
An Open Simulator framework for 3D Visualization
of Digital Twins

Ashish Joglekar
AI and Robotics Technology Park (ARTPARK)

Indian Institute of Science
Bangalore, India
ashishj@iisc.ac.in

Gaurav Bhandari
RBCCPS

Indian Institute of Science
Bangalore, India

gauravbhandari11@gmail.com

Rajesh Sundaresan
Electrical Comm. Engg. and RBCCPS

Indian Institute of Science
Bangalore, India
rajeshs@iisc.ac.in

Abstract—Production Digital Twins (DTs) mirror and interact
with the production lines that they model through the Industrial
Internet of Things (IIoT) based bidirectional data flow pipelines.
There is a need for interactive 3D visualization of DTs to unlock
the promised capabilities for real time monitoring, optimization,
reconfiguration, maintenance and control of the production
process. DTs based on open source frameworks like SimPy lack
an interactive 3D visualization frontend. This paper proposes a
generic open source framework for the 3D visualization of any
Discrete Event Simulation (DES) based production DT. As an
example, an interactive 3D visualization of a SimPy based DT of
a real Surface Mount Technology (SMT) Printed Circuit Board
(PCB) line is presented. We visualize machine states, process flow,
energy and throughput metrics of the DT and the real line in
3D. We believe that the proposed 3D visualization framework
can help ease model validation efforts and can enable interactive
“what if” analysis and control for optimization of the production
process.

Index Terms—Digital twin, 3D visualization, user interface,
discrete event simulation, IRC, assembly line

I. INTRODUCTION

A Digital Twin (DT) is a virtual representation of a physical
product or process. A production DT is a virtual model that
reflects the state of a production/assembly line. The actual
assembly line (henceforth real line) is instrumented with
sensors to capture production process states and other vital
metrics. Data from the real line is then relayed to the DT using
the modern sensing-cum-networking paradigm of Industrial
Internet of Things (IIoT). Once the DT is updated with data
from the real line, it can be used in process monitoring, “what
if” simulations, optimizations, planning/design, maintenance,
production process management and safety applications [1].

A discrete event simulation (DES) model is one of the
technology enablers for the development of a production DT
[3], [4]. For DTs to be useful to factory floor managers, an
intuitive user interface (UI) is needed. Commercial DES tools
do provide graphical user interfaces to improve user experi-
ence [5]–[7]. However, free and open source DT frameworks
like SimPy lack inbuilt and interactive visualization of the
simulated production process [5]. As examples, the work of
[8] is a project that visualized a SimPy based DES in Maya,

This work was supported by MHRD, SERB IRRD of DST, and TCS under
UAY grant number IISc001

Fig. 1: Proposed 3D visualization framework

which is a commercial 3D animation and rendering tool.
SimPy results were visualized in 2D in [9]. A few open source
DES frameworks like DESMO-J provide 2D and 3D user
interface libraries (as extensions to the underlying framework)
but these are still in development [10]. In [11] multiple DT
instances were simulated and state variables were visualized
on isochrone maps with seamless replay and jump-to-point
functionality. The work in [12] combined DT with Virtual
Reality (VR) technology. None of these, nor any other work
to the best of our knowledge provide any generic open source
3D visualization framework for DES based production DTs.

To fill the above-mentioned gap, we propose a generic 3D
visualization framework for production DTs that is agnostic to
the underlying DES framework, see Fig. 1. In our solution, we
have leveraged the capabilities of the open source multi plat-

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

979-8-3503-9645-4/22/$31.00 ©2022 IEEE 278

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
rn

et
 o

f T
hi

ng
s a

nd
 In

te
lli

ge
nc

e
Sy

st
em

s (
Io

Ta
IS

) |
 9

79
-8

-3
50

3-
96

45
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

Io
Ta

IS
56

72
7.

