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Abstract—Workers on Electronic Manufacturing Service
(EMS) assembly lines are exposed to a high degree of occu-
pational stress and fatigue. There is a need for assistive tech-
nologies to limit worker stress/fatigue. Electro Dermal Activity
(EDA) (Skin Conductance) is a known indicator of a worker’s
stress/fatigue level. We propose a novel Electrostatic Discharge
(ESD) wrist strap-based EDA sensor. Our sensor seamlessly
integrates with the dual-wire grounded ESD wrist strap that
EMS operators are mandated to wear. Our approach for EDA
measurement is non-intrusive, considering that the operators are
accustomed to continuous usage of ESD wrist straps. Besides
EDA measurement, our front-end circuit also monitors the
integrity of the ESD wrist strap and alerts the wearer in the
event of an intermittent or open ground. We present the circuit
design and stress-test-based experimental results.

Index Terms—Electrodermal Response, Fatigue, Occupational
Stress, Static Charge, Wearable Electronic Devices

I. INTRODUCTION

Workers engaged in Electronics Manufacturing Services
(EMS) are at risk of exposure to occupational stress due to
long working hours, strict deadlines and sleep deprivation [1].
Stress and fatigue lead to operational errors, reworking, and
occupational injury. To ensure healthy working conditions,
workers on assembly lines and manual soldering workstations
should take timely breaks to avoid stress or fatigue. However,
workers may not realize that they are stressed or fatigued.
Automated alerts and interventions that help workers manage
stress are therefore needed.

Work related fatigue affects a number of human physio-
logical and psychological factors [2], [3]. An indicator of
stress/fatigue is Electrodermal Activity (EDA), a physiological
signal that is used in stress and fatigue research [4], [5], [6].
EDA is categorized into EDL (Electrodermal Level, also called
tonic phenomenon) and EDR (Electrodermal Response, also
called phasic phenomenon) [4], [7]. Electrodermal Level is
the baseline level of skin conductance in the absence of a
stimulus. Electrodermal Response is often attributed to stress
stimuli that produce phasic responses. For example, a stress
stimulus resulting in > 0.03u.S increase in skin conductance
is flagged as an EDR [8]. Electrodermal Activity signals have
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Fig. 1. EDA-cum-ESD sensor

good fidelity in a temperature- and humidity-controlled envi-
ronment like an EMS facility. Wearable devices and sensors
that measure EDA between two conductive surfaces in contact
with the skin are available, see [9].

However, any assistive device for measuring EDA should be
non-intrusive. The technique should not require the placement
of additional wearable devices on the worker’s body. Noting
that every operator on the electronics manufacturing line is
mandated to wear an electrostatic discharge (ESD) prevention
wrist strap, we propose an EDA sensor that integrates seam-
lessly into the ESD protection device. Given that the workers
are already accustomed to wearing the ESD wrist strap, our
integrated EDA sensor will neither cause additional worker
discomfort nor interfere with the worker’s actions. See Fig.
1 for a prototype of our EDA sensor cum ESD wrist strap
integrity monitor (henceforth ESD-cum-EDA sensor).

While the recommended sites for exosomatic EDA measure-
ment are fingers, palms or inner side of foot [4], EDA can also
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Fig. 2. Schematic of proposed EDA-cum-ESD sensor

be picked up on the wrist’s volar surface [4]. Indeed, as per
[9], EDA measurement on the wrist provided a cleaner phasic
response than those at the fingers. This justifies our integration
of EDA measurement with ESD wrist straps.

Electrostatic Discharge Standard [10] recommends the use
of continuous wrist strap integrity testers. Single- and dual-
wire ESD wrist strap integrity testers are available in the
market. Dual-wire ESD wrist strap integrity testers may use
DC voltage or AC voltage or constant current excitation [11],
[12]. Electrodermal Activity measurements also require an
excitation source [13]. We have adopted a common DC voltage
excitation source for both ESD integrity testing and EDA
measurement.

Our design alerts the wearer not only when there is an
intermittent or open ground but also when the worker is
stressed. The integrated device can also house additional
sensors to monitor skin temperature, heart rate, etc., to become
a System-on-Wrist.

The paper is organized as follows. We first describe our
EDA-cum-ESD sensor hardware. We then present signatures
corresponding to ESD integrity testing. Next, we describe the
signal processing steps to extract the EDR from the EDL for
stress level assessment. Finally, we present an experimental
setup for design validation and discuss the outcomes.

