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Abstract—Recent cyber-attacks on power grids highlight the
necessity to protect the critical functionalities vital for the safe
operation of a grid. One such example is the power grid state
estimation (SE), since various attacks can be launched by ma-
nipulating the SE results. In this paper, we propose a distributed
hierarchy based framework to secure SE on edge devices. The
data for SE is acquired from the phasor measurement units
(PMUs) installed at various locations within the grid. These
PMUs may be reprogrammed by a malicious actor to manipulate
the data which may cause SE results to be inaccurate. Moreover,
SE is carried out at a fixed central location, which makes it a
prime target for cyber-attacks. Our proposed framework ensures
that data aggregation and SE are carried out at a random device,
and incorporates security features such as attestation and trust
management to detect malicious devices. We test our proposed
framework on a physical cluster of Parallella boards, monitoring
a virtual IEEE 5 bus system. We also do simulations on the IEEE
118 bus system. Our simulations show that the trust for malicious
devices nominally reduces with the number of attestations.

Index Terms—Leader Election, Attestation, Trust Manage-
ment, State Estimation, Kalman Filtering.

I. INTRODUCTION

Power grids are potential targets for various kinds of attacks,

given the massive economic and social disruptions that a

widespread and prolonged loss of electricity could cause. An

attacker may gain operational access to the control system

and could disrupt the power grid’s operation. For a summary

of some recent cyber-security breaches, see [1]. The primary

goals of the above attacks were to obtain operational access to

the central coordinator controlling the respective power grids.

This coordinator is usually fixed in most of the installations.

Even though the processing is distributed and loss of one

sub-area data can be handled by the coordinator, loss of the

coordinator itself will lead to the loss of visibility and control

of the entire system.

In recent years, edge computing in smart grid has received

some attention [2]. The edge devices, capable of a wide range

of functions, are often called intelligent electronic devices

(IEDs). They are installed at substations, and are equipped

with processors to handle data aggregation and other func-

tionalities associated with measurement and protection.

If the role of coordinator is randomly switched among

the existing IEDs, and the automatic detection of malicious

agents, their isolation, and subsequent recovery is enabled,

then the possibility of complete loss of system visibility

and controllability can be avoided. With this motivation, we

propose a distributed hierarchy based framework to achieve not

only a randomization of the coordinator, chosen to perform

the critical computations, but also integrity assessment of

the agents in the system. The coordinator performs critical

computations and operations that ensure large system visibility

and control, through secure data aggregation from the edge

devices (IEDs). Our focus is on the integration of various

schemes to protect the critical functionality and a physical

demonstration of its working.

A. Our Contributions

Our contributions can be summarized as follows.

• We propose a distributed hierarchy based framework

to protect the state estimation process on the edge devices.

The hierarchy is obtained through the leader election process

described in section II-B. Leader election, attestation, and trust

management work together to protect SE at the edge devices.

• We develop a simple leader election (LE) protocol to

randomize the location of the coordinator among the devices.

We assume that the network is completely connected, and the

devices exchange information through broadcasting.

• We propose a distributed consensus-based trust manage-

ment scheme, assuming that the number of malicious agents in

the network is strictly less than N
2 −1, with N being the total

number of agents in the network. Using the attestation-cum-

consensus scheme, devices first identify malicious agents and

then eliminate their data from the calculations. If the leader

itself is malicious, a new leader will be elected automatically.

• We validate our proposed framework on a testbed cluster

of IEDs (Parallella) that monitor a virtual IEEE 5 bus system.

• Simulations on the IEEE 118 bus system are used to verify

the scalablity of our proposed framework.

B. Related Works and Connections to This Work

PMUs are time synchronized through GPS, and are capable

of producing accurate phasor representations of voltage and

current signals [3]. We use a Kalman filter for SE on PMU

measurements which run in a centralized manner, but in one

randomly chosen control center/IED. Our proposal involves

the use of leader election implemented in a distributed way.

