge-nodes will be located
far away from their nearest gateways. Due to their locations and
limited transmission power, these edge-nodes might experience
poor network coverage. To provide reliable connectivity to these
edge-nodes, relays/repeaters may have to be placed at a few loca-
tions until a gateway is reached. Network deployment engineers
often do this based on field visits, surveys, measurements, initial
deployments, followed by fine-tuning. For the scalability of such
deployments, automated network planning tools are essential.
Such tools should be able to predict coverage based on the edge-
node locations using perhaps GIS data, identify the need for
relays/repeater and, if needed, suggest the number and locations
of relays, in order to provide reliable connectivity. This entire
process should be as fast and automated as possible for rapid
network deployment. In this paper, using a black box RSSI
estimator between any candidate pair of transceiver locations,
we propose a network deployment framework that uses either
Ant Colony Optimisation (ACO) or Differential Evolution (DE)
to identify the number and location of relays for meeting specified
quality of service constraints. We also show how to handle
multiple gateways.

Index Terms—GIS, Heterogeneous, Internet of Things, RF
propagation tool, RSSI, Sub-GHz.

I. INTRODUCTION

Automation of network deployment is a necessity to enable
IoT expansion at the currently projected scales. Instead of
relying on surveying for getting an estimation of network
coverage, prior knowledge of the terrain can lead to better
coverage prediction at an early stage of deployment. The
ability to predict coverage without actual deployment saves
valuable engineering resources and can lead to rapid network
deployments. This paper is an embodiment of this idea and
showcases many interesting problems towards its implementa-
tion. In this paper, we will use the Indian Institute of Science
campus (IISc campus) in Bangalore, India, as a testbed to
explain our ideas, algorithms, and results. One reason is that,
despite its small size (roughly 2km-by-2km), it already offers
a very diverse propagation environment that is representative
of a large city. Given various data sources, i.e., edge devices in
an IoT network, located on a map and a destination (gateway
to the cloud) also located on a map, given a Geographical
Information System (GIS), the problem is to identify locations
of relays to get data from the IoT edge devices to the gateway,

meeting specific Quality of Service constraints. This problem
can be divided into two subproblems.

o The first subproblem is to identify the link quality be-
tween any pair of points, a potential transmitter-receiver
pair. Outdoor environments are typically heterogeneous
with carrier pathways traversing different propagation
environments (with different path loss exponents, fading
parameters, shadowing parameters, etc.).

e The second subproblem is to use the solution of the
first subproblem (as a black-box) and focus on network
deployment. This includes the determination of the re-
quired number of relays, their locations, powers, etc., for
meeting specific QoS requirements.

The focus of this paper is the second subproblem.

In earlier work, Rathod et al. [1] provided a data-driven
coverage tool that could handle heterogeneity in propagation
environments. Extensive measurements in example environ-
ments provided a library of propagation models. They then
used GIS data processing on the region to be deployed to
identify locally homogeneous regions and map each to a
library environment. They then used this to predict coverage
between a potential transmitter and a receiver in the region
under consideration. We use their tool as a black-box to find
the Received Signal Strength Indicator (RSSI) between any
two points on the map.

In this paper, we formulate and address the relay placement
problem. Specifically, given a number of IoT edge node loca-
tions, a gateway location and a minimum RSSI threshold R,
find the minimum number of relays and their location so that
there is a spanning tree all of those links have RSSI exceeding
R. This relay placement problem to meet QoS requirements is
likely to be a hard problem because it is a version of a Steiner
tree problem [2]. Moreover, it has a complicated geometric
structure for link costs between a potential pair of nodes,
with the structure coming from the packet error rate for
wireless transmission in a heterogeneous environment. In
particular, the geometric structure is not associated with the
Euclidean distance. We propose two heuristics to solve this
problem: an Ant Colony Optimisation (ACO) algorithm and a
popular genetic algorithm called Differential Evolution (DE).
Both algorithms need to be adapted to handle our objective.
Besides the complicated geometric structure of link costs
(coming from the heterogeneous propagation environment)

ISBN 978-3-903176-18-8 (© 2019 IFIP

219

does not seem to be easily exploitable. We also study a variant
of the above problem where there may be multiple gateways
and the goal is for each IoT edge node to connect to one of
the gateways. Again we adopt the ACO and DE algorithm to
handle this modified objective.

