
1

Scheduling for Minimum Power on a Gaussian

MAC
Arun Padakandla and Rajesh Sundaresan

Abstract

Users with rate requirements are to be scheduled in a time-slotted Gaussian multiple-access channel (GMAC). The number of

users exceeds the number of slots available. For receivers employing a successive cancelation decoding, the problem of identifying

a schedule for minimum sum power reduces to a combinatorial optimization problem related to the MULTIPROCESSOR

SCHEDULING problem (also called MAKE SPAN) that attempts to make the slot-sums close to each other, in a sense specified

in the paper. The computational complexity of the decision versions of this problem are addressed. When the rates are integers

and the number of slots per unit time is fixed up front, an algorithm with a polynomial time complexity that terminates in

O (Length(I)N+1) steps is provided. However, if the number of slots per unit time is a variable, the problem is shown to be

NP-complete. When the rates are rational numbers, a related sum-product minimization problem is proposed and the complexities

of their decision versions studied. When the number of slots per unit time is fixed, the problem is NP-complete. When the number

of slots is a variable, the problem is strongly NP-complete. Performance bounds for the well-known largest processing time (LPT)

heuristic are also provided.

I. INTRODUCTION AND PRIOR WORK

Given positive integers r1, r2, · · · , rK , number of slots N , with N ≤ K, we consider the problem of placing the numbers

into N slots so that the slot-sums are as close to each other as possible. Let S1, S2, · · · , SN be a partition of {1, 2, · · · ,K}
indicating the indices of numbers in slots 1, 2, · · · , N , respectively. Let

r(Sn) =
∑

k∈Sn

rk

be the sum in the nth slot. The MULTIPROCESSOR SCHEDULING problem (also called MAKE SPAN) [13, SS8] views

the N slots as processors, requires minimization of the maximum of the slot-sums, max{r(Sn), n = 1, 2, · · · , N}, and is

NP-hard. Since the overall sum across all slots is a constant, another well-studied problem is to minimize the Lp metric for

p > 1. (Chandra & Wong [1]). In this paper we first show how a related problem of minimizing the exponential cost
N∑

n=1

2r(Sn)

arises in a simple multiple-access communication setting, provide several results on the complexity of the problem, and analyze

a simple heuristic known as Graham’s largest processing time (LPT) rule [2].

A. Padakandla is with the University of Michigan, Ann Arbor.

R. Sundaresan is with the Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India.

This work was supported by the Department of Science and Technology, and by the University Grants Commission.

2

Consider a Gaussian multiple-access channel (GMAC) with K users. User k demands reliable communication at rate rk

2

bits per second1. There are N slots every second2 and each user transmits in at most one slot per second. We consider an

overloaded system where K ≥ N . Let Sn denote the set of users that transmit in slot n, 1 ≤ n ≤ N . The received signal in

slot n is given by

Yn =
∑

k∈Sn

Xk + Wn

where Xk is the information symbol transmitted by user k. The additive noise random variables Wn are independent and

identically distributed as N (0, 1). The goal is to schedule users in each of these n slots so that users’ rate requirements are

met and sum power over all users is minimized.

The above problem, where only a subset of users are scheduled in a slot, can be motivated as follows. It is well-known that

if the goal is only to minimize sum power, then all users should use all slots [3, Lemma 3.4]. Such a consideration leads to the

classical multiple-access channel with K users accessing the channel in a slot. Optimal decoding however requires the receiver

to do a joint decoding across all K users; the decoding complexity is exponential in K. Moreover, such an access scheme is

prone to jamming as a jammer can affect all users’ coded signals. On the other hand, one could schedule at most one user per

slot. This significantly simplifies the multiple-access coding problem, but is power inefficient. Moreover, each user has to wait

K slots before getting an opportunity to transmit; this may not meet a user’s delay constraint. A trade-off is to schedule the

K users in N slots, N < K, where each user transmits in at most one of these N slots. N is small enough to meet the delay

constraint, yet large enough to provide jamming resilience. We assume throughout that N is obtained as per system and delay

requirements. It may either be fixed up front or may be supplied as part of the optimization problem. Since N < K, there is

at least one slot with two or more users. We are therefore studying an uplink analog of multipacket downlink transmission of

low data rate packets used in 1xEV-DO Rev A [4], where several voice packets are grouped together in a time-code slot to

meet voice application’s tight delay constraints.