An agent, among the many in the grid, is chosen to coordinate

and perform SE. Our scheme, inspired by [4], not only tries to

prevent malicious agents from hijacking the election process,

but also ensures that each agent has an equal probability of
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Fig. 1: Overview of the scheme.

being elected. Our choice of leader election scheme makes

significant usage of commitment schemes; for details see [5].

In this work, we have used a distributed software-based

attestation scheme, inspired by the one proposed in [6], to

verify the integrity of the code running within an agent, with-

out physically accessing it. Typically, software-based remote

attestation uses a challenge-response based protocol between

two agents, as described in SWATT [7]. If the integrity of

the code running within an agent is compromised then we

call it as malicious. In order to infer that there are malicious

agents and to identify them, we utilize a trust management

scheme. As suggested in [8], we integrate attestation with trust

management, where attestation gives a measure of integrity,

and trust management uses the outcome to determine whether

an agent is malicious or not.

II. METHODOLOGY

In this section, we give an overview of our framework,

depicted in fig. 1.

A. State Estimation

The SE algorithm estimates the state of the power system by

processing the measurements obtained from various locations

within the power system. In this work, we consider PMU

measurements which provide voltage and current phasors, the

voltage measurement model is linear, although the current

phasor measurement model can be nonlinear if one represent

system state in polar coordinates. By using the methods in

[9] and [10], if one uses rectangular coordinates, the current

phasor measurement model, too, is not only linear but also

time invariant. Hence one gets the linear model

zt = Hxt + ηt, (1)

where zt and xt are the measurement and the state vectors

in rectangular coordinates, ηt is the noise vector written in

rectangular coordinates, and H does not depend on time [10].

Furthermore, the state evolution can be written in rectangular

coordinates as

xt+1 = xt + ξt. (2)

In rectangular coordinates, the state evolution noise vector ξt
is modelled as N(0, Qt) and observation noise vector ηt is

modelled as N(0, Rt) [11]. In this work, we used Kalman

filter based state estimation approach, described in [12]. In

the following sections, we will illustrate the security schemes

used in this work.

B. Leader Election

In our design, SE will be run at a leader. We assume that

there may be multiple malicious agents, even during leader

election, and the malicious agents may try to influence the

outcome of election. For example, one of them may desire to

be the leader, or avoid becoming the leader, or favor another

malicious agent to become the leader. Furthermore, agents

can communicate with each other only via broadcast, and no

unicast or multicast is allowed during the election process.

We assume that a secure broadcast channel is available and

the broadcast messages are taken to be common knowledge. A

detailed description of our scheme, shown in fig. 2, is provided

below. Suppose there are N agents in the network.

• Each agent i chooses a 32-bit identity number, IDi,

which is broadcast to all agents. Once an agent receives

ID := [ID0, ID1, . . . , IDN−1], it will then sort them in

ascending order, and store them in IDsorted
1.

• In the next step, each agent chooses a number Ci ∈
{0, ..., N − 1} and a random string Ri.

• Agent i then commits Ci using a cryptographic hash

function H, which takes the hash of Ci appended with the

random string to give HCi := H(Ci||Ri).
• Agent i broadcasts its own hash HCi, and aggregates the

hashes HC := [HC0, . . . , HCN−1] of all agents.

• In the next phase, agents reveal their Ci and Ri to

every other agent (via broadcast). This information, along

with respective hashes, is used to verify that the agent has

committed to its Ci, and has not changed it.

• Now, each agent will compute k, using the equation

k =

(

N−1
∑

i=0

Ci

)

mod N. (3)

• Finally, the agent with the kth smallest ID in IDsorted

is chosen as the leader.