20
22

.9
97

59
80

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

User's System

SMT Assembly Line

IIOT Gateway

Reflow Oven
Pick and
Place 2

Pick and
Place 1

Screen
Printer

Line

Loader Proximity Sensor

Vibration Sensor

Energy Meter

Sensor Key

On Premise/Cloud Server

DB

InfluxDB

Data Analytics
Pipeline

Extracts real time
Machine Parameters

Digital Twin

SimPy based DES

IRC Server

unrealIRCd

Opensim Client

e.g. Firestorm

3D visualization of SimPy
DT and real line data

HTTP API
GATEWAY

IRC

Client

(ii)

IRC
Client

(In

built)

Opensim
Server

Open Simulator

HTTP
Dashboard (2D)

Grafana

(Real line data
visualization)

(a) Real, instrumented SMT PCB line [2] and architecture of the proposed 3D visualization framework

(b) DT visualized in an OpenSim Client on a user’s system in 3D

Fig. 2: Instrumented SMT PCB line and its corresponding DT

form 3D applications server called Open Simulator (OpenSim)
[13]. Our 3D visualization framework allows for a) creation
of the virtual factory floor/ assembly line in 3D by importing
computer-aided design (CAD) models b) re-configuration of
the SimPy based digital twin of the assembly line using a
simple drag and drop UI in 3D (which is currently done
through configuration files) c) simultaneous visualization of
the data from the real line and its digital twin in a virtual
3D environment d) deployment of virtual Human Machine
Interface (HMI) panels in the 3D virtual environment for
remote control of the real line e) visualization of human agents
interacting with the line including manual interventions to
trigger events during a DES run, and g) ability to visualize
state of concurrent DTs to perform “what if” analysis.

Though the architecture of our 3D visualization framework
is generic, we present its use for a specific case study. Fig. 2

shows the block diagram schematic of our real instrumented
Surface Mount Technology (SMT) assembly line and its
corresponding digital twin rendered in OpenSim.

Section 2 of this paper gives a brief description of a SimPy
DES based DT of a real SMT assembly line. We argue the need
for an interactive 3D visualization framework after considering
the lack of visibility of the complex DT’s internal states
and processes. In section 3, we present various components
of the software architecture needed to build a generic DT
3D visualization framework. These include a) OpenSim 3D
visualization server and client b) an Internet Relay Chat
(IRC) bridge between SimPy and OpenSim c) 3D rendering
of a virtual factory floor in an OpenSim client including
scripting of objects/processes, and d) concurrent visualization
of multiple DT configurations and real time data from the
physical line. We also highlight the use cases of our interactive

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

279
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: DES of an SMT PCB line. Parameters that receive hourly updates and state change messages are highlighted

3D visualization framework with a case study on its use in
the energy optimization of a real SMT Printed Circuit Board
(PCB) assembly line. Finally, in section 4, we list features that
can be added to our 3D visualization framework.

II. SIMPY DES BASED DT OF AN SMT LINE

Let us consider a production DT of a real SMT PCB as-
sembly line based on a discrete event simulation (DES) SimPy
model [2]. Fig. 2a is a schematic representation of a typical
PCB SMT line. Fig. 2a also shows the logical and physical
architecture of the proposed 3D visualization framework. Fig.
2b shows the Digital Twin of this line visualized in 3D using
our OpenSim based framework. The machines on the line and
human agents interacting with the line were modelled in [2] as
SimPy processes. Fig. 3 shows the states that were modelled
in SimPy to capture the behaviour of every real machine and
intervening agents on the line (in blue). We instrumented the
real line with sensors to infer various machine parameters
and processing states. The corresponding energy consumption
pattern was also recorded. This data was fed to the DT and the
parameterized SimPy model of every machine was updated on
an hourly basis. This data driven model of the line was able to
achieve accurate estimates of throughput and energy use. The
parameters that received hourly updates are highlighted in red
in Fig. 3.

Fig. 3 reveals that even a simple assembly line like an SMT
PCB line has many complex states that need representation.
Presenting these states on a console makes it difficult for an
observer to understand trends and make decisions on how to
optimize the line. One is presented with a report only at the

end of the simulation run with no/limited visibility of internal
process states during the simulation run. Human intervention
(during a run) also becomes difficult with this approach. Com-
parison of two concurrently running DTs, to explore what if
scenarios, is also difficult with this approach particularly when
the DES framework lacks an intuitive user interface. There is
therefore a need for an advanced visualization framework to
unlock the promised capabilities of the production DT.

III. PROPOSED 3D-VISUALIZATION FRAMEWORK

Fig. 1 shows the various elements of the visualization
framework.

We have leveraged the capabilities of the open source multi
platform 3D applications server Open Simulator (OpenSim)
[13] for 3D visualization of any DES based DT. The OpenSim
framework follows a client server architecture. The client ren-
ders the 3D environment while the server listens for connec-
tions, manages regions and users. Any OpenSim compatible
client can be configured to connect with the OpenSim server
(yellow boxes).