The rest of the paper is organised as follows. In Section
IT we briefly introduce the relay placement problem, provide
a short introduction to the Ant Colony Optimisation (ACO)
algorithm, explain how ACO is adapted for finding acceptable
solutions to the well known NP-hard Steiner tree problem
[2], and show some example outcomes. We then formally
define the relay placement problem in the heterogeneous
region with one gateway and show how ACO can be adapted
to solve it. We end this section by showing the results of
our adapted ACO algorithm on the IISc campus. Section
IIT deals with Differential Evolution (DE) algorithm and has
roughly the same structure as Section II. In Section IV, we
address the relay placement problem with multiple gateways.
We also show the effectiveness of modified ACO and DE
algorithms along with a divide-and-conquer strategy towards
solving the multiple gateway problem. We end the paper with
some concluding remarks and indications of ongoing works.
Unlike earlier relay placement works (e.g., [3], [4]) the main
feature of this work is the capability of handling heterogeneous
environments in conjunction with the coverage tool of [1] and
thus making it ineffective to compare it with the state of the
art results for a homogeneous propagation region [5].

II. ANT COLONY OPTIMISATION FOR RELAY PLACEMENT
WITH SINGLE GATEWAY

Suppose that we are given a particular deployment scenario.
This includes the GIS data for that region, gateway location,
and IoT edge device locations. The RSSI computing algorithm
in [1] predicts the average RSSI between any pair of nodes.
If each end node has connectivity to the gateway either via a
direct link (RSSI > R) or via other edge nodes as repeaters
(RSSI > R in every link in the path), no extra relay nodes are
needed and we can go ahead to deploy the network.

Relays are needed if one or more nodes are unable to
reach the gateway. We would like to minimise the number of
these new relays because they result in extra hardware costs,
more maintenance costs, etc. This problem of minimising the
number of relays is related to the well-known Steiner tree
problem. For a homogeneous propagation environment, this
is simply the Euclidean Steiner tree problem (STP) which is
defined as follows.

Given n points in the plane {x,zs,...,x,}, connect all
the points by line segments of minimum total length in such
a way that any two points in the set may be interconnected
by line segments either directly, or via other points in the set
or via other new points. For a general n, STP is an NP-hard
problem [2]. So, instead of trying to solve STP optimally, we
now describe an ant colony optimisation based meta-heuristic
algorithm to find a good solution in a reasonable time with
very practical computational resources.

A. Ant Colony Optimisation (ACO)

Some species of ants start their search for food by wander-
ing in random directions. When an ant finds a food source, it
leaves a substance called “pheromone” forming a trail while
returning to the ant colony. When other ants come across this
pheromone trail, they follow the trail to the food source instead
of wandering in random directions. If they too find the food
source, they reinforce the pheromone trails while returning to
the ant colony.

Pheromone trails have an interesting property of evaporation
with time, which decreases the attractiveness of a particular
path to a food source with time. Amongst multiple possible
paths to the food source, the more the time required for an
ant to travel on a particular path and back again, the more the
evaporation of pheromone on that path. On the other hand,
a shorter path will be travelled more frequently and thus the
pheromone density on the shorter paths becomes stronger than
on the longer paths. Pheromone evaporation also serves as a
way to avoid paths that are only locally optimal. If pheromone
will not evaporate with time then all ants will follow the
path taken by the first ant to find the food source, thereby
constraining the discovery of alternate shorter and better paths
than the first one.