Since each agent will possess IDi from every agent i,
IDsorted will be identical across agents. Similarly, all agents

will be able to arrive at the same value of k, since each agent

will possess Ci from every agent i. They can therefore agree

on a particular agent becoming the leader without the need for

a central entity. These ID’s and C’s are unique whenever a

new elections process is initialized. The above algorithm is a

modification of the algorithm A− LEADps,uni in [4] which

is used to elect a leader in an asynchronous unidirectional

ring network of agents. Our version of algorithm differs from

A − LEADps,uni in two ways. First, we use a hash-based

commitment scheme instead of Naor’s protocol [4]; second,

A−LEADps,uni algorithm embeds a unidirectional ring into

a completely connected network. However, this approach is

time consuming, since any communication must pass through

1The USA has about 1700 PMUs installed. The probability that two agents
have the same ID is upper bounded by 4× 10

−7.
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Fig. 2: Overview of the leader election scheme.

the entire ring. Instead, for ease of implementation, we allow

agents to use a secure broadcast channel for communication,

which makes our problem easier than the one in [4].

We choose a hash-based commitment scheme built on

cryptographic hash functions . These commitment schemes are

known to be secure; see [5]. The hash function we use in our

work is taken from the libhydrogen cryptographic library [13].

C. Threat Model

In our model, we assume a cyber-attack in which an attacker

can capture an agent or group of agents, re-program them with

malicious code, and then re-deploy them back into network

with the intent of affecting state estimation.

In our threat model we assume that the number of malicious

agents is < N
2 −1 and the attacker does not enlarge the agents’

memory. This makes it difficult to compromise the attestation

algorithm itself. Further, we assume that the processor speed

and memory access rate cannot be increased and a compro-

mised agent stays compromised. Note that we do not consider

physical attacks, such as transmission blockage, modification

of physical sensors, etc., which are other ways by which an

agent’s integrity could be compromised.

D. Malicious Agent Detection

In this section, we first describe the attestation scheme. We

then describe the trust management scheme. Together they

help detect malicious agents in the network.

1) Attestation: Our attestation framework differs from oth-

ers in using the concept of a report, i.e., after every attes-

tation, the verifier broadcasts the details of attestation to all

other agents. This report contains various parameters used in

attestation, along with the outcome, i.e., whether the verifier

suspects the attester to be malicious or otherwise. Agents make

use of the reports to arrive at a consensus on whether malicious

agents are present, and if yes, identify these malicious agents.

The attestation algorithm is designed to check if the program

code has been corrupted by an attacker, as described in

section II-C. The program memory, which contains the vital

code is checked during the attestation. Every agent serves

as a verifier at least once in a window of approximately T
seconds. During this interval, an agent will provision itself

as a verifier at a random instant of time, and challenge a

randomly chosen attester, and then stay idle for the remainder

of the time interval. However, in this interval, an agent can

receive multiple challenges. This process is repeated every T

seconds, ad infinitum. The frequency of attestations an agent

can perform (the value of T ) can be limited based on its

computational capability.

The attestation scheme, shown in fig. 3, is summarised

below.

• Once an attester is chosen, the verifier creates the chal-

lenge, and sends it to the attester. The challenge includes

the following parameters:

– A nonce that ensures that the challenge is not dupli-

cated.

– The IP address of the attester.

– The random offset, which specifies the starting ad-

dress of the memory region to be validated.

– The size of the number of bytes to be validated.

– The timestamp of when the challenge is issued.

– The signature to ensure authenticity of the agent.

• The attester verifies the contents of the challenge, per-

forms a checksum on the memory region specified by the

challenge, and then provides a response containing the

hash generated by the checksum.

• The verifier validates the response by calculating the hash

on its own memory, using the same challenge parameters.

• If the hashes are identical, then the verifier finds the

attester to be normal. Otherwise, it suspects the attester

of being malicious. The verifier then broadcasts the status

to the entire network.

• The other agents then update the trust of the attester based

on the status of the report. See section II-D2 below.

