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ABSTRACT

During the COVID-19 pandemic, India has seen some of the highest number of cases and deaths. Quality
of data, continuously changing policy, and public health response made forecasting extremely difficult.
Given the challenges in real-time forecasting, several countries had started a multi-team collaborative
effort. Inspired by these works, academic partners from India and the United States setup a repository
for aggregating India-specific forecasts from multiple teams. In this paper, we describe the effort and the
challenges in setting up the repository. We discuss the development of simulations of compartmental models
to model specific waves of the pandemic and show that the simulation model designed specifically for
the Omicron wave was able to predict the onset and peak sizes accurately. We employed a median-based
ensemble model to aggregate the individual forecasts. We observed that median-based ensemble was
relatively stable compared to the constituent models and was one of better performing models.

1 INTRODUCTION

The COVID-19 pandemic severely strained public healthcare systems in many countries with devastating
consequences. Forecasting of cases, deaths, hospitalizations, etc., especially over the short term (a few weeks)
can be highly beneficial as they help public health agencies assess and allocate medical resources (Lutz
et al. 2019). India reported nearly 45 million cases out of approximately 675 million cases reported
worldwide. The alpha wave was handled with strong non-pharmaceutical interventions, and consequently
the need for sound forecasts was not evident. However, when the Delfa variant arrived India in April 2021,
there was relatively no warning from the modeling community. This coupled with its greater severity of
illness compared to alpha had a crippling impact on the health system. At that time, there was a strong
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need to understand the spreading dynamics of COVID-19 (under antibody waning, vaccination effects,
variant dynamics, etc.) and several modeling efforts were renewed. Inspired by the US and European
Forecast Hubs, and Open Science practices (Bezjak et al. 2018), multiple researchers from Indian and
the US academic institutions came together in August 2021 to start an India-focused Hub. The aim of
this hub was (i) to provide a common platform for modeling and forecasting teams to contribute and
store short-term COVID-19 incident cases forecasts; (ii) to develop a suite of models that can be analyzed
and modified collaboratively, (iii) to stipulate common formatting for ground truth and forecast data that
enables easier evaluation and reproducibility, and (iv) to provide interactive visualization engines for effective
communication of forecasts.

From a modeling stand-point, forecasting is highly challenging during an ongoing pandemic of a
novel pathogen because of (i) the interplay between the target-of-interest and the human behavior/pathogen
dynamics; (ii) data inconsistencies due to heterogeneous and evolving reporting schemes; and (iii) lack
of historical data, to name a few. Also, from an operational standpoint, several challenges arise: (i) the
forecast processing systems operate on a strict deadline and models have to be built, tested, modified and
deployed within the stipulated time; (ii) systems and models need to evolve continuously based on the
problem, requirements, and the situation at hand; (iii) models need to be flexible to incorporate various
datasets and be robust to partial loss of data; (iv) concurrent with these changes there needs to be a platform
that can be automatically or quickly updated for communicating results and analyses.

Given the challenges in real-time forecasting, at the start of the pandemic, several countries had started
multi-team collaborative efforts that aggregated, analyzed, and communicated the forecasts in a timely
manner. Notable examples include the United States (US) COVID-19 ForecastHub (Cramer et al. 2022)
(https://covid19forecasthub.org/) and the European COVID-19 Forecast Hub (https://covid19forecasthub.
eu/). The Forecast Hub provides a framework for multiple teams having different models to provide their
forecasts. This adds robustness by not relying too heavily on any single model or team. The forecasts from
various models are aggregated using an ensemble model. A collaborative effort to build such a platform
was inspired by prior frameworks deployed for forecasting such as for influenza (Reich et al. 2019),
Ebola (Viboud et al. 2018), and dengue fever (Johansson et al. 2019; Yamana et al. 2016) outbreaks.
A key insight obtained from these efforts was that ensemble approaches produce superior performance
when compared to individual models. The collaborative efforts in the US and Europe have largely been
the initiative of the public health agencies such as the Center for Disease Control and Prevention (CDC).
The CDC directly interacts with modelers and uses aggregate forecasts for guiding policy making (Lutz
et al. 2019) (Doms et al. 2018).