OpenSim provides an inbuilt IRC bridge module. The IRC
based Application Programming Interface (API) between any
DES based DT and OpenSim (blue boxes) is our key contri-
bution that enables the proposed generic 3D DT visualization
framework. Data flow over this IRC bridge between OpenSim
and the SimPy based DT is bidirectional. This bidirectional
API allows for a) visualization of the digital twin’s state in
the 3D virtual environment in real time, b) re-configuration
of the digital twin by broadcasting relative placements of
assembly line components (once they are dragged and dropped

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

280
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Visualization of concurrent DTs. Also shown is a virtual human avatar interacting with the line using HMI panels

in 3D) to create a configuration file that specifies the layout
and interconnections in a format compatible with SimPy (thus
avoiding the need to directly edit SimPy’s configuration files),
and c) passing manual process triggers to SimPy to analyse
certain test cases during a SimPy run.

At the back-end, the SimPy models are updated hourly
with process and machine parameters being inferred from
observations on the real instrumented line.

The main advantage of the proposed software architecture is
that it can scale with the complexity of the production process.
Multiple IRC servers may be instantiated for scalability. The
IRC bridge module also supports a multi-channel mode which
can connect to multiple IRC channels across multiple IRC
servers.

IRC is not the only communication bridge between Open-
Sim and the external real world. Data from the real line
(indicated by the dotted line link in Fig. 1) can also be
visualized as an Hypertext Markup Language (HTML) data
dashboard in the virtual world. Interactive virtual HMI panels
can also be deployed in the 3D environment for remote control
of the real assembly line process.

A. OpenSim’s IRC bridge

Objects in OpenSim communicate with each other in the
virtual world over various chat channels. An object can be
scripted to listen or talk on a specific channel in single channel
mode or on multiple channels in multi-channel mode. For
communication with external entities, the OpenSim server
provides an inbuilt IRC bridge module. An IRC client can use
this bridge to relay all chat messages from any configured IRC
server to a specific configured channel in the virtual world. All
objects in the virtual world can listen and talk on this channel.

Each OpenSim client is also associated with an avatar.
An avatar is a virtual representation of the user that can
interact with objects in the virtual world. Avatars also join
the IRC server automatically via the IRC bridge on login. In
the context of a production assembly line, the avatars may
represent workers interacting with the line.

We propose an API that uses the IRC bridge to visualize
a DT in OpenSim. If we associate each machine in the
DT with an IRC chatbot, messages can be relayed to and
from the DT to the 3D virtual world. This approach is also
agnostic to the underlying DT framework. A messaging API

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

281
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

has been developed to gain visibility into the simulation’s
internal states and process variables. Each IRC chatbot sends
messages corresponding to the machine’s current state. Events
in the simulation trigger these IRC messages indicating the
current state. Example process states specific to the SMT PCB
assembly line are marked in blue in Fig. 3.

Certain IRC client configuration scripts are run to create
chatbots with specific nicknames for every state and/or process
variable to be visualized. Table I lists the DES states variables
and their representative chatbots for our SMT PCB line use
case.

The current implementation uses the ii IRC client [14] to
send messages from Simpy to Opensim over the IRC bridge.
An IRC directory tree is instantiated with the following path
structure “path-prefix/server-url/channel-name/in(out)” during
the ii IRC client’s initialization. Any message written to the
“in” FIFO file from SimPy is sent over the IRC bridge.
There is a unique “in” file for every nickname and channel.
SimPy can also receive messages over any IRC channel by
reading contents of the “out” file. For example, the screen
printer’s state can be changed to the printing state by writing
the keyword “printing” to “spstate/127.0.0.1/opensim/in”. The
keyword is chosen from the machine specific set of keywords
defined in the corresponding state array in Simpy, see Table I.
The appropriate keyword is written to the “in” file after every
state change event in Simpy.

IRC guarantees a delay Quality of Service (QoS) metric
of < 200msec on a bandwidth constrained network. With
a DES time step of 0.5sec this network delay metric is
acceptable. IRC guarantees zero data loss by using a robust
re-transmission policy [15]. Multiple IRC servers may be
instantiated for scalability. We use an IRC chat client to debug
messages on the IRC channel. In our implementation, the
DES and the IRC server have been hosted on the same server
computer.