The end result is that when an ant finds a good short path
from the colony to the food source, other ants are likely to
follow the path and positive feedback will eventually allow
ants to reinforce this good short path from the food source to
the colony.

Ant colony optimisation (ACO) algorithm is a meta-
heuristic algorithm based on this behaviour of the ants. ACO
is known to produce acceptable solutions in a reasonable
time for some instances of NP-hard problems like the famous
Travelling Salesman Problem. ACO also has the advantage of
dynamically adapting to changes in the graph structure. ACO
can be run continuously to adapt to changes in real time. Due
to the above-mentioned properties, ACO is an attractive choice
for solving our problem. For the remainder of this section,
we describe how we have adapted ACO for first solving
the Euclidean STP problem and then for solving the relay
placement problem in a heterogeneous environment.

B. ACO for solving Euclidean Steiner tree problem

Readers familiar with the ACO for Euclidean TSP may
skip this section. The iterative ACO algorithm involves many
variables over which the objective function is minimised or
maximised. It also needs the range of each of these variables.
Further, it requires a way to evaluate the value of the objective
function given the variables. Apart from these, ACO also has
a few algorithmic parameters like the number of ants, the
maximum number of iterations allowed, error values, etc. We
will not discuss the effect of these parameters on the output
of the algorithm as we have kept them fixed throughout our
experiment.

We first create a function needed to assess the benefit of
one extra node (k = 1) at location (d;;,d;y), as a function
of this location. This function forms a minimum spanning
tree (MST) on the given vertices (diz, diy) U{Z1,2Z2,...,2n}

220

by considering the Euclidean distance between two points as
edge weight. Then we add all the edge weights of this MST
and call the total weight w. We treat this w as the function
evaluation at the point (d;z,d;y). We pass this function and
a random initial point to ACO and ask ACO to minimise
this w across (d;z, diy). After completing its iterations, ACO
will output a possibly better location (d/“, d:y) In doing so,
either convergence to within the tolerance € is attained or we
crossed the maximum number of iterations. We then restart the
algorithm but this time with two (k = 2) extra nodes placed
at random. We continue to increase number of extra nodes k
until we reach n — 2. We have chosen the number 7 — 2 as an
upper limit on the extra nodes for Euclidean STP because it is
known that the maximum number of extra nodes, also known
as Steiner nodes, is n —2 where n is the number of points [6].
We then pick the best k& with the lowest MST weight. This
approach may need multiple random restarts for each k since
the iterative algorithm may settle down at a local minimum.

Figure 1 shows the results of this approach to solve STP
for edge devices forming regular polygons. The n points were
kept at vertices of different polygons. The choice of regular
polygons allows us to validate the solutions with those in the
literature [6].

@ Points [] [J
@ Steiner nodes
@® Redundant Nodes [J 3
S ® ®
[]
]
1 ° » . °
L]
([]
® []
® ® L
[J [J
[] po 6
7 o0
[] [J °
4 [] (] [}
[4] Py
2
)
[L J [J L]

Fig. 1: Solutions to Steiner Tree Problems for regular poly-
gons. Case numbers printed next to the solutions are referenced
in the discussion.

As shown in Figure 1, for a triangle with all the angles
< 120° (n = 3, case 1), the ACO algorithm solves the STP
with kK = n — 2 = 1 Steiner node. Further, the location of
the Steiner node is at the centroid of the triangle, which is
intuitive. For a square (n = 4, case 3), a rectangle (n = 4, case
4), a parallelogram (n = 4, case 5) and a trapezoid (n = 4,
case 6), the ACO algorithm matches with the best possible
solution described in the literature [6]. For n = 4, case 6,
not only does it stop at kK = 2, but it also gives the correct
locations of the Steiner nodes. For a pentagon (n = 5, case
7), the solution was obtained with k& = 3. The solution to
Case 2, a triangle with one of the angles > 120° (n = 3),
has a very interesting interpretation. The algorithm always
outputs a Steiner node on the line connecting the triangle
corners, which is marked with the red circle as a redundant