Clearly, this problem can be posed in other settings as well. For example in a frequency-flat channel, subcarriers pertaining

to an OFDM system and codes pertaining to CDMA system play the role of time slots in this paper. Our attention to scheduling

in time slots is only to ease exposition.

Let us first focus on one slot, say n. Recall that Sn is the subset of users that transmit in slot n. Users in this slot use up

one degree of freedom and do not interfere with users in other slots. In order to meet the rate requirements, the sum power

of users in this slot should satisfy [5, Section 14.1.2]

1
2
r(Sn):=

1
2

∑

k∈Sn

rk ≤ 1
2

log

(
1 +

∑

k∈Sn

pk

)

so that3
∑

k∈Sn

pk ≥ 2r(Sn) − 1. (1)

Furthermore, it is known that the above lower bound on sum power is achieved via a successive cancelation decoder. (See for

e.g. [3, Lemma 3.4]). Thus we may assume equality in (1) for a fixed Sn.

1Reason for the appearance of the factor 1
2

will soon be clear.
2Second as unit of time has been chosen for concreteness. In practice, this unit of scheduling time is of the order of milliseconds in cellular systems (3GPP

HSUPA).
3Note the disappearance of the factor 2 in the exponent; this is the reason for the rather strange appearance of 1

2
in the rate requirement.

3

Given a partition Sn : n ∈ [N], where [N] denotes the set {1, 2, · · · , N}, the minimum sum power for the partition is given

by
N∑

n=1

∑

k∈Sn

pk =
N∑

n=1

2r(Sn) −N (2)

The minimum is over all encoding and decoding schemes for the given partition. We now pose the following question: What

is the minimum power (2) over all partitions?

Observe that if it were possible to make all partition sums r(Sn) the same, the objective function in (2) is minimized. Of

course such a partition may not exist. With this ideal as a benchmark, the ideal partition sum is then A := N−1
∑K

k=1 rk,

and r(Sn)−A is a measure of deviation from the best value in slot n. The objective function in (2) attempts to minimize an

exponential cost of these deviations, with positive deviations more heavily penalized than negative deviations.

In this paper, we address the complexity of the decision versions of this problem. In Section III-A, we show that when N

is input as part of the problem instance, the problem is NP-complete, i.e., if this problem can be solved in polynomial time

by a deterministic Turing machine, we will have obtained a polynomial time algorithm to several problems that have thus far

resisted such solutions. In Section III-B we show that a version of the problem where N is fixed can be solved in polynomial

time by a deterministic Turing machine. This result is some what surprising because it is at variance with the corresponding

results for MULTIPROCESSOR SCHEDULING or for the optimization of Lp metrics.

When the scaled rates rk are rational numbers, computation of the possibly irrational 2r(Sn), cannot in general be done

in finite time with infinite precision. It is then natural to look at approximations to 2r(Sn). To move the approximation out

of the computation framework, we assume that users supply a rational approximation of 2rk u fk

gk
. The above combinatorial

optimization problem then takes the form: Given fk

gk
: k ∈ [K], rational approximations to exponentiated rates, minimize

N∑
n=1

∏

k∈Sn

fk

gk
−N

over all partitions Sn : n ∈ [N] of [K]. In Section IV, as in Section III we study the decision versions of two variants of

this problem. When N is a variable and input as part of the problem instance we prove the problem is strongly NP-complete.

When N is assumed known and fixed we prove the problem is NP-complete.

The intractability of the above scheduling problems leads us to study an approximation algorithm. In section V, we analyze

the LPT algorithm and prove worst case upper bounds for the power of the partition output by LPT, measured in the logarithmic

scale. Our worst case upper bound is a function of the average offered input load per slot.

Algorithms for power allocation to nodes in a network have been studied in different contexts. In a wireless communication

setting where a node’s transmission range being proportional to its transmit power, the topology of the network is a function

of the assigned powers. Chen and Huang [6] show the problem of minimizing sum power for full connectivity is NP-hard.