B. Virtual object scripting in OpenSim

We can define the behaviour of the virtual objects in
OpenSim through object scripting. An Open Source Scripting
Language (OSSL) script can be embedded in every object that
is imported (as a CAD model) or created in the virtual world.
The script can act to animate or change state of objects on
receiving a message trigger from the IRC relay channel. Other
examples of interactive object scripts include movement of
components/ robotic arms on the virtual line, visualization of
humans interacting with the line, etc.

C. 3D Visualization in the OpenSim client

The user can import 3D CAD mesh files using the OpenSim
client’s Graphical User Interface (GUI). This is a one-time
process when setting up the virtual factory floor. The imported
CAD model can then be dragged from the inventory and
dropped at any location in the virtual factory floor. Custom
3D objects can also be created using the build menu of the
client. Every object can be embedded with a custom OSSL

TABLE I: IRC messages corresponding to each chatbot

Chatbot
Name

Description Message Types

lloaderstate Line Loader States pcbplaced, idle, loading, unloading
spstate Screen Printer States cleaning, printing, waitingop, pcb-

placed, spstall
ppstate Pick and Place Machine

States
waitingop, pcbplaced, busy, idle,
ppstall

rostate Reflow oven states tmun, tmo, setup, pcbplaced
sptoppbelt Conveyor Belt state

form SP to PP
2n occupancy states

rfobelt Conveyor Belt state at
entry of RO

2n occupancy states

script to define object behaviour. The client features an inbuilt
script editor and compiler.

Fig. 4 shows the ability to visualize concurrent DT runs. Fig.
4 also shows how human avatars may be visualized interacting
with the line. Virtual HMI panels may also be deployed to pass
manual event triggers to the DT or to send control commands
to the real line. In this specific use case, two SMT PCB line
configurations have been visualized on the 3D factory floor;
one with and one without a line buffer interspersed between
the pick and place machine and the reflow oven. Certain
performance metrics have also been visualized in real time
on the virtual factory floor during the concurrent DT runs.
For example, every machine’s throughput has been visualized
using numbers projected on each machine as textures on 3D
objects. Energy use has been presented using gauges displayed
on top of relevant machines. Machine states have been visu-
alized by dynamically changing the color of cubes placed on
top of every machine. This DT based “what-if” analysis helped
identify the optimum line configuration for energy use [2]. The
3D visualization provided an intuitive spatio-temporal context

Fig. 5: Custom object builder panel. A PCB was created using
this tool

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

282
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Inbuilt OSSL script editor in the OpenSim client

to the DTs internal states and variables. For example, the floor
manager could, at a glance, identify bottlenecks on the line
for a given line configuration, without the need to parse the
complex output logs generated by concurrent DT runs.

Fig. 5 shows the drag and drop interface to create custom
objects in the virtual world. For our SMT line, a PCB object
was created using these build tools. This PCB is spawned
by the line loader script and moved around by the scripts
embedded in the conveyor belt depending on the state change
updates sent by the DT over the IRC link. The script embedded
in the virtual conveyor belt updates the board’s position
on the belt depending on the 2n possible occupancy states
communicated by the conveyor modelled in the DT.

Fig. 6 shows the client’s inbuilt script editor. A user script
can be attached to any object in the virtual world.

A demo video of the SMT line DT visualized using our
framework is available at [16].

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework for 3D visualization of
data from the real line and its concurrently running Digital
Twin(s). The bidirectional IRC based communication bridge
that connects the DT to the open source 3D virtual environ-
ment OpenSim is agnostic to the underlying DES framework.
This is our key contribution. The framework allows a user to
a) import CAD objects as mesh models in the virtual world
b) program custom object behaviours using scripts that are
embedded in the virtual object and c) render performance
metrics/process states as object textures or fully featured

HTML dashboards. Depending on the DT use case, human
avatars may also be visualized on the virtual factory floor. HMI
panels may also be deployed on the virtual factory floor for
remote control of the real line and/or its DT. We believe that
the proposed 3D visualization framework can help ease model
validation efforts and enable interactive “what if” analysis and
control for optimization of the production process.

The proposed framework has been used to visualize data
from an SMT PCB line and its Digital Twin. Visualization
of concurrent DT runs has been useful to verify the effect of
process or line re-configurations. We are currently working on
three additional features that leverage the capabilities of the
bidirectional data link between the DT and OpenSim.