Despite the progress across the world, there were several challenges to implement the Forecast Hub in
India. These include the following.

» Data availability and quality: During the course of the pandemic, data processing and standardization
was a voluntary effort (https://www.covidl9india.org). The reporting and granularity of data was
heterogeneous across states resulting in noisy data.

* Evolving public response: The policies and responses of decision makers evolved continuously. In
addition, testing capacity was limited thus making the reported cases a poor proxy for the actual
infections in the community.

* Disconnect between modelers and policy makers: The partnership between the modeling consortium
and the policy makers in India was not well established.

Even though such a framework was not available, its needs was realized during the course of the pandemic.
Several researchers called out the need for a collaboration through opinion articles (Ganesan and Subramani
2021b). A few members of our team provided (and continue to provide) modeling expertise to the state of
Karnataka’s (~70 million population and ~200,000 sq. km.) COVID-19 Technical Advisory Committee
(TAC) . The forecasts and modeling approaches developed during the course of this work directly helped the
TAC in policy making (see TAC Chairman’s appreciation email for the support https://tinyurl.com/255b9msf).
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Table 1: A summary of the collaborative effort.

India COVID-19 Case Forecasting Collaboration

No. of teams 4
No. of models 10
Target Incident Cases
Forecast horizon 1—4 week ahead
Forecast period Oct. 2021 — Aug. 2022 (44 weeks)
Forecast type Probabilistic/Point
Spatial Resolution National/state (27 locations)
Model types Statistical, simulations of mean field ODEs, and deep learning
Ensemble type Median
2 RESULTS

We created an end-to-end forecasting pipeline in which modelers were provided raw data in a standardized
and machine-readable format. Based on this data, each modeling team then uploaded their predictions to a
repository. The platform then used an ensemble model to aggregate the forecasts of the individual teams.
Lastly, the forecast hub had an inbuilt visualization tool that enabled the user to observe individual and
ensemble model predictions. The visualization tool also allowed the user to assess the performance of
models across time.

The ensembler combines a diverse set of machine learning ideas including statistical, deep learning and
mechanistic models. Models were kept relatively simple so that the resulting predictions were explainable.
In addition to the implementation of the best practices from earlier efforts in the US and Europe, the
pipeline also addressed specific challenges posed by the issues arising in India. We now summarize the
key contributions of the effort of the Forecast Hub.

* To the best of our knowledge, this is the only such initiative where multiple teams could contribute
their predictions towards the Forecast Hub for India. The basic platform is generalizable and can
be used for other communicable diseases as well, providing a template for future efforts.

* Many modeling teams regularly recalibrated their models, thus providing better predictions for
specific outbreaks. These methods and their implementation have been documented at the Forecast
Hub and carry valuable information for future deployments.

*  We demonstrate the efficacy of the simulation-based ODE model in forecasting the onset of the
Omicron wave across different states of India.

In this paper, in addition to the framework, we conducted a systematic evaluation of performances of
the models in the Forecast Hub. We also introduce a pandemic phase-based model evaluation technique
to understand the variable performances of model forecasts during the different phases of the pandemic.
Evaluation results indicate that a median-based ensemble model provides robust performance across different
phases of the pandemic, even in the presence of variable set of models with varying performances.

3 METHODS: TEAMS, MODELS AND WORKFLOW

The main goal of the Forecast Hub was to provide robust short-term (1—4 weeks ahead) predictions for
different locations (state- and national-level). The target of interest was the incident cases (new cases)
{y1.}L, corresponding to a location / until week 7. The forecasting problem involves predicting forward
S—steps ahead {yl,,}tTjTS 1 and we attempt to predict it by employing a variety of methods. Each location
was trained independently and we drop the term / in further discussions.