II. HARDWARE DESIGN

Fig. 2 shows the circuit diagram of our dual-wire EDA-cum-
ESD sensor. Dual-wire ESD wrist strap makes a two-point
contact with the body (A and B). The skin resistance Rpoqy is
a measure of EDA. 1M() impedances R, and Ry connect the
ESD wrist strap to earth. Vg is a 3V DC excitation that is used

for a) exosomatic measurement of EDA and b) monitoring
the wrist strap’s connection integrity to ground. Voltage 1}
is filtered using the Rs5,C; low-pass filter. After buffering,
we get the voltage V4 which is a measure of the voltage
across the parallel combination of skin resistance o4y and
strap resistances R; + Rs. The voltage is then digitized by
an analog-to-digital converter (ADC). The ADC has a 12-
bit resolution and samples V4 at the rate 2.5H 2. (A notch
filter to remove line frequency noise may also be introduced
in the signal path.) The EDA-cum-ESD sensor connects to a
data acquisition system using a Bluetooth Low Energy (BLE)
protocol. The voltage V4 is given by

R
Vi=Vg—-FL 1
A E(RP+R3+R4) o
where
Rbody (Rl + RQ)
R, = 2
P Rbody + Ri + Ry @
If Ry = Ro = R3 = Ry = 1M and Vg = 3V, then
Vi 310dy )

- 2Rpody + (2 x 106)

The impedance Ryoqy is an indicator of the wearer’s stress
level; Rpoqy decreases as stress level increases because the
induced stress causes sweating that increases the conductivity
between the pads A and B. Thus, as per (3), V4 decreases
as the stress level increases. The voltage V4 also indicates
the state of the ESD wrist strap. If the wrist strap is not
in use (i.e., Rpoqy = 00) and the connection to ground is
intact, then V4 = 1.5V. If the wrist strap is not in use
(Rpodqy = ©00) but the connection to the ground is compro-
mised, then V4 = 3V. When the wrist strap is in use, with
the connection to the ground intact, V4 is given by (3). In
the event when an in-use wrist strap disconnects from ground
(Rp = Rpody), the measured voltage V4 will instantly step up
t0 Va = 3Rpody/(Rbody + (2 x 10°)); this will be flagged as
an ESD wrist strap ground-open event, and the wearer will
be alerted. The comparator shown in Fig. 2 detects the ESD
integrity failure event by comparing the voltage V4 with a
predefined threshold.

The ESD-cum-EDA sensor hardware, the excitation compo-
nents, the low-pass filter, the ADC, and the BLE radio were
all integrated on a custom PCB and packaged inside the white
3D printed housing shown in Fig. 1.

Fig. 3 shows a family of curves for the voltage V; across
electrodes A and B over a typical range of skin conductance
values. Each curve in Fig. 3 corresponds to a specific value of
Rs + Ry4. Fig. 4 shows a similar set of curves for the current
flow across the skin over a typical range of skin conductance
values. An appropriate value of resistance R3 + Ry is chosen
to keep current density in the skin below 10pA/ecm? as
recommended in [14] to avoid damage to sweat glands. Thus,
the value of R3 + R4 depends on the surface area of contacts
A and B. For our prototype device, R3 + R4 was chosen
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Fig. 3. Comparison of voltage across skin vs skin conductance for different
values of R3 + R4. Also shown is the voltage profile for reference device
[14].

to be 2M€). The corresponding voltage and current curves
for our prototype device are highlighted as solid lines with
circular markers in Fig. 3 and Fig. 4 respectively. Also shown
are the skin voltage and skin current curves of another EDA
measurement device [14] for comparison. These curves are
highlighted as solid lines with triangular markers. This device
measures EDA using a sleeve with two conductive fabric
electrodes. These electrodes make contact with the distal
forearm at the wrist. It is clear from Fig. 3 and Fig. 4 that the
voltage and current profiles of our device are comparable with
those of the EDA measurement device in [14]. For the specific
case of Rg + Ry = 2MY2, the magnitude of skin current for
our device is lower than that for the reference device in [14].
However, once we consider the surface area of contacts, the
value of the average skin current density for our device is still
comparable (< 10pA/cm?) with that of the reference device
in [14].

Devices described in [15] and [16] are commercially avail-
able wrist worn wearable devices that measure EDA using
two electrodes on their strap. Device in [15] samples EDA at
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Fig. 4. Comparison of skin current vs skin conductance for different values
of R3 + R4. Also shown is the current profile for reference device [14].

4H z. Device in [14] includes a low pass filter with a cutoff
frequency at 1.6Hz in the signal path. Our ESD-cum-EDA
device samples the EDA signal at 2.5H z.

Devices [15] and [16] use a proprietary EDA measurement
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Fig. 5. Detection of ESD strap disconnect from safety earth
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Fig. 6. Algorithm for Extraction of EDR from EDL

frontend [17] with a means to desaturate the output voltage
using a compensation current source. Device [14] uses an
automatic bias control circuit to improve the resolution in the
measurement of Skin Conductance Response (SCR).