Kirousis and others [7] study a simpler problem when n nodes lie along a line separated by unit distance and provide an

O(n4) algorithm for power assignment. The above problems deal with power allocation for connectivity, whereas we focus

on power allocation to meet certain rate requirements. Arikan [8] considers the problem of assigning powers to nodes in a

packet radio network such that specific origin-destination pairs communicate at specified rates. He proves that the problem is

NP-hard. Assuming that the only cause for packets to be received in error is simultaneous transmissions he schedules at most

one radio at any time. In contrast we allow for multiple users per slot and compensate for simultaneous transmissions via larger

4

powers and the use of a successive cancelation decoder. Tassiulas [9] proposes randomized algorithms for the dual problem of

scheduling for maximum throughput in a wireless network. A summary of several recent works on scheduling for maximum

throughput on a wireless network is the monograph by Georgiadis et al. [10]. A problem analogous to (2) but with Lp metric

as cost was studied by Chandra & Wong [1], Leung & Wei [11], and Goldberg & Shapiro [12]. Particularly, Graham’s LPT

rule [2] was analyzed and bounds from optimality were provided.

In Section II, we introduce some notation and relevant concepts from complexity theory. In sections III and IV, we prove

the intractability of the scheduling problems. In section V we analyze the LPT algorithm. We conclude with some remarks in

Section VI.

II. PRELIMINARIES

We begin with some remarks on notation. Recall that for an integer K ≥ 1, [K] denotes the set {1, 2 · · · ,K}. For x, y ∈ Z+,

let s (x) = blog2 xc + 1 represent span of x when represented in binary. Let pS(x), pM (s(x), s(y)), pC(s(x), s(y)) be the

number of steps required to compute 2x, compute xy, and compare x and y respectively, where ps(·), pM (·, ·), and pC(·, ·)
are fixed univariate and bivariate polynomials.

We next collect here some well known facts for ease of reference.

• Given x ∈ Z+, x2 can be computed in time polynomial in s(x).

• If x is a perfect square,
√

x can be computed in time polynomial in s(x). Indeed, a binary search performed on the

ordered set [x] will require computing squares of s(x) numbers each of value at most x, followed by a comparison with

x. This can be done in O (s (x) (pM (s(x), s(x)) + pC (s(x), s(x)))) steps, thus polynomial in s(x).

• Given positive integers xk : k ∈ [K],
∏K

k=1 xk can be computed in

K−1∑

l=1

pM

(
l∑

i=1

s (xi) , s (xl+1)

)
≤ KpM (Ksmax, smax)

steps, where smax : = max
k∈[K]

s(xk). Since K ≤ ∑K
k=1 s (xk), the right hand side above is a polynomial in the input length.

Thus
∏K

k=1 xk can be computed in time polynomial in the input length. Since s
(∏K

k=1 xk

)
≤ Ksmax, if

∏K
k=1 xk is a

perfect square,
√∏K

k=1 xk can be computed in time polynomial in the input length.

For a problem Π, let domain D(Π) denote the set of all valid instances of Π, and Y (Π) the set of all yes-instances of Π. Let

maxΠ : D(Π) → Z+ map a valid instance I to the magnitude of the largest integer in I , or 0 if no integer occurs in I . Let

LengthΠ : D(Π) → Z+ map a valid instance I to the length of its encoding4. The subscript Π is omitted when the problem

under consideration is clear from the context.

A problem Π′ is a subproblem of Π if D(Π′) ⊆ D(Π) and Y (Π′) = D(Π′)∩Y (Π). Note that a problem Π and a restricted

domain D(Π′) ⊆ D(Π) define the subproblem Π′ uniquely.

Let p(·) be a polynomial. Πp is a subproblem of Π defined through its domain

D(Πp) = {I ∈ D(Π) : maxΠ(I) ≤ p(LengthΠ(I))} .

4Any encoding scheme referred to in this paper is a reasonable encoding scheme. For a discussion on reasonable encoding schemes refer to [13, Section

2.1]

5

We quickly recall some basic complexity concepts. See [13, Chapter 2] for a detailed discussion. Π is said to be in class P

if it can be solved by a deterministic Turing machine in polynomial time. Π is said to be in class NP if it can be solved by

a non-deterministic Turing machine in polynomial time. We say problem Λ can be reduced to Π in polynomial time if there

exists an f : D(Λ) → D(Π) that satisfies the following :

1) for all I ∈ D(Λ), I ∈ Y (Λ) ⇔ f(I) ∈ Y (Π), and

2) given I , f(I) can be computed in time polynomial in LengthΛ(I).