In this collaborative effort, teams from different academic institutions provided forecasts for incident
cases in India at multiple spatial resolutions, see Table 1 for a summary. There were no restrictions placed on
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the type of model employed or a team’s level of expertise when joining the effort. Due to data availability and
quality issues mentioned earlier, most models employed simple and light-weight frameworks. This further
enabled easier interpretability of the model results while simultaneously allowing for faster implementation
and modifications. The class of models employed by the teams are as follows:

Simulating Compartmental Models Teams considered the most common ordinary differential
equation (ODE) compartmental model (aka mean field models) used to model the progression of infectious
disease, the SIR model (Adiga et al. 2020). The SIR model partitions individuals in an N size population
into three disjoint compartments: susceptible (S), infected (/) and removed or recovered (R). Assuming
that everyone is Susceptible in the beginning and homogeneous mixing, transition of individuals from S to
I to R is governed by a set of ODEs. the model parameters specify the transition rates from susceptible
state to infected state, and then to recovered state. At time ¢, the transitions between population-normalized
states, s, = S;/N, iy =I;/N and r, = R, /N are given as follows:

dr

% = 7BtSiv g = BISii %l) E = %17 (1)
where transition rates, f3; is referred to as the transmission rate (S — I) and ¥; as the recovery rate (I — R).
Note that transition rates are time varying to account for the varying pathogen strains, social distancing
norms, etc. the transition rates can vary across time. Model training involves learning the transition rates
by calibrating the model on the case time series. Note that in our case each state was trained independently.
SEIR model consisting of an additional Exposed (E) compartment is another version of the compartmental
models.
Auto-regressive Models  This class of linear methods model the signal to be forecast using its lagged
versions. In addition, J exogenous time series {x;(r) f;(l) and its lagged versions can be included in the
model. The forecast is obtained as follows:

J-1 Q R

P
Vies= Y ap+ Y Y B xj g+ Y e e s=1,2,3,&4 2
p=0 0 1

r=

Jj=0g=

where & is error term coefficients, cg‘,) are the moving average and P is the length of the training window.

Specifically, (2) is the Auto-regressive integrated moving-average model with exogenous variables model
(ARIMAX).

Long Short-term Models This is a popular class of deep learning models specifically designed for
modeling sequential data and have been shown to be effective in capturing long-term dependencies in the
data (Hochreiter and Schmidhuber 1997). An LSTM model consists of k-stacked LSTM layers and each
layer consists of T cells corresponding to input sequence length 7. The output of the kth LSTM layer is
fed into a fully connected layer to make the final prediction.

3.1 Teams

Teams used variants of the above mentioned models and are as follows.

3.1.1 Team: IISc-ISI

This team employed variants of the simulation model and are as follows:

SIR-IISc-ISI  This model is an SIR model as described in (1). The parameters of the ODE are learnt
to provide the best least-square fit between the model output and the incident cases data. The training
window size is automatically optimized for the best fit.

Log-Linear-IISc-ISI  This model is same as SIR-IISc-ISI but considers the logarithm of the number
of cases for training of the models.

Omicron-IISc-ISI  This is an SEIR model, a variant of the SIR model with an additional exposed
compartment ((individuals that have been infected but are not yet infectious)) designed specifically to

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Ben%ngu. Downloaded on December 29,2024 at 08:06:09 UTC from IEEE Xplore. Restrictions apply.



Adiga et al.

capture the Omicron variant. A key parameter, transmission rate, was calibrated using South Africa specific
cases data. Specifically, by comparing the contact rates between the two countries during the Delta and
Omicron waves. The transmission advantage thus computed is applied to Indian states, and projections for
Omicron variant generated under the assumption of 60% overall susceptibility in the population.

SUTRA  This model is a re-implementation of the SUTRA model (Agrawal et al. 2021) by team
IISc-ISI.

3.1.2 Team: UVA

Analogues and ARIMA  Two variants of the ARIMAX model described in (2) was used. Analogues
uses population normalized lagged case time series from other states as exogenous variables x; ; and assumes
the moving-average terms cﬁj) =0, Vr,tin (2). The ARIMA model does not incorporate exogenous variables,
ie, bj,; =0,Vj,q,t in (2). In both the models, the signal is log-transformed. Due to non-stationarity,
model training is done over short segments that are assumed to be relatively stationary.

