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Abstract—Recent cyber-attacks on power grids highlight the
necessity to protect the critical functionalities vital for the safe
operation of a grid. One such example is the power grid state
estimation (SE), since various attacks can be launched by ma-
nipulating the SE results. In this paper, we propose a distributed
hierarchy based framework to secure SE on edge devices. The
data for SE is acquired from the phasor measurement units
(PMUs) installed at various locations within the grid. These
PMUs may be reprogrammed by a malicious actor to manipulate
the data which may cause SE results to be inaccurate. Moreover,
SE is carried out at a fixed central location, which makes it a
prime target for cyber-attacks. Our proposed framework ensures
that data aggregation and SE are carried out at a random device,
and incorporates security features such as attestation and trust
management to detect malicious devices. We test our proposed
framework on a physical cluster of Parallella boards, monitoring
a virtual IEEE 5 bus system. We also do simulations on the IEEE
118 bus system. Our simulations show that the trust for malicious
devices nominally reduces with the number of attestations.

Index Terms—Leader Election, Attestation, Trust Manage-
ment, State Estimation, Kalman Filtering.

I. INTRODUCTION

Power grids are potential targets for various kinds of attacks,
given the massive economic and social disruptions that a
widespread and prolonged loss of electricity could cause. An
attacker may gain operational access to the control system
and could disrupt the power grid’s operation. For a summary
of some recent cyber-security breaches, see [1]. The primary
goals of the above attacks were to obtain operational access to
the central coordinator controlling the respective power grids.
This coordinator is usually fixed in most of the installations.
Even though the processing is distributed and loss of one
sub-area data can be handled by the coordinator, loss of the
coordinator itself will lead to the loss of visibility and control
of the entire system.

In recent years, edge computing in smart grid has received
some attention [2]. The edge devices, capable of a wide range
of functions, are often called intelligent electronic devices
(IEDs). They are installed at substations, and are equipped
with processors to handle data aggregation and other func-
tionalities associated with measurement and protection.

If the role of coordinator is randomly switched among
the existing IEDs, and the automatic detection of malicious
agents, their isolation, and subsequent recovery is enabled,
then the possibility of complete loss of system visibility
and controllability can be avoided. With this motivation, we
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propose a distributed hierarchy based framework to achieve not
only a randomization of the coordinator, chosen to perform
the critical computations, but also integrity assessment of
the agents in the system. The coordinator performs critical
computations and operations that ensure large system visibility
and control, through secure data aggregation from the edge
devices (IEDs). Our focus is on the integration of various
schemes to protect the critical functionality and a physical
demonstration of its working.

A. Our Contributions

Our contributions can be summarized as follows.

e We propose a distributed hierarchy based framework
to protect the state estimation process on the edge devices.
The hierarchy is obtained through the leader election process
described in section II-B. Leader election, attestation, and trust
management work together to protect SE at the edge devices.

e We develop a simple leader election (LE) protocol to
randomize the location of the coordinator among the devices.
We assume that the network is completely connected, and the
devices exchange information through broadcasting.

e We propose a distributed consensus-based trust manage-
ment scheme, assuming that the number of malicious agents in
the network is strictly less than % — 1, with N being the total
number of agents in the network. Using the attestation-cum-
consensus scheme, devices first identify malicious agents and
then eliminate their data from the calculations. If the leader
itself is malicious, a new leader will be elected automatically.

e We validate our proposed framework on a testbed cluster
of IEDs (Parallella) that monitor a virtual IEEE 5 bus system.

e Simulations on the IEEE 118 bus system are used to verify
the scalablity of our proposed framework.