1) Re-configuration of the line requires modifications in
both the SimPy code and the 3D CAD model. We want
to simplify this process as part of the next version of
this framework. An intuitive drag and drop abstraction
layer can be created for re-configuring the simulation’s
line connectivity and process parameters. For instance,
when a user adds or removes a machine in the 3D
virtual world, the file that describes line connectivity
in SimPy can be modified automatically before the next
or concurrent simulation run.

2) We also want to enable feature rich virtual HMI panels
to allow real time remote control of the assembly line
process.

3) A user currently interacts with his avatar and objects
in the virtual world using a keyboard and mouse. Up-
coming VR technologies may help make this interaction

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

283
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

more immersive, thus improving the situational aware-
ness of the factory floor manager.

ACKNOWLEDGMENT

This work was supported by UAY Scheme (project no.
13) by MHRD, Govt. of India in collaboration with Tata
Consultancy Services (TCS). We deeply thank Vinyas Inno-
vative Technologies for permitting us to use their facility for
instrumentation and analysis. Authors also thank Dr. Devadatta
Kulkarni, Dr. Jefferey Tew and Mr. Vijayanand Parabgoanker
from TCS for their valuable inputs.

REFERENCES

[1] A. Madni, C. Madni, and S. Lucero, “Leveraging Digital
Twin Technology in Model-Based Systems Engineering,” Systems,
vol. 7, no. 1, p. 7, Jan 2019. [Online]. Available:
http://dx.doi.org/10.3390/systems7010007

[2] N. Karanjkar, A. Joglekar, S. Mohanty, V. Prabhu, D. Raghunath, and
R. Sundaresan, “Digital Twin for Energy Optimization in an SMT-PCB
Assembly Line,” in 2018 IEEE International Conference on Internet of
Things and Intelligence System (IOTAIS), 2018, pp. 85–89.

[3] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn,
“Digital Twin in manufacturing: A categorical literature review
and classification,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016
– 1022, 2018, 16th IFAC Symposium on Information Control
Problems in Manufacturing INCOM 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896318316021

[4] C. Cimino, E. Negri, and L. Fumagalli, “Review of
digital twin applications in manufacturing,” Computers in
Industry, vol. 113, p. 103130, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166361519304385

[5] G. Dagkakis and C. Heavey, “A review of open source discrete event
simulation software for operations research,” Journal of Simulation,
vol. 10, no. 3, pp. 193–206, 2016.

[6] “Prespective: Digital Twin Software for Unity,” https://prespective-
software.com/.

[7] “Siemens Tecnomatix for Plant Simulation,”
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/.

[8] B. Xhika, “DES with SimPy and Maya,”
https://sourceforge.net/projects/dessimpymaya/.

[9] B. T. Ersson, L. Jundén, U. Bergsten, and M. Servin, “Simulated
productivity of one- and two-armed tree planting machines,” Silva
Fennica, vol. 47, 01 2013.

[10] J. Göbel, P. Joschko, A. Koors, and B. Page, “The Discrete Event Simu-
lation Framework DESMO-J: Review, Comparison to Other Frameworks
and Latest Development,” 05 2013, pp. 100–109.

[11] L. Atorf and J. Roßmann, “Interactive Analysis and Visualization
of Digital Twins in High-Dimensional State Spaces,” in 2018 15th
International Conference on Control, Automation, Robotics and Vision
(ICARCV), 2018, pp. 241–246.

[12] V. Havard, B. Jeanne, M. Lacomblez, and D. Baudry, “Digital twin and
virtual reality: a co-simulation environment for design and assessment of
industrial workstations,” Production & Manufacturing Research, vol. 7,
no. 1, pp. 472–489, 2019.

[13] “OpenSimulator Open Source Project,” http://opensimulator.org/.
[14] “Open Source ii IRC Client,” https://tools.suckless.org/ii/.
[15] Y. Chen, T. Farley, and N. Ye, “QoS requirements of network applica-

tions on the internet,” Inf. Knowl. Syst. Manag., vol. 4, no. 1, p. 55–76,
Jan. 2004.

[16] “Demo Video of our proposed 3D visualization framework,”
https://www.youtube.com/watch?v=Jtchcw8KPM4.

2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)

284
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2023 at 13:46:38 UTC from IEEE Xplore. Restrictions apply.