Istm The model was implemented as one LSTM layer with hidden layer of size 32, one dense layer
with hidden layer of size 16, a rectified linear unit activation function, and one dropout layer (dropout
rate of 0.2). The output layer is a dense layer with linear activation and L2 kernel regularization (0.01
penalty factor). The historical window size is 3 weeks. A mean squared error (MSE) loss function was
used and the model was trained with the Adam optimizer with a batch size of 32. Probabilistic forecasts
were generated using MCDropout. A single model was trained across all states to avoid over-fitting.

SEIR  As the model name indicates this is an SEIR model. A simulation optimization approach is
employed to sequentially estimate the time-varying transmissibility parameter with appropriate delays and
scaling applied from simulated infections to confirmed cases. For each time step, the parameter estimates
are obtained using Golden Section Search. The smoothed version of the daily varying transmissibility that

best fits the ground truth is used for short-term forecasting.

3.1.3 Team: CSIR-4P1

LSTM_CSIR  This team used uni-variate (LSTM_CSIR) and multi-variate LSTM (Ensemble LSTM
(CSIR)) time series models with weather data and COVID-19 confirmed case data, based on observed
correlations with specific humidity (positive), maximum temperature (negative), and minimum temperature
(positive). The model observed specific humidity and temperature playing significant role in model
enhancement across various regions in India.

3.1.4 Team: CoviHawkes

Hawkes-LSTM  The team used an LSTM model for transmissibility of COVID-19 using past mobility
data. Training and validation were done across various forecasting windows (7, 14, and 28 days) using
case counts and mobility data.

3.2 The Weekly Workflow

A schematic of the workflow is shown in Figure 1. A Github repository was setup to facilitate a common
platform for storing and accessing data across teams. The incident cases data was also processed by the
administrators of the repository. It is extracted from https://data.incovid19.org/ and uploaded onto the
repository for the teams to access. The teams were free to chose any source data for incident cases and
some models used data published by https://github.com/CSSEGISandData/COVID-19. The teams were
required to submit forecasts every Monday on or before 9.00 PM Indian Standard Time. Given the small
number of teams, the administrators would send an email reminder in case teams did not submit forecasts
before the stipulated time. Once the forecasts were obtained, the median and the mean ensemble forecasts
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Figure 1: The workflow of the weekly processing of the incident cases data, the forecasts submissions from multiple
teams, and the generation of visualizations.

were processed and uploaded to the repository. The process would culminate with the running of the
dashboard scripts for setting up the visualizations (https://www.isibang.ac.in/~incovid19/dash.php).

3.2.1 Forecast File Format

A standard forecast submission format was implemented to enable faster sanity checks, ensemble model
forecast generation, and dashboard updates. Although probabilistic forecasts were preferred, forecasters
were allowed to provide point forecasts as well. Teams were requested to provide a comma separated value
(csv) files with the following set of columns being mandatory:

* avl_date: Date (Sunday) of latest available weekly incident case data.

» fect_date: Date (Sunday) indicating the week for which the forecasts were made.

* horizon: Integer values indicating the forecast horizon (1 to 4 week ahead).

* location: Name of the location for which the forecasts are produced (national or one of the states).

» value: If probabilistic forecasts, this corresponds to the median value of the distribution, else it is
the point estimate.

» fet_lb: If probabilistic forecasts, this corresponds to the lower bound value of the 95% confidence
interval distribution, else it is assigned NaN for forecast submissions.

» fet_ub: If probabilistic forecasts, this corresponds to the upper bound value of the 95% confidence
interval (CI) distribution, else it is assigned NaN for forecast submissions.

* method: Indicates the team name and the model. There were no guidelines for team names.

Note that unlike US/Europe COVID-19 ForecastHub, which expects probabilistic forecasts submitted terms
of seven quantiles, we limited it to two quantiles 0.025 and 0.975 only (95% CI).
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3.2.2 The Ensemble Model

While there are several approaches proposed in the literature for aggregation (Howerton et al. 2023), we
consider a median-based ensemble model to aggregate the probabilistic forecasts given by different models.
Suppose the forecast from each model is given in the terms of k quantiles, each at levels ¢, ..., . Then the
ay, ..., oy quantiles for the median-based ensemble is given by the median of ¢; level quantiles from different
models. In our case, we get median-based ensemble quantiles using 3 quantiles, namely fct_lb, value,
and fet_ub across the models. This approach is useful specially when the predictive distributions from the
individual models are not fully known. Unlike the quantile-averaging ensemble, median-based ensemble
is less influenced by the outlier predictions. A similar model has been employed in the US COVID-19
Forecast Hub (Cramer et al. 2022) and it is observed that the forecasts from the median-based ensemble
model are robust compared to the individual models. Some teams only provided median estimates in which
case we assumed that the model had no uncertainty in its predictions and assumed fct_lb=fct_ub=value.