B. Related Works and Connections to This Work

PMUs are time synchronized through GPS, and are capable
of producing accurate phasor representations of voltage and
current signals [3]. We use a Kalman filter for SE on PMU
measurements which run in a centralized manner, but in one
randomly chosen control center/IED. Our proposal involves
the use of leader election implemented in a distributed way.
An agent, among the many in the grid, is chosen to coordinate
and perform SE. Our scheme, inspired by [4], not only tries to
prevent malicious agents from hijacking the election process,
but also ensures that each agent has an equal probability of
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Fig. 1: Overview of the scheme.

being elected. Our choice of leader election scheme makes
significant usage of commitment schemes; for details see [5].

In this work, we have used a distributed software-based
attestation scheme, inspired by the one proposed in [6], to
verify the integrity of the code running within an agent, with-
out physically accessing it. Typically, software-based remote
attestation uses a challenge-response based protocol between
two agents, as described in SWATT [7]. If the integrity of
the code running within an agent is compromised then we
call it as malicious. In order to infer that there are malicious
agents and to identify them, we utilize a trust management
scheme. As suggested in [8], we integrate attestation with trust
management, where attestation gives a measure of integrity,
and trust management uses the outcome to determine whether
an agent is malicious or not.

II. METHODOLOGY

In this section, we give an overview of our framework,
depicted in fig. 1.

A. State Estimation

The SE algorithm estimates the state of the power system by
processing the measurements obtained from various locations
within the power system. In this work, we consider PMU
measurements which provide voltage and current phasors, the
voltage measurement model is linear, although the current
phasor measurement model can be nonlinear if one represent
system state in polar coordinates. By using the methods in
[9] and [10], if one uses rectangular coordinates, the current
phasor measurement model, too, is not only linear but also
time invariant. Hence one gets the linear model

Zt:th+nt, (1)

where z; and z; are the measurement and the state vectors
in rectangular coordinates, 7; is the noise vector written in
rectangular coordinates, and H does not depend on time [10].
Furthermore, the state evolution can be written in rectangular
coordinates as

Tip1 = Ty + & ()

In rectangular coordinates, the state evolution noise vector &,
is modelled as N(0,Q;:) and observation noise vector 7 is
modelled as N (0, R;) [11]. In this work, we used Kalman

filter based state estimation approach, described in [12]. In
the following sections, we will illustrate the security schemes
used in this work.

B. Leader Election

In our design, SE will be run at a leader. We assume that
there may be multiple malicious agents, even during leader
election, and the malicious agents may try to influence the
outcome of election. For example, one of them may desire to
be the leader, or avoid becoming the leader, or favor another
malicious agent to become the leader. Furthermore, agents
can communicate with each other only via broadcast, and no
unicast or multicast is allowed during the election process.
We assume that a secure broadcast channel is available and
the broadcast messages are taken to be common knowledge. A
detailed description of our scheme, shown in fig. 2, is provided
below. Suppose there are N agents in the network.

e Each agent i chooses a 32-bit identity number, ID;,
which is broadcast to all agents. Once an agent receives
ID := [IDy,IDy,...,IDyN_4], it will then sort them in
ascending order, and store them in 1 Daoried.

e In the next step, each agent chooses a number C; €
{0,..., N — 1} and a random string R;.

e Agent ¢ then commits C; using a cryptographic hash
function #, which takes the hash of C; appended with the
random string to give HC; := H(C;||R;).

e Agent ¢ broadcasts its own hash HC;, and aggregates the
hashes HC := [HCy, ..., HCx_1] of all agents.

e In the next phase, agents reveal their C; and R; to
every other agent (via broadcast). This information, along
with respective hashes, is used to verify that the agent has
committed to its C;, and has not changed it.

e Now, each agent will compute k, using the equation

N-1

Z C; | mod N. 3

=0

k:

e Finally, the agent with the k" smallest ID in IDgpprteq
is chosen as the leader.