node. It means that the solution to STP is to connect three
points directly. There is no other better way to form MST in
this case. Interestingly, we did not configure our algorithm to
treat the triangles in cases 1 and 2 differently based on the
angles. The ACO algorithm identified these correct solutions
without special considerations. This highlights the robustness
of the algorithm for different configurations of n points. Note
that the objective function involves Euclidean distances with
exploitable properties such as the triangle inequality. In the
next subsection, we will show our approach to solve the relay
placement problem in a heterogeneous region by adopting this
algorithm.

C. ACO for solving the relay placement problem in a hetero-
geneous region

While solving the STP, we used the Euclidean distance for
constructing the minimum spanning tree and for finding the
minimum edge weight w. For using the same ACO algorithm
in a similar way in our problem of relay placement in a
heterogeneous region, we must adopt this objective function
on which the ACO algorithm operates. Our adaptation is as
follows. Note that the objective function operates on a set
of points (transmitters, relays, and one destination). First,
the heterogeneity of the propagation environment must be
captured in the link quality. Rathod et. al in [1] have already
shown how to estimate the RSSI between any pair of points
on the map in a heterogeneous environment. We, therefore,
use their RSSI computing engine as a black-box. Next, we
use the estimated RSSIs between any pair of points to come
up with link costs. Higher the RSSI, lower the cost, so the link
cost should be a monotone decreasing function of the RSSI.
We took f(RSSI) = —RSSI merely for simplicity. Third, we
computed the MST with these as link costs. Finally, the value
output by the function is the minimum RSSI among the links
on the obtained MST.

Problem: Given n number of transmitter locations
{x1,z2,...,z,} and an aggregating location {y} in a het-
erogeneous region, an RSSI threshold R, find the minimum
number of relays k and their locations {d1, ds, ..., dy} so that
each edge e of the resulting Minimum Spanning Tree on S
={y} U {z1,22,...,2,} U {d1,da,...,d}, with link costs
coming from the function f that takes link RSSIs to link costs,
has RSSI > R on each link:

min RSSI(7,7) > R. (1)
(4,))EE(MST(S))
i#]

Here E(MST(S)) is the edge set of the graph M ST(.S).

Some remarks on the objective function are in order. First,
we try to ensure that the minimum RSSI is at least as large
as the target RSSI of R. If not, as we will see below, we
will increase the number of relays and continue our search.
Second, in order to find the MST, we have attributed a
cost f(RSSI(7,7)) for the link (7,j). While we have used
f(r) = —r, other link cost functions of RSSI can be easily
handled. Third, we have given equal weight to every link of a
candidate tree in arriving at the MST. It is easy to adapt this to
a search for a minimum weight spanning tree, as would arise

221

X 2
range of each

of varlables variable

\ /

of ants s—)
oo anteclony Cost (dh, da, ... d
of iterations = | e Optimisation G x xl Ex X G (X1, X2, cres X)
1 X2,
Epsilon = £ se) ey
Temp (d), da, ..., di)
whered; = (d., d,y)
Iteratlon >L
Epsnlon <€
Final (d, da, ..., di)
where d;=(di diy) [Yes
es Accept final
Min (RSSI) >R —’ answer and
stop
No
k=k+1

Fig. 2: Flow diagram of the algorithm.

if every edge node generated traffic at a uniform rate and the
links closer to gateway carried more traffic.

Figure 2 shows the flow diagram of our approach. As
mentioned in section II-B, ACO is an iterative algorithm. This
loop is highlighted in red color in Figure 2. The function
indicated “Cost(- - -)” constructs the Minimum Spanning Tree
on{y}U{xy,2a,...,2,} U{dy,da,...,d;} in each iteration
and outputs the value of the minimum RSSI (across links)
on the MST. ACO tries to maximise this value. When the
algorithm converges or the number of iterations is exhausted,
we perform an additional test. We check each link for the
minimum required RSSI R. If all the links pass this minimum
RSSI threshold check then we accept the solution. Otherwise,
we increase the number of allowed relays by one and restart
the algorithm.