4 EVALUATION

We evaluate the probabilistic forecasts using the Weighted Interval Score (WIS) which is a generalization
of the mean absolute error. The WIS is a proper score (Bracher et al. 2021); a lower score implies
smaller error and therefore better performance. This metric is becoming popular across the epidemiological
forecasting community and is being used as the primary metric of probabilistic forecast evaluation (Cramer
et al. 2022). The WIS score balances different costs for a given forecast: (i) the width of the confidence
interval, (ii) the chance of falling outside the confidence interval, which considers the distance beyond
the respective lower or upper bound. For the weekly submissions of the probabilistic forecasts the teams
provided the median (m), lower (.025) (/), and upper (0.975) (u) quantiles. Let o = 0.05, corresponding
to a central prediction interval of 95% CI. Given a probabilistic forecast F defined by (I,m,u), then

1405

is the indicator function. For the general definition of WIS computed for forecasts characterized by more
than two quantiles, we refer the readers to (Bracher et al. 2021).

Figure 2 provides the performance of individual models, including the Median ensemble, across all the
27 locations. Figure 2a shows the mean WIS computed across all the forecast weeks and locations for 1—4
week ahead forecasts and Figures 2c and 2d shows the weekly mean performance of models computed
across all locations. Overall, we observe that the median-based ensemble has a performance close to the
best performing model, despite variability in individual model performances across forecast weeks. Since
longer horizons are harder to forecast, we observe the error increasing with the increase in horizon. But
across different horizons, the ensemble model is able to provide robust forecasts. During the course of the
pandemic one of challenges has been the detection of the onset of a wave and estimating peak sizes. Most
forecasting systems have performed poorly during the critical phases primarily due to lack of understanding
of the disease dynamics (see (Ray et al. 2021)). Hence, it is important to improve the accuracy of the
forecasts in these critical phases to assess their utility.

Despite heterogeneity in the COVID-19 time series, we broadly observe three distinct phases that can be
characterized by the rate of change of case counts: Surge (period of steep growth in cases), Decline (period
of sharp decline in cases), and Plateau (relative stable and low case counts). Phases are subjective and several
definitions exist (https://www.cdc.gov/flu/pandemic-resources/planning- preparedness/global-planning-508.
html). In our case, the classification is mainly for analyzing the relative performance of models during
different phases. We use the algorithm in Adiga et al. (2022) for mapping each time point into a particular
phase. We provide an example of the phases in Figure 2b where each week is color coded with the
corresponding phase. During the time of deployment of our systems (Oct 2021) the case counts across
India were declining and plateaued during the subsequent months. In order to understand the behavior of
models during different phases, each week in Figures 2¢ and 2d is also color coded with respective phase.

WIS(F,y) = - (é\y—m + 5w+ 1=yl + (- u)]ly>u), where y is the observed value and 1

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science BeH&QIQJ. Downloaded on December 29,2024 at 08:06:09 UTC from IEEE Xplore. Restrictions apply.



Adiga et al.