Since each agent will possess ID; from every agent ¢,
IDg,req Will be identical across agents. Similarly, all agents
will be able to arrive at the same value of &, since each agent
will possess C; from every agent ¢. They can therefore agree
on a particular agent becoming the leader without the need for
a central entity. These ID’s and C’s are unique whenever a
new elections process is initialized. The above algorithm is a
modification of the algorithm A — LEADP$"" in [4] which
is used to elect a leader in an asynchronous unidirectional
ring network of agents. Our version of algorithm differs from
A — LEADPS“™ in two ways. First, we use a hash-based
commitment scheme instead of Naor’s protocol [4]; second,
A — LEADP$"" algorithm embeds a unidirectional ring into
a completely connected network. However, this approach is
time consuming, since any communication must pass through

IThe USA has about 1700 PMUs installed. The probability that two agents
have the same 1D is upper bounded by 4 x 10~7.
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Fig. 2: Overview of the leader election scheme.

the entire ring. Instead, for ease of implementation, we allow
agents to use a secure broadcast channel for communication,
which makes our problem easier than the one in [4].

We choose a hash-based commitment scheme built on
cryptographic hash functions . These commitment schemes are
known to be secure; see [5]. The hash function we use in our
work is taken from the libhydrogen cryptographic library [13].

C. Threat Model

In our model, we assume a cyber-attack in which an attacker
can capture an agent or group of agents, re-program them with
malicious code, and then re-deploy them back into network
with the intent of affecting state estimation.

In our threat model we assume that the number of malicious
agents is < % —1 and the attacker does not enlarge the agents’
memory. This makes it difficult to compromise the attestation
algorithm itself. Further, we assume that the processor speed
and memory access rate cannot be increased and a compro-
mised agent stays compromised. Note that we do not consider
physical attacks, such as transmission blockage, modification
of physical sensors, etc., which are other ways by which an
agent’s integrity could be compromised.

D. Malicious Agent Detection

In this section, we first describe the attestation scheme. We
then describe the trust management scheme. Together they
help detect malicious agents in the network.

1) Attestation: Our attestation framework differs from oth-
ers in using the concept of a report, i.e., after every attes-
tation, the verifier broadcasts the details of attestation to all
other agents. This report contains various parameters used in
attestation, along with the outcome, i.e., whether the verifier
suspects the attester to be malicious or otherwise. Agents make
use of the reports to arrive at a consensus on whether malicious
agents are present, and if yes, identify these malicious agents.

The attestation algorithm is designed to check if the program
code has been corrupted by an attacker, as described in
section II-C. The program memory, which contains the vital
code is checked during the attestation. Every agent serves
as a verifier at least once in a window of approximately 7T’
seconds. During this interval, an agent will provision itself
as a verifier at a random instant of time, and challenge a
randomly chosen attester, and then stay idle for the remainder
of the time interval. However, in this interval, an agent can
receive multiple challenges. This process is repeated every T’

seconds, ad infinitum. The frequency of attestations an agent
can perform (the value of T') can be limited based on its
computational capability.

The attestation scheme, shown in fig. 3, is summarised
below.

e Once an attester is chosen, the verifier creates the chal-
lenge, and sends it to the attester. The challenge includes
the following parameters:

— A nonce that ensures that the challenge is not dupli-
cated.

— The IP address of the attester.

— The random offset, which specifies the starting ad-
dress of the memory region to be validated.

— The size of the number of bytes to be validated.

— The timestamp of when the challenge is issued.

— The signature to ensure authenticity of the agent.

o The attester verifies the contents of the challenge, per-
forms a checksum on the memory region specified by the
challenge, and then provides a response containing the
hash generated by the checksum.

o The verifier validates the response by calculating the hash
on its own memory, using the same challenge parameters.

o If the hashes are identical, then the verifier finds the
attester to be normal. Otherwise, it suspects the attester
of being malicious. The verifier then broadcasts the status
to the entire network.

o The other agents then update the trust of the attester based
on the status of the report. See section II-D2 below.