We stress-tested our algorithm over many adversarial in-
stances. As an example, in Figure 3, we kept our transmitters
and the gateway at the corners of the image, shown as +s, in
Figure 3. The transmitters and gateway were kept so far apart
that direct communication between any pair was impossible.
Then we let our algorithm suggest the relay locations, after
taking heterogeneity in the account. Figure 3 shows two results
of this experiment. Suggested relay locations are marked with
red circles. In both results, the number of relays required
to connect the network is six. The locations suggested are
different due to convergence to local minima.

III. DIFFERENTIAL EVOLUTION FOR RELAY PLACEMENT
WITH SINGLE GATEWAY

In this section, we highlight another bio-inspired heuristic
algorithm called Differential Evolution (DE) for solving the
relay placement problem explained in Section II. Differential

Evolution is a stochastic, parallel, direct search global optimi-
sation method. It is quite robust and is often fast. DE tries to
mimic the Darwinian theory of evolution based on the notion
of “survival of the fittest”.

A. Differential Evolution (DE)

Just like ACO, DE is also an iterative algorithm. Inputs to
the DE algorithm is similar to the ACO algorithm: variables
over which the objective function is minimised or maximised,
the range for each of these variables, a procedure to put out the
value of an objective function given the variables. Apart from
these, the DE algorithm also has a few parameters which are
different from those of the ACO algorithm. These include the
number of solutions generated in each iteration (also known
as population), mutation coefficient, crossover probability, the
maximum number of iterations allowed, etc. Just as with
the ACO algorithm, we will not discuss the effect of these
parameters on the output of the algorithm since we have kept
them fixed throughout our experiments.

The DE algorithm works as follows. In the very first itera-
tion, it generates a number of solutions for the given problem,
as specified by the population parameter. It then evaluates each
of the generated solutions and calculates a “fitness” based
on the output of the objective function and stores it. In the
next iteration, it evolves the current population using crossover
among themselves and generates a new population. It then
compares the fitness of the new population against the fitness
of the old population. Any new individual showcasing better
fitness replaces an old individual. All the other new individuals
whose fitness are worse than those of the old individuals
are dropped from the list. (See the pseudo-code provided for
details.) At the end of this iteration, a few individuals in the
old list get replaced with new and better individuals, making
the solution quality of the new population better than that of
the old population. We then repeat this process for a certain
number of generations while constantly measuring the solution
quality across the population. The algorithm terminates early
if all the individuals converge to a common solution.

A few important points to note about this algorithm are as
follows. As is evident from the procedure described above,
this algorithm does not need to compute the gradient for
finding next iterate. This means that DE does not require
the objective function to be differentiable unlike traditional
optimisation algorithms, and so DE can be used when the
objective functions are not continuous or are noisy. Another
key thing to note here is that DE is a black-box optimisation
toolbox, which can be used when the function to be optimised
is very complex.

B. DE for Euclidean Steiner tree problem

We use the above mentioned DE algorithm for our problem
as follows. We start by generating population for just one
(k = 1) relay location (d;,, d;y). We then generate a minimum
spanning tree (MST) on vertices (dig, diy) U{z1,2Z2,..., 25}
using Euclidean distance between two points as cost.

Next, we calculate the fitness of the candidate location
(diz,diy) as relay. As before, we take the fitness of the

222

Fig. 3: Results for single gateway point and three transmitters in a heterogeneous region.

DE algorithm for relay placement problem in a
heterogeneous region

Data: A set of n transmitters T = {x1,z2,...,2,}
where each x;,1 < ¢ < n represents a transmitter
location in the Euclidean plane and RSSI
Threshold R.