All Locations

101 2.0M Il surge
EEm Median B analogues LSTM_CSIR N decline
10° SIR-11Sc-ISI ARIMA Ensemble LSTM (CSIR) 1.5M plateau
B Log-Linear-lISc-ISI Em SEIR B Hawkes-LSTM
Omicron-lISc-ISI Istm 1.0M

500.0K

-II- 1 |II. | I|I| I|II 00

mean WIS (log scale)
= =
o o
= 2

1 wk ahead 2 wk ahead 3 wk ahead 4 wk ahead oct Nov Dec an Feb Mar Apr May Jun
target 2022
(a) Overall (b) Phase classification — India
Mean WIS of Models Across all Locations for Each Week - (1 wk ahead) Mean WIS of Models Across all Locations for Each Week - (4 wk ahead)
10'*4 —— Median analogues LSTM_CSIR 101t —+— Median Omicron-lISc-ISI -~ SEIR
5 SIR-11Sc-ISI ARIMA Ensemble LSTM (CSIR) 5 SIR-11Sc-ISI analogues Istm
5 1° Log-Linear-llSc-ISI~ —— SEIR -+~ Hawkes-LSTM o o -~ Log-Linear-llSc-1S| ARIMA
g 107 Omicron-lISc-ISI ) Istm § 107 R o S SR =
j=J j=J
£ 108 £ 10°
@ A aaoad Q =
2 103 B surge 2 103F B surge
HE decline HEE decline
10! plateau 10t plateau
Oct Nov Dec Jan Feb Mar  Apr  May Jun Jul Aug Oct Nov Dec Jan Feb Mar Apr May Jun Jul
2022 2022
forecast_date forecast_date
(c) 1-week ahead (d) 4-week ahead

Figure 2: Performance evaluation of models. (a) Bar plot of mean WIS computed across all locations and forecast
weeks for different horizons. (b) Phase classified time series corresponding to cases reported at national level with
each week classified into one of three phases. (c) 1-week ahead: Mean WIS computed across all locations for
each forecast week. (d) 4-week ahead: Mean WIS computed across all locations for each forecast week. The
performance of the Median ensemble is relatively stable and its performance is close to the best performing models
across shorter and longer horizons. Also, in order to highlight the performance of models during different phases of
the pandemic, we color code weeks in figures (b) and (c) with the corresponding phases. Note that in these results
only models forecasting for all states are considered in this evaluation.

In these phases we observe that WIS score, although different across models, are relatively stable. More
importantly, we observe that the ensemble has the lowest WIS. January 2022 saw the onset of the Omicron
wave when cases started to rise sharply. At the onset, the models had the highest WIS score which can be
attributed to models’ inability to accurately estimate the rapid increase in case counts. But in the subsequent
weeks, the models’ performances started to improve. Here we observe that the ensemble model, although
having relatively poor performance as compared to the previous phases, is able to filter outlier forecasts
(note that median is computed per quantile) characterized by high WIS scores. We again observe that during
the change of phase from surge to decline, the models’ performances declined. After the Omicron wave,
we saw a drop in the number of submissions from the teams. Due to relatively low numbers of available
forecasts, the ensemble model was susceptible to performance variations within individual models.
Forecasting the Omicron wave In order to highlight the importance of simulation models, we
consider the example of forecasting the omicron wave. In Figure 3 we show forecasts for three states
provided as of 2022-01-10 (a week prior to the onset of the Omicron wave). We observe that the Omicron-
IISc-ISI model is able to predict the timing of the onset, peak and decline phase when compared to the
other models available at that time. As discussed in Section 3.1.1, the Omicron-1I1Sc-ISI model specifically
considers the increased transmissibility of the variant (learnt from South Africa cases data). Once cases
related to the variant were detected in a state, the transmissibility (see (1)) is increased from that date
onwards and the simulations are run to obtain the forecasts. Since the characteristics of the Omicron wave
were different from the other waves, there was no historical data available for the other purely data-driven
models to learn the patterns. The simulation model on the other hand allows for the explicit incorporation
of the disease parameters thus providing better estimates. Although the simulation model predictions are
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Figure 3: Examples of forecasts of the outbreak due to the Omicron variant for different targets: (a) India, (b)
Karnataka, and (c) Maharashtra. The simulation model, Omicron-IISc-ISI captured the onset, peak, and decline
parts of the Omicron wave more accurately as compared to the other models.

highly sensitive to the parameters and can lead to over estimation of cases (cf. Figure 3c), the information
on the onset of a wave is very helpful for decision makers.