2) Trust Management: Suppose there are N agents in
the network. Whenever an agent k attests an agent j and
broadcasts its report, the evolution of trust of agent j at agent
1 at time t 4+ 1 can be expressed as

1
Pii(t+1) = [Py () + Bumss Gan(®)] . Vi=1.. N @)

where [z]] is the projection of z on the set [0, 1], p;x(t) is the
trust of agent k at agent ¢ at time ¢, and Ay, ;(pix(t)) is (in
our design)

An (oo (£)) = pikT(t), if the attestation is positive,
k—j (pzk( )) = Pir(t) . . . .
— =%, If the attestation is negative,

&)
where the subscript £ — 7 indicates that agent & is the verifier
and agent j is the attester. When the agent j fails an attestation,
we call it as a negative attestation, whereas if an attestation is
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Fig. 3: Sequence diagram of the attestation scheme.

successful, we call it as a positive attestation. We assume that
every agent has its own opinion of trust for every other agent
in the network and must perform an attestation on another
agent in a set time interval. Moreover, we also assume that
there will be no report losses during the attestation process.
At the beginning, an agent’s opinion of trust for every agent
in the network is initialized to 1.

Whenever an agent k attests agent j, agent k broadcasts
the status to all other agents. Then, every agent ¢, i €
{1,...,N}\{j}, in the network, updates the trust of agent j
using eq. (4) by considering its own opinion of trust of agent
j and agent k, which are p;;(t) and p;x(t), respectively. If
the opinion of trust of a particular agent reduces to O, then
agents perform majority voting to cast out the malicious agent
from the network. Trust of a non-malicious agent may reduce
because of false accusations by the malicious agents. However,
other non-malicious agents increase the trust for that agent
with every positive attestation. We use the factor % to ensure
graceful updates.

The algorithm above is a projected stochastic gradient
descent algorithm and can be analyzed. For example, one can
show that if we start with an initial condition when all trust
values are 1 and the number of malicious agents is < N/2—1,
then, with high probability, the trust values will settle at the
point where all honest agents have a trust value of 1 and all
others have a trust value of 0. The iterates of the trust update
algorithm track a differential inclusion which can be analyzed.
Due to space limitation, we do not include a formal statement
in this conference version. Instead, we resort to simulations
for validation.

III. RESULTS

The algorithms are prototyped and tested on a development
board called Parallella [14]. In our work, each IED is a
Parallella which would record voltage and current data, gather
data from other IEDs, and perform SE if elected as leader. In
order to test our framework, a cluster of IEDs are used, as
shown in fig. 4. The framework for communication between
agents is created using serf [15], which allows broadcast and

unicast communication. It provides a platform for devices to
execute the challenge-response protocol, and gives them the
capability to broadcast events and trigger responses.

For demonstration purposes, due to cost considerations, 5
Parallella boards were used to represent IEDs of the IEEE
5 bus system, as shown in fig. 5, and are connected in a
star network. Initially, devices are started-up almost simul-
taneously, so that they can be synchronised. Then, they start
broadcasting information to each other, so that each device can
have a view of the network, which is designed using serf. Once
they become part of the serf cluster, a leader will be elected,
as explained in section II-B. Now, devices start sending data
to the leader periodically (once a minute).

Additionally, simulations are performed on the IEEE 118
bus system to test the scalability of our proposed framework.
A. SE when there is no malicious agent

We perform SE on IEEE 5 bus system. Virtually, we map
each available Parallella to each bus in the 5 bus system
shown in fig. 5. The data for SE—line and bus parameters—is
acquired from MATPOWER toolbox. In our framework, SE
will begin right after the leader election scheme. The estimated
phase angles are shown in fig. 6f without any malicious agent.
In fig. 6f, the red line indicates true state of the system,
whereas the blue line indicates the estimated states. This result
is obtained after a single Kalman iteration, and the squared
error (Lo-norm of the error vector) observed is 0.147.