2) Trust Management: Suppose there are N agents in

the network. Whenever an agent k attests an agent j and

broadcasts its report, the evolution of trust of agent j at agent

i at time t+ 1 can be expressed as

pij(t+1) =
[

pij(t)+∆k→j(pik(t))
]1

0
, ∀i = 1, . . . , N (4)

where [x]10 is the projection of x on the set [0, 1], pik(t) is the

trust of agent k at agent i at time t, and ∆k→j(pik(t)) is (in

our design)

∆k→j(pik(t)) =

{

pik(t)
N

, if the attestation is positive,

−pik(t)
N

, if the attestation is negative,
(5)

where the subscript k → j indicates that agent k is the verifier

and agent j is the attester. When the agent j fails an attestation,

we call it as a negative attestation, whereas if an attestation is
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successful, we call it as a positive attestation. We assume that

every agent has its own opinion of trust for every other agent

in the network and must perform an attestation on another

agent in a set time interval. Moreover, we also assume that

there will be no report losses during the attestation process.

At the beginning, an agent’s opinion of trust for every agent

in the network is initialized to 1.

Whenever an agent k attests agent j, agent k broadcasts

the status to all other agents. Then, every agent i, i ∈
{1, . . . , N} \ {j}, in the network, updates the trust of agent j
using eq. (4) by considering its own opinion of trust of agent

j and agent k, which are pij(t) and pik(t), respectively. If

the opinion of trust of a particular agent reduces to 0, then

agents perform majority voting to cast out the malicious agent

from the network. Trust of a non-malicious agent may reduce

because of false accusations by the malicious agents. However,

other non-malicious agents increase the trust for that agent

with every positive attestation. We use the factor 1
N

to ensure

graceful updates.

The algorithm above is a projected stochastic gradient

descent algorithm and can be analyzed. For example, one can

show that if we start with an initial condition when all trust

values are 1 and the number of malicious agents is < N/2−1,

then, with high probability, the trust values will settle at the

point where all honest agents have a trust value of 1 and all

others have a trust value of 0. The iterates of the trust update

algorithm track a differential inclusion which can be analyzed.

Due to space limitation, we do not include a formal statement

in this conference version. Instead, we resort to simulations

for validation.

III. RESULTS

The algorithms are prototyped and tested on a development

board called Parallella [14]. In our work, each IED is a

Parallella which would record voltage and current data, gather

data from other IEDs, and perform SE if elected as leader. In

order to test our framework, a cluster of IEDs are used, as

shown in fig. 4. The framework for communication between

agents is created using serf [15], which allows broadcast and

unicast communication. It provides a platform for devices to

execute the challenge-response protocol, and gives them the

capability to broadcast events and trigger responses.

For demonstration purposes, due to cost considerations, 5

Parallella boards were used to represent IEDs of the IEEE

5 bus system, as shown in fig. 5, and are connected in a

star network. Initially, devices are started-up almost simul-

taneously, so that they can be synchronised. Then, they start

broadcasting information to each other, so that each device can

have a view of the network, which is designed using serf. Once

they become part of the serf cluster, a leader will be elected,

as explained in section II-B. Now, devices start sending data

to the leader periodically (once a minute).

Additionally, simulations are performed on the IEEE 118

bus system to test the scalability of our proposed framework.
A. SE when there is no malicious agent

We perform SE on IEEE 5 bus system. Virtually, we map

each available Parallella to each bus in the 5 bus system

shown in fig. 5. The data for SE—line and bus parameters—is

acquired from MATPOWER toolbox. In our framework, SE

will begin right after the leader election scheme. The estimated

phase angles are shown in fig. 6f without any malicious agent.

In fig. 6f, the red line indicates true state of the system,

whereas the blue line indicates the estimated states. This result

is obtained after a single Kalman iteration, and the squared

error (L2-norm of the error vector) observed is 0.147.