Result: A set of k relays D = {d;,ds,...,dy} where

each d;, 1 <1 < k represents a relay location in
the Euclidean plane.

location to be the negative of the maximum edge weight in
the generated MST. The lower the maximum edge weight
the better the fitness. The objective of the DE algorithm is
to maximise the fitness of the population. When the fitness
stabilises across the generations, we stop the execution of the
algorithm. We then increase the number of relay location by
one (kK = 2) and rerun the DE algorithm. We compare the
result of £ = 2 with & = 1. If the solution improves for
k = 2 then we continue the algorithm with & = 3. This process
continues till K = n — 2 as it is the upper limit of the number
of extra nodes needed for solving the Euclidean Steiner tree
problem. If we do not get better results by increasing the
number of relays, then we retain the solution with the previous
value of k. The pseudo-code above specifies the DE algorithm.

All the solutions shown in Figure 1 were also achieved by
this approach, which is reassuring.

C. DE for solving the relay placement problem in a hetero-
geneous region

The approach we take to modify the above-mentioned
algorithm for a heterogeneous propagation environment is
the same as described in Section II-C. Again, we set RSSI
between a pair of transmitter and receiver to be the RSSI
estimate put out by the algorithm in [1]. While explaining
DE, we did not mention the exact steps to generate a new
population from the old population. There are many ways to
do this, namely, rand/1/bin, rand/2/bin, best/1/bin, best/2/bin,
rand-best/1/bin, etc. These different approaches are suited to
different problems. For our relay placement problem, we used
the rand/1/bin scheme to generate the new population. This
scheme is explained in more detail in the pseudo-code above.
To stress-test our algorithm, as before, the transmitters and
gateway were kept at the corners of the map. Then we let the
DE algorithm find the best relay locations. Figure 4 shows
the results of this algorithm when we ran it independently.
DE algorithm was able to connect the transmitters with five
relays. In the next section, we pose the problem with multiple
gateways and show how we can use the same algorithm with
some extra work to solve the multiple gateways problem.

IV. RELAY PLACEMENT PROBLEM WITH MULTIPLE
GATEWAYS IN A HETEROGENEOUS REGION

Often large-scale networks are deployed with multiple gate-
ways to cover larger areas and distribute traffic across multiple
aggregators. Despite the presence of multiple gateways, end
sensor nodes in large deployment areas (say city-wide deploy-
ment) may still need relays to connect to the nearest gateway.
In this section, we explain a simple heuristic approach to solve

223

-+ —®: T

Fig. 4: Results for single gateway point and three transmitters in a heterogeneous region.

the connectivity problem when there are multiple gateways.
The formal description is as follows.

Problem: Given n number of transmitter locations
{x1,2,...,z,}, aggregating locations {y1,¥y2,...,Ym} in a
heterogeneous region and an RSSI threshold R, find the min-
imum number of relays k and their locations {dy,ds, ..., dx}
so that each edge e of the resulting constrained Minimum
Weight Forest on S = {y1,¥y2,...,Ym} U {z1,22,...,2,} U
{dy,ds,...,dy} has RSSI > R. Further, the forest must cover
all the transmitter locations, and every component of the forest
must contain at least one of the aggregators:

min RSSI(i,j) > R. 2)
(i,j)EE(cMWEF(S))
i#]

Here cMW F(S) is a minimum weight spanning forest that
meets the spanning constraint and the constraint that every
component of the forest contains at least one aggregator.
Remarks similar to those following equation (1) apply here
as well.