Π is NP-complete if Π ∈ NP and every problem Λ ∈ NP can be reduced to Π in polynomial time.

Definition 1: [13, p.95] A problem Π is strongly NP-complete if there exists a polynomial p(·) such that Πp is NP-complete.

Example 2: Consider the following three dimensional matching (3DM) problem.

3DM : Given disjoint sets X,Y, Z and a set V ⊆ X × Y × Z, is there V ′ ⊆ V that forms a matching for X,Y, Z ? In

other words, does every element of X, Y, Z belong to exactly one triplet in the matching V ′? ¤

3DM is NP-complete. It is also strongly NP-complete because no integer occurs in its description.

The following definition and lemma relate difficulty levels of two problems.

Definition 3: [13, p.101] For two problems Π and Λ, f : D(Π) → D(Λ) is a pseudo polynomial transformation (PPTM) if

the following hold:

(i) For all I ∈ D(Π), we have I ∈ Y (Π) if and only if f(I) ∈ Y (Λ);

(ii) f can be computed in time polynomial in the two variables maxΠ(I) and LengthΠ(I);

(iii) there exists a polynomial q1 such that if I ∈ D(Π), then q1(LengthΛ(f(I))) ≥ LengthΠ(I); and

(iv) there exists a two-variable polynomial q2 such that for all I ∈ D(Π) we have maxΛ(f(I)) ≤ q2(maxΠ(I), LengthΠ(I)).

Lemma 4: Let Π be a strongly NP-complete problem and Λ another problem. If f is a PPTM from Π to Λ, then Λ is

strongly NP-complete.

See [13, Lemma 4.1] for a proof.

III. SLOTTED ALLOCATION FOR POWER MINIMIZATION

Recall from Section I that the problem of minimizing total received sum power (2) needed to satisfy a set of rate requirements
rk

2 , k ∈ [K] bits/second reduces to the following combinatorial optimization problem:

Given scaled rates rk : k ∈ [K] and N ≤ K, identify a partition Sn : n ∈ [N] of [K] that minimizes
∑N

n=1 2r(Sn).

We investigate the computational complexity of this problem. Two cases are of interest. In the variable bandwidth case the

number of slots N per second is a variable that is input as part of the problem instance. In the fixed bandwidth case, N is

assumed known and fixed. We study the complexity of both these variations by looking at their decision versions.

A. Variable Bandwidth Case

SLOTTED PMIN : Given positive integer rates r1, r2, · · · , rK , number of slots N per second, N ≤ K, a positive integer

power P , is there a partition Sn : n ∈ [N] of [K] such that the inequality
N∑

n=1

2r(Sn) ≤ P (3)

6

holds? ¤

Our first result is the following.

Theorem 5: SLOTTED PMIN is NP-complete.

Proof: 1) We first show SLOTTED PMIN ∈ NP by providing a polynomial time algorithm to check validity of a

certificate partition. Assume without loss of generality that r1, r2, · · · , rK are in increasing order. Clearly P > 2rK , and

therefore s(P) > rK , is a necessary condition for the existence of a partition Sn : n ∈ [N] that satisfies (3). Compare s(P)

and rK (in time polynomial in the input size) and reject the instance when s(P) ≤ rK . Hence we may focus on the instances

that satisfy s(P) > rK ; these are fortunately instances where the rate values are bounded by the size of the input. This leads

to the following algorithm. Let (1 ¿ x) denote the left shift operation on 1 to obtain the binary representation of 2x.

Check Certificate(rk : k ∈ [K] , N, Sn, n ∈ [N] , P):

if (s (P) ≤ rK)

RETURN Certificate is invalid

else {
for (n = 1, 2, · · · , N) {

r(Sn) =
∑

k∈Sn

rk

Pn = (1 ¿ r(Sn))

}
Ptot =

∑N
n=1 Pn

if (Ptot ≤ P)

RETURN Certificate is Valid

else

RETURN Certificate is Invalid

}

We only need to analyze the complexity of the “else” part; we show that despite the exponentiation the numbers involved

are small. Since r(Sn) ≤ KrK < Ks (P), the number of operations needed to compute Pn (via left shifts) is pS (Ks (P)).