///////IIIH\\\\ -
T 4ol

Fig. 4: IED cluster.
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B. SE when agent at Bus-3 is malicious

We deliberately make the agent at bus-3 malicious by
modifying its core process. After the leader election, attes-
tation between devices begins and the trust of a device is
updated based on the reports obtained from attestation. In our
implementation, every device randomly performs an attestation
in a 40 second interval. Whenever trust of a device drops to 0
at majority of devices, data from that device is ignored. Our
combined choice of attestation and trust management is able to
detect the malicious device in near real time. The fig. 6 shows
the evolution of trust at each agent about all the other agents,
using eq. (4). From fig. 6 one can observe that opinion of trust
for agent 3 is reduced to O at agents 1, 2, 4, and 5, presented in
figs. 6a, 6b, 6d and 6e, respectively. However its own opinion
of trust, in fig. 6¢ is very high—because it doesn’t want to
become a target by reducing its own trust. Now, through
majority voting, agent 3 will be identified as malicious and
its measurements will be subsequently ignored by the leader.
Also, it is evident from figs. 6a to 6e that trust for the other
agents is varying, since agent 3 is constantly accusing others of
being malicious through negative attestations. However, their
trust increases and reaches to 1 due to positive attestations
from non-malicious agents. This process is constantly running
in the background to track any suspicious activity.

The SE result of this case is presented in fig. 6g. The
squared error observed in this case—after a single Kalman
iteration—is 0.2034. During the simulation, data from device
3 is ignored. In both the cases, we were able to obtain accurate
estimates. This process is can be scaled to bigger systems.

In fig. 6h, we provide maximum absolute error observed in
the system when a malicious agent is present. The simulation
is carried out for a duration of 40 samples. A malicious agent
is introduced at the 21 sample, and is detected at the 28™
sample; note that the observed error in the system is elevated
because of the fabricated data reported by the malicious agent.
Once detected, we ignore the data from malicious agent.

C. Multiple malicious agents

1) IEEE 5 Bus System: Evolution of trust for multiple
malicious agents in the IEEE 5 bus system, fig. 5, at a non-
malicious agent, is presented in fig. 7a and fig. 7b. The
evolution of trust at a non-malicious agent when malicious

Fig. 5: IEEE 5 bus system with PMUs, a star network.

agents do not cooperate with each other is presented in fig. 7a.
However, these malicious agents may cooperate each other to
increase their own trust. The results for this case is given in
fig. 7b. In this case, we assume that a malicious agent always
chooses a malicious agent as an attester whenever it gets a
chance of being a verifier and always reports in favor of a
malicious agent. In addition to this, when a non-malicious
agent reports against one of the malicious agent, all malicious
agents increase the trust of this agent instead of reducing it. In
both cases, our framework is able to identify all the malicious
agents in the system, even though the number of malicious
is £ N/2 — 1. Furthermore, from fig. 7a and fig. 7b, one
can observe that detection of malicious agents when they are
cooperating with each other takes more number of attestations
in comparison to non-cooperating case.

2) IEEE 118 Bus System: The IEEE 118 bus system is
used to test the scalability of our proposed framework and the
group of 5 IEDs at buses 45, 46, 47, 48 and 49 are assumed to
be malicious. Considering the cost constrains involving with
Parallella devices, we resort to only simulations on this test
system to evaluate our framework. Simulation results on 118
bus systems for both non-cooperative and cooperative cases
are presented in fig. 7c and fig. 7d, respectively. Though our
framework is able to identify all the malicious agents, the
number of attestations performed in both the cases are high.
For a bigger system with hundreds of buses, our framework
might take some time to reach a consensus through majority
voting. Therefore, suitable methods to reduce the number of
attestations are being explored as on of the future directions.

IV. CONCLUSION

In this paper we propose a distributed hierarchy based
framework to protect a critical function (SE) of a coordinator
in a distributed environment. The protection comes from
choosing the coordinator agent in a random fashion, from an
attestation and trust management protocol that maintains and
updates the trust metric of every agent in the system, and from
a consensus algorithm that isolates the malicious agents. Our
main focus has been to demonstrate a decentralized framework
to protect a critical function (SE).
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