A. Solution using ACO for multiple gateways

We now propose one heuristic approach. The idea to ensure
that the constraint is satisfied is to break the above-mentioned
problem down to smaller problems each of which is similar
to the problem which we solved in section II-C, and solve
the smaller problems individually. We do that as follows.
First, calculate the RSSI between each end node and gateway.
Associate each end node to the gateway with the largest RSSI
is the highest even if it is < -100 dBm. Create a cluster for
each gateway by collecting all the end nodes associated with
it. By doing this, we divide the entire network into smaller
sub-networks corresponding to each cluster having precisely

one gateway. Moreover, the use of computed RSSI based on
the propagation environment ensures that the clustering takes
both heterogeneity and geographical locations into account.
We can now use the same algorithm described in section II-C
to find relay locations for each cluster. Figure 5 shows the
solution obtained using this approach.

—}— Transmitter

—&— Relay
—A Gateway

gt

Fig. 5: Network design for four gateways and multiple trans-
mitters in a heterogeneous region.

All the points marked with (+) in Figure 5 are actual
locations of our IoT deployment for a smart water distribution
application with overhead tanks, ground level reservoirs and

224

Initialization;

k<« 0;

nitr < number of iteration;

p < population;

m < mutation coefficient;

¢p 4 crossover probability, 0 < ¢, < 1;
Viest < 0, minimum function value;

Ipest <+ 0, index of minimum function value;
Drest <— I, best relay locations;

Repeat
for : < 1 to p do

DY = Random{d} |, d?,, ...
S ={x1,79,...,2,} UDY;

7dg,k:};

F) = min RSSI(py,p2);
' (pl,pz)eb;(MST(s)) (p1,p2)
P17#P2
#[F 1s negative of fitness];
end

(Vbesta Ibest) = min FZ-O; Dbest = ngest;
D® = (DY,...,DY);
for j + 1 to ny, do
for i < 1 to p do
Htemp = Dj_l \{Dlj_l};
a,b,c =rand € Hiemp;
dtemp =a+m*(b—c);
#[]NOtCZ dtemp = (dtemp(l), ey dtemp(kf));]
D! + &
for [< 1 to k do
btemp = Random(0,1);
if byernp > ¢, then
‘ D? « D} Udyepy(l) #lreplacel;
else
‘ D! « DI U DI (1) #{retain];
end

end

_ = J.
Sy =A{x1,29,...,2,} UD/;
Fiemp = min

(p1,p2) EE(MST(S))
P17#P2

if Fiomp < F/ 7! then

| D} =D} F/ = Fremy:
else

| D} =DI"\ F =F
end

RSSI(pl»pZ);

end

(%est7lbest) = min F1]5 Poest = D%bﬁst;
end

if Viest > R then

print “Solution Reached”;

OUtPUt < Dbests

break;

else
‘ k+ k+1;
end

end

Fig. 6: Network design for North Side of IISc campus.

Node Id (Tx) | Node Id (Rx) | RSSI(dBm)
1 8 -99.1163
1 11 -95.7368
2 10 -85.7739
3 9 -74.9758
3 10 -85.8552
3 11 -87.8343
4 5 -69.9692
5 9 -88.9698
6 11 -80.6244
7 8 -77.2838

TABLE I: Network Connectivity.

flow meters. Gateway locations are marked with the triangle
symbol. We ran our algorithm to predict the coverage and
identify whether we need relays to ensure connectivity. Our
proposed multiple-gateway algorithm suggested nine relays
and their locations which are marked with the red circles.
Figure 6 shows a zoomed-in version for the North cluster.
As shown in the Table I, all the links are predicted to perform
above minimum RSSI threshold R of -100 dBm. Note that one
should not compare this solution with the solutions of Figure
3 or 4 which is for a different set of transmitter and gateway
locations.

B. Solution using DE for multiple gateways

We use the same divide-and-conquer approach in Section
IV-A but now with the DE algorithm. The results of this
simulation are shown in Figure 7. The number of relays needed
in both cases remain the same. But, there was a change in the
location of the relays. Figure 8 shows a zoomed-in version for
the North cluster. Table II shows the observed RSSI between
each pair of transmitter and receiver. Notice that all the links
in the network have RSSI greater than RSSI threshold R of
-100 dBm. The link RSSIs are also a little more balanced than
in Table II.