Fig. 4: IED cluster.
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B. SE when agent at Bus-3 is malicious

We deliberately make the agent at bus-3 malicious by

modifying its core process. After the leader election, attes-

tation between devices begins and the trust of a device is

updated based on the reports obtained from attestation. In our

implementation, every device randomly performs an attestation

in a 40 second interval. Whenever trust of a device drops to 0
at majority of devices, data from that device is ignored. Our

combined choice of attestation and trust management is able to

detect the malicious device in near real time. The fig. 6 shows

the evolution of trust at each agent about all the other agents,

using eq. (4). From fig. 6 one can observe that opinion of trust

for agent 3 is reduced to 0 at agents 1, 2, 4, and 5, presented in

figs. 6a, 6b, 6d and 6e, respectively. However its own opinion

of trust, in fig. 6c is very high—because it doesn’t want to

become a target by reducing its own trust. Now, through

majority voting, agent 3 will be identified as malicious and

its measurements will be subsequently ignored by the leader.

Also, it is evident from figs. 6a to 6e that trust for the other

agents is varying, since agent 3 is constantly accusing others of

being malicious through negative attestations. However, their

trust increases and reaches to 1 due to positive attestations

from non-malicious agents. This process is constantly running

in the background to track any suspicious activity.

The SE result of this case is presented in fig. 6g. The

squared error observed in this case—after a single Kalman

iteration—is 0.2034. During the simulation, data from device

3 is ignored. In both the cases, we were able to obtain accurate

estimates. This process is can be scaled to bigger systems.

In fig. 6h, we provide maximum absolute error observed in

the system when a malicious agent is present. The simulation

is carried out for a duration of 40 samples. A malicious agent

is introduced at the 21st sample, and is detected at the 28th

sample; note that the observed error in the system is elevated

because of the fabricated data reported by the malicious agent.

Once detected, we ignore the data from malicious agent.

C. Multiple malicious agents

1) IEEE 5 Bus System: Evolution of trust for multiple

malicious agents in the IEEE 5 bus system, fig. 5, at a non-

malicious agent, is presented in fig. 7a and fig. 7b. The

evolution of trust at a non-malicious agent when malicious

PMU

PMU PMU PMU

PMU

Bus 1

Bus 2

Bus 3
Bus 4

Bus 5

Fig. 5: IEEE 5 bus system with PMUs, a star network.

agents do not cooperate with each other is presented in fig. 7a.

However, these malicious agents may cooperate each other to

increase their own trust. The results for this case is given in

fig. 7b. In this case, we assume that a malicious agent always

chooses a malicious agent as an attester whenever it gets a

chance of being a verifier and always reports in favor of a

malicious agent. In addition to this, when a non-malicious

agent reports against one of the malicious agent, all malicious

agents increase the trust of this agent instead of reducing it. In

both cases, our framework is able to identify all the malicious

agents in the system, even though the number of malicious

is ≮ N/2 − 1. Furthermore, from fig. 7a and fig. 7b, one

can observe that detection of malicious agents when they are

cooperating with each other takes more number of attestations

in comparison to non-cooperating case.
2) IEEE 118 Bus System: The IEEE 118 bus system is

used to test the scalability of our proposed framework and the

group of 5 IEDs at buses 45, 46, 47, 48 and 49 are assumed to

be malicious. Considering the cost constrains involving with

Parallella devices, we resort to only simulations on this test

system to evaluate our framework. Simulation results on 118

bus systems for both non-cooperative and cooperative cases

are presented in fig. 7c and fig. 7d, respectively. Though our

framework is able to identify all the malicious agents, the

number of attestations performed in both the cases are high.

For a bigger system with hundreds of buses, our framework

might take some time to reach a consensus through majority

voting. Therefore, suitable methods to reduce the number of

attestations are being explored as on of the future directions.

IV. CONCLUSION

In this paper we propose a distributed hierarchy based

framework to protect a critical function (SE) of a coordinator

in a distributed environment. The protection comes from

choosing the coordinator agent in a random fashion, from an

attestation and trust management protocol that maintains and

updates the trust metric of every agent in the system, and from

a consensus algorithm that isolates the malicious agents. Our

main focus has been to demonstrate a decentralized framework

to protect a critical function (SE).
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