The span of Pn is at most Ks (P). The span of Ptot is thus at most Ks (P) log N . This is multiplied by N because of the

“for” loop. Since N ≤ K ≤ Length(I), the time needed to compute Ptot and compare it with P is NKs (P) log N which is

O(Length(I)4). Thus CheckCertificate runs in polynomial time.

2) We next show that a subproblem of a strongly NP-complete problem 4-PARTITION [13, p.96] can be reduced in

polynomial time to SLOTTED PMIN.

4-PARTITION : Given positive integers a1, a2, · · · , a4N such that
4N∑

k=1

ak = NB where B is a positive integer, and

B
5 < ak < B

3 for every k ∈ [K], is there a partition Sn : n ∈ [N] of [4N] such that a (Sn) = B for all n ∈ [N] ? ¤

This is termed 4-PARTITION because if a partition exists, every set in the partition will have exactly 4 elements on account of

B
5 < ak < B

3 . Observe that B and N need not be directly input as part of the problem instance. As 4-PARTITION is strongly

NP-complete [13, Theorem 4.3], there exists a polynomial p(·), such that 4-PARTITIONp is NP-complete.

7

2a) Consider the transformation f : D(4-PARTITIONp) → D(SLOTTED PMIN) defined as follows

SLOTTED PMIN ← 4-PARTITIONp

rk := ak for k = 1, 2, · · · , 4N

N := N

P := N2B

This is a polynomial time reduction because of the following. For any instance I ∈ D(4-PARTITIONp), B < 5ak <

5p(Length (I)). Since N < Length(I), P can be computed in at most pM (s(N), 5p(Length (I))) steps proving the polynomial

complexity of the reduction.

2b) We now prove I ∈ Y (4-PARTITIONp) if and only if f(I) ∈ Y (SLOTTED PMIN). It is easy to see that I is a yes-

instance of 4-PARTITIONp with partition Sn : n ∈ [N], then f(I) is a yes-instance of SLOTTED PMIN with the same

partition. In fact equality holds in (3). Conversely, if Sn : n ∈ [N] is a desired partition for a yes-instance f(I) of SLOTTED

PMIN, we then have

P = N2B ≥
N∑

n=1

2r(Sn)

≥ N

(
N∏

n=1

2r(Sn)

) 1
N

(4)

= N2B

where (4) follows from the arithmetic mean - geometric mean (AM-GM) inequality. Consequently, all inequalities are equalities,

leading to r (Sn) = B for all n ∈ [N]. Thus Sn : n ∈ [N] is a desired partition for 4-PARTITIONp and I is a yes-instance of

4-PARTITIONp. This completes the proof.

B. Fixed Bandwidth

We now look at the case when the number of slots N is fixed. In practice for a fixed communication technology, N is

usually a fixed parameter.

N-SLOTTED PMIN : Given positive integer rates r1, r2, · · · , rK , where N ≤ K, a positive integer power P , is there a

partition Sn : n ∈ [N] of [K] such that the inequality
N∑

n=1

2r(Sn) ≤ P (5)

holds? ¤

Our second result is the following.

Theorem 6: N-SLOTTED PMIN ∈ P. In particular, there is an algorithm that solves N-SLOTTED PMIN with a running

time O
(

Length (I)N+1
)

.

Proof: We first show that number of partitions of [K] that need to be checked is polynomial in the size of the input.

We then argue that computing
N∑

n=1

2r(Sn) for each of these partitions Sn : n ∈ [N] of [K] can be done in polynomial time.

Subsequently, we provide a polynomial time algorithm that solves N-SLOTTED PMIN.

8

1) Associate the N -length vector (r (Sn) : n ∈ [N]) with the partition Sn : n ∈ [N] of [K]. In order to solve N-SLOTTED

PMIN we may focus on partitions whose associated vectors have components with values at most s (P). This is because

r (Sn) < s (P) for every n ∈ [N] is a necessary condition for partition Sn : n ∈ [N] to satisfy (5). Let T (K) be set of vectors

associated with all such partitions. As there are at most s (P) values taken by each component, we have |T (K)| ≤ s(P)N .

2) Assume without loss of generality r1, r2, · · · , rK is in increasing order. Consider a candidate partition Sn : n ∈ [N].

As in CheckCertificate (see proof of Theorem 5), we reject if s(P) ≤ rK (in polynomial time) and therefore focus on

those instances with s(P) > rK . From the discussion following CheckCertificate, r(Sn), Pn, n ∈ [N], and Ptot can be

computed in polynomial time for surviving partitions.