III. CONTINUOUS ESD INTEGRITY TESTER

The ESD standard [10] recommends the use of continuous
wrist strap integrity testers. Fig. 5 shows the voltage signature
in the event the wrist strap momentarily disconnects from
safety earth. Fig. 5 highlights this event in red around sample
500. The user will be alerted if the voltage V4 crosses a set
threshold. Fig. 5 also highlights the start of a stress test in
yellow around the samples 2500 — 3500. As Fig. 5 is a plot of
voltage, the voltage across the two skin contacts falls as the
skin conductance increases during the stress test.

IV. ALGORITHM FOR EXTRACTION OF PHASIC RESPONSE

There are many algorithms proposed in the literature for
the extraction of Phasic Response (EDR) from EDL [6], [8].
There are two primary components of EDA viz. EDL and
EDR [4]. The slowly changing baseline level is called the
tonic phenomenon (EDL). Skin conductance level (SCL) is a
measure of EDL. The fast-changing component is called the
phasic response (EDR). Skin Conductance Response (SCR)
(or Skin Resistance Response (SRR)) and non-specific Skin
Conductance Response are measures of EDR. Fig. 6 shows
the steps involved in the extraction of SCR (Phasic response)
from the EDA. The EDA signal is passed through a 0.05Hz
cutoff high-pass filter (HPF) to remove the slowly changing
SCL component. The output of the HPF reveals the EDR. The
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phasic response to external stimuli (SCR) is characterized by a
change in EDR that crosses a certain threshold. The threshold
is set to 0.03u.5, as suggested in [8]. The final plot of Fig. 6
shows the EDR and the EDL. We superimpose the EDR on
the EDL as red circular markers.

V. EXPERIMENTAL STRESS TEST

We placed the EDA-cum-ESD sensor on the wrist of a
test volunteer. The strap shown in Fig. 1 is the same type
of ESD wrist strap typically worn by workers in an electronic
assembly line. The volunteer took deep breaths for 90 seconds
to de-stress, which revealed the volunteer’s baseline EDL. The
volunteer then completed a task in a controlled test setup. We
chose a wire loop game for our controlled stress-test task. The
setup consisted of a curved serpentine wire and a metal loop,
as shown in Fig. 7. The volunteer’s task was to maneuver
the loop along the curved wire without making contact with

Fig. 7. Experimental stress test setup
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Fig. 8. EDA and performance data for four users collected during the stress test.

the wire. A computerized referee deducted points for every
touch, and for the time taken to traverse the wire from start to
finish. A loud buzzer would sound upon each contact of the
loop with the wire. The stress test helped correlate the phasic
response to external stimuli. Fig. 8 shows the test results for
four users. The red curve indicates the touch-count (right Y-
axis). The green bar plot marks every touch instance. The
tall green bars denote the start and stop epochs of the wire
loop game. The blue curve represents the skin conductance in
Siemens (S) as measured by our EDA-cum-ESD sensor (left
Y-axis). The plot also indicates the time taken to complete
the game. We observe that the EDA rises as the user starts
the wire loop game. The phasic response is extracted and

TABLE I
RESULTS OF EXPERIMENTAL STRESS TEST VALIDATING OPERATION OF
EDA-CcUM-ESD SENSOR

Correlation Change in
Stress Test . .
Touch | Coefficient skin
User # | completed d d
in (secs) Count | (V4 an conductance
touch count) | (uS)
User 1 89 86 -0.98174 431
User 2 | 103 97 -0.90841 2
User 3 101 16 -0.95597 5.56
User 4 | 185 81 -0.95262 2.77
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superimposed on the skin conductance plot as cyan-colored
markers. The SCR correlates with external stress stimuli viz.
a) when the user makes multiple successive touches, b) when
the user tries to maneuver the loop around tight corners that
require intense hand-eye coordination and c) when the user is
apprehensive about the game score at the end of the game. We
also observe that the EDA flattens at the end of the stress-test.
Table I summarizes the results of the experiment. The value
of Pearson’s correlation coefficient indicates a statistically
significant correlation between measured voltage VA and the
touch count.

VI. CONCLUSION

In this paper, we presented a non-intrusive device for EDA-
based monitoring of stress/fatigue levels of EMS workers. We
integrated EDA sensing into the ESD wrist strap that workers
are mandated to wear. The device can assist workers to better
manage their stress/fatigue by enabling automated triggers
upon indications of stress/fatigue. The circuit also acts as an
ESD wrist strap continuous integrity tester and warns the user
in the event of an intermittent or open ground. Results from
an experimental stress test reveal the components of EDA and
their good correlation with external stress stimuli. We also
presented an algorithm for the extraction of EDR from EDL.
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