S RELATED WORKS AND CONCLUSION

Several models emerged from India during the course of the pandemic in order to understand the spread
of COVID-19. Simulation models have been particularly useful in capturing the characterstics of the
novel virus and provide relatively accurate short-term and long-term predictions. ODE-based models were
developed to analyze the effect of travel restrictions (Mandal et al. 2020), mixing across age groups (Singh
and Adhikari 2020), social behavioral patterns (Venkateswaran and Damani 2020), and asymptomatic trans-
missions (Ansumali et al. 2020). A more fine-grained model by Hazra et al. (2022) was used for modeling
the first wave by incorporating age stratification, non-pharmaceutical interventions, testing characteristics,
etc. Simultaneously, agent-based models were developed in order to understand the spread dynamics at
finer resolutions such as city-level under influence of different lockdown relaxation policies (Agrawal et al.
2020), testing strategies (Gopalan and Tyagi 2020), and location-specific lockdowns (Bhattacharyya and
Vinay 2020). With the progression of the pandemic, more sophisticated models emerged. Ganesan and
Subramani (2021a) developed a high-dimensional partial differential equation-based model to capture the
heterogeneous spatio-temporal disease spread dynamics and an ensemble-based variant of the same model
was developed later (Ganesan et al. 2021). Foy et al. (2021) developed an age-structured compartmental
model with social contact patterns to study the vaccine strategies. Ray et al. (2020) describes a model that
resulted in a notable effort towards generating daily forecasts, transmission parameter estimates. These
estimates were available for public access at https://covind19.org/.

Among statistical frameworks, exponential models (Ranjan 2020; Gupta and Shankar 2020; Mangla
et al. 2021; Singh et al. 2020; Pandey et al. 2022; Ranjan et al. 2021), Poisson regression models (Das
2020), and AR models (Deb and Majumdar 2020; Mangla et al. 2021) were used for case forecasts.
Machine learning and deep learning models were experimented with and used for both short- and long-term
forecasts (Dukkipati et al. 2021; Bhimala et al. 2022).

Owing to several challenges posed by data quality, policies, and behavior, models tended to lack consensus
and importantly failed to predict the Delta wave. Even though there has been extensive development of
multiple classes of models to understand the COVID-19 disease spread dynamics in India, a collaborative
effort was missing or not well documented.

Ensemble models have shown superior performance as opposed to a single constituent model in
several disease forecasting instances, with influenza (Reich et al. 2019), Ebola (Viboud et al. 2018),
and dengue fever outbreaks (Johansson et al. 2019) as examples. In the US and Europe, the COVID-19
outbreak prompted the CDC to establish forecast hubs which have seen continued participation from
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dozens of teams. The results of the analysis from these efforts indicate that ensemble models frequently
outperformed individual models (Cramer et al. 2022; Sherratt et al. 2023). The forecasts collated by
the hub is documented extensively (Cramer et al. 2022) and is available for public access. In addition,
the moderators of the hub also provide interactive visualizations (https://viz.covid19forecasthub.org/, https:
/lcovid19forecasthub.eu/visualisation.html)

This paper reports the first attempt in India to develop a hub that provided an operational pipeline for
real-time submission, aggregation, and communication of forecasts from multiple teams using data-driven
Al tools. The need for this framework was motivated by the interaction of our team members with the
Karnataka state’s COVID-19 TAC. Although the participation in the Aub was limited, the set of models
deployed were relatively diverse. During the course of the effort, new simulation models were developed to
address the need of the hour. Enforcing standard submission guidelines enabled the real-time generation of
median-based ensemble forecasts and updating of an interactive visualization engine for quick inspection
of forecasts. Despite the limited set of models, evaluation results indicate a robust performance of the
ensemble through different phases of the pandemic. Throughout the period, the ensemble’s performance
was at least comparable to the best performing individual models for each particular week.

Although the pipeline was developed for COVID-19 forecasting, it is designed in a pathogen-agnostic
manner and can be deployed for forecasting other diseases of concern in India (influenza, dengue, etc.). In
terms of ensemble model enhancements, trained ensembles are the immediate choice, where the importance
of constituent model’s forecast is determined by historical performance. However, the utility of trained
ensembles are subject to availability of stable set of models in the training period (Ray et al. 2023).
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