3) We now provide a dynamic programming algorithm NSlottedPMIN to solve N-SLOTTED PMIN. Let en denote the

unit vector with 1 in the nth component and 0 elsewhere. NSlottedPMIN computes T (k), defined as the set of vectors

associated with partitions of [k], recursively from T (k−1). Take T (0) : = {(0, 0, · · · , 0)} The set of vectors obtained by adding

rk to the nth component of vectors in T (k−1), i.e.,

T (k−1) ⊕s(P) rken:=
{

t + rken : t ∈ T (k−1), tn + rk < s(P)
}

, (6)

are the vectors associated with partitions of [k] with k ∈ Sn. A union of these sets in (6) over n yields T (k).

NSlottedPMIN(rk : k ∈ [K] , P) :

if (s (P) ≤ rk)

RETURN No

else {
T (0) : = {(0, 0, · · · , 0)} ⊆ Z+

N

for (k= 1, 2, · · · ,K)

T (k) : = ∪N
n=1

(
T (k−1) ⊕s(P) rken

)

for (t ∈ T (K)
) {

for (n = 1, 2, · · · , N)

Pn = (1 ¿ tn)

Ptot =
∑N

n=1 Pn

if (Ptot ≤ P)

RETURN Yes

}
RETURN No

}

We now analyze complexity of NSlottedPMIN. Since |T (k−1)| ≤ s(P)N for every k ∈ [K], computation of (6) from

T (k−1) requires at most s(P)N additions and as many comparisons. The values involved in these operations are at most s(P).

Therefore T (k) can be computed in O
(
Ns(P)N

)
steps. Since the components of vectors in T (K) are bounded in value by s(P),

computation of Pn : n ∈ [N], computation of Ptot, and its comparison with P , can all be done in O
(
s(P)N ·N log N

)
time.

9

Doing this for every vector in T (K) requires at most O
(
s(P)N+1 ·N log N

)
steps. Thus the “else” part of NSlottedPMIN

runs to completion in O
(
N · log N · (log P)N+1

)
steps. This leads to an overall time complexity of O

(
Length (I)N+1

)
, a

polynomial in Length (I), since N is a fixed constant.

IV. SUM PRODUCT

In this section we assume that users provide rational approximations fk

gk
to exponentiated rate requirements 2rk . The problem

of minimizing sum power then reduces to minimizing the sum of products of a given set of rational numbers. In Section IV-A

we consider the case when N is input as part of the problem instance and in Section IV-B we study the case when N is

known and fixed. The decision versions of both problems are proved to be NP-complete. Furthermore, we prove that when N

is part of the problem instance the problem is strongly NP-complete. When N is fixed and gk’s are 1, a PPTA can be found

as indicated in Section V I .

A. Variable Bandwidth

SUM PRODUCT : Given positive rational numbers f1
g1

, f2
g2

, · · · , fK

gK
representing approximations to exponentiated rates,

number of slots N per second, and a positive rational power P
Q , is there a partition Sn : n ∈ [N] of [K] such that the inequality

N∑
n=1

∏

k∈Sn

fk

gk
≤ P

Q
(7)

holds? ¤

Theorem 7: SUM PRODUCT is strongly NP-complete.

Proof: It is easy to verify SUM PRODUCT ∈ NP. We now look for a reduction from the following problem.

PRODUCTS OF 8 : Given positive rational numbers f1
g1

, f2
g2

, · · · , f4N

g4N
such that

4N∏

k=1

fk

gk
= 8N , is there a partition Sn : n ∈

[N] of [4N] such that
∏

k∈Sn

fk

gk
= 8 (8)

for every n = 1, 2, · · · , N ? ¤

PRODUCTS OF 8 is strongly NP-complete. See Appendix A for a proof.

A PPTM from PRODUCTS OF 8 to SUM PRODUCT : Consider the following transformation f : D(PRODUCTS OF 8) →
D(SUM PRODUCT).

SUM PRODUCT ← PRODUCTS OF 8

fk

gk
:=

ak

bk
for k = 1, 2, · · · , 4N

N := N

P

Q
:= 8N.

Suppose I ∈ Y (PRODUCTS OF 8). A partition Sn : n ∈ [N] of [K] that satisfies (8) also satisfies (7) with equality. Hence

f(I) ∈ Y (SUM PRODUCT).