C. Discussion

The algorithm explained in subsections IV-A and IV-B
might lead to a sub-optimal solution. This scenario is shown
in Figure 9 for which a better solution is to connect all the
end nodes (+) to gateway 1 and to let gateway 2 operate by
itself. The association of green end nodes to gateway 1 and

225

+ Transmitter
® Relay
/\ Gateway

e

Fig. 7: Network design for four gateways and multiple trans-
mitters in a heterogeneous region.

Fig. 8: Network design for North Side of IISc campus.

Node Id (Tx) | Node Id (Rx) | RSSI(dBm)
1 11 -85.8028
2 10 -85.3519
3 9 -87.5490
4 9 -81.2334
5 4 -71.8457
8 11 -88.5876
10 3 -89.2899
10 6 -87.2158
11 6 -88.8446
11 7 -86.2015

TABLE II: Network Connectivity.

red end node to gateway 2 in the clustering step led to this
sub-optimal solution. The reason for this aberration is that our
divide-and-conquer procedure that identifies the smaller sub-
problems to apply the earlier single-gateway problem is not
directly optimising equation (2).

Gateway 1

Optimal Iinl_(_,.

Gateway 2 Sub-optimal link

Fig. 9: Algorithm leading to a sub-optimal solution.

V. CONCLUSIONS AND ONGOING WORK

In this paper, we used a function of RSSI as a distance
measure between the transmitter and receiver when placed in
a heterogeneous propagation environment. Two approaches,
ACO-based approach, and DE algorithm, for relay placements,
were first checked to give good solutions for finding the
minimum number of relays and their locations in the Euclidean
Steiner tree problem. We then showed how to adapt these
approaches to solve the relay placement problem in both single
and multiple gateways scenarios under heterogeneous propa-
gation environments. We are not aware of other algorithms
or benchmarks for the heterogeneous environment to compare
our algorithms and outcomes.

We are working on the following improvements to our
current implementation.

o Design of more sophisticated algorithms than the divide-

and-conquer approach given in Section IV-A to handle
the suboptimality highlighted in IV-C.
« Incorporation of location constraints on relay locations.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the Department of
Electronics and Information Technology, Government of India,
and in part by the Robert Bosch Centre for Cyber-Physical
Systems, Indian Institute of Science, Bangalore. We would
like to thank Renu Subramanian for helping us in simulations.
N. Rathod was supported by a Cisco Research Scholarship.

REFERENCES

[1] N. Rathod, R. Subramanian, and R. Sundaresan, “Data-driven and gis-
based coverage estimation in a heterogeneous propagation environment,”
in IEEE Global Communications Conference, IEEE, 2018.

[2] F. K. Hwang, D. S. Richards, P. Winter, and P. Widmayer, “The steiner
tree problem, annals of discrete mathematics, volume 53,” ZOR-Methods
and Models of Operations Research, vol. 41, no. 3, p. 382, 1995.

[3] A. Bhattacharya and A. Kumar, “A shortest path tree based algorithm
for relay placement in a wireless sensor network and its performance
analysis,” Computer Networks, vol. 71, pp. 48-62, 2014.

[4] A. Bhattacharya, S. M. Ladwa, R. Srivastava, A. Mallya, A. Rao, D. G. R.
Sahib, S. Anand, and A. Kumar, “Smartconnect: A system for the design
and deployment of wireless sensor networks,” in Communication Systems
and Networks (COMSNETS), 2013 Fifth International Conference on,
pp. 1-10, IEEE, 2013.

[5] P. Crescenzi, V. Kann, and M. Halldérsson, “A compendium of np
optimization problems,” 1995.

[6] M. Brazil, R. L. Graham, D. A. Thomas, and M. Zachariasen, “On the
history of the euclidean steiner tree problem,” Archive for history of exact
sciences, vol. 68, no. 3, pp. 327-354, 2014.

226