10

Conversely let Sn : n ∈ [N] be a partition of [K] (= [4N]) that satisfies (7). We have

P

Q
= 8N ≥

N∑
n=1

∏

k∈Sn

fk

gk

≥ N

(
N∏

n=1

∏

k∈Sn

fk

gk

) 1
N

(9)

= N

(
4N∏

k=1

fk

gk

) 1
N

= 8N

where (9) follows from AM-GM inequality. Thus all inequalities above are equalities, and

∏

k∈Sn

fk

gk
= 8 for each n ∈ [N] . (10)

Thus f(I) ∈ Y (SUM PRODUCT) ⇒ I ∈ Y (PRODUCTS OF 8).

We have thus verified that f satisfies condition (i) of Definition 3. Conditions (ii), (iii), and (iv) are obviously satisfied, and

f is a PPTM from PRODUCTS OF 8 to SUM PRODUCT. Lemma 4 implies SUM PRODUCT is strongly NP-complete.

B. Fixed Bandwidth

The number of slots is now fixed to N .

N-SUM PRODUCT : Given pairs of positive integers f1
g1

, f2
g2

, · · · , fk

gk
representing exponentiated rates and P

Q a pair of

positive integers representing power, is there a partition Sn : n ∈ [N] of [K] such that the inequality
N∑

n=1

∏

k∈Sn

fk

gk
≤ P

Q
(11)

holds? ¤

Theorem 8: N-SUM PRODUCT is NP-complete.

Proof: It is easy to verify N-SUM PRODUCT ∈ NP. To prove N-SUM PRODUCT is NP-complete, we provide a reduction

from the following problem.

SQRT SUBSET : Given positive integers a1, a2, · · · , aK positive integers such that
K∏

k=1

ak is a perfect square, is there an

SQ ⊆ [K] such that

∏

k∈SQ

ak =

√√√√
K∏

k=1

ak (12)

holds? ¤

SQRT SUBSET is NP-complete. See Appendix B for a proof.

11

Consider the transformation f : D(SQUARE-ROOT) → D(N-SUM PRODUCT) as given below

N-SUM PRODUCT ← SQRT SUBSET

fk

gk
:= ak for k = 1, 2, · · · ,K

fk

gk
:=

√√√√
K∏

k=1

ak for k = K + 1,K + 2, · · · ,K + N − 2

P

Q
:= N

√√√√
K∏

k=1

ak

For an instance ak : k ∈ [K] of SQRT SUBSET, denoted I ,
∏K

k=1 ak is a perfect square. Thus
√∏K

k=1 ak is a positive integer

and f(I) ∈ D(N-SUM PRODUCT). Moreover, f can be computed in time polynomial in the length of SQRT SUBSET (since

N is a constant). If we can show I ∈ Y (SQRT SUBSET) ⇔ f(I) ∈ Y (N-SUM PRODUCT), we would have shown N-SUM

PRODUCT is NP-complete. To this end we do the following.

Suppose I ∈ Y (SQRT SUBSET) with desired subset SQ. Consider the following partition of [K + N − 2] : S1 = SQ, S2 =

[K] \ SQ, and Sn = {K + n− 2} , n = 3, 4, · · · , N . The sum of products for this partition is

N∑
n=1

∏

k∈Sn

fk

gk
=

N∑
n=1

√√√√
K∏

k=1

ak

= N

√√√√
K∏

k=1

ak,

i.e., (11) holds with equality and therefore f(I) ∈ Y (N-SUM PRODUCT). Conversely, suppose Sn : n ∈ [N], a partition of

[K + N − 2], is a desired partition for N-SUM PRODUCT. We have

P

Q
≥

N∑
n=1

∏

k∈Sn

fk

gk

≥ N

(
N∏

n=1

∏

k∈Sn

fk

gk

) 1
N

(13)

= N

√√√√
K∏

k=1

ak

=
P

Q
.

where (13) follows once again from the AM-GM inequality. Hence all inequalities are equalities and we have

∏

k∈Sn

fk

gk
=

√√√√
K∏

k=1

ak for each n ∈ [N] .

But each of fk

gk
: k ∈ {K + 1,K + 2, · · · ,K + N − 2} belong N − 2 different sets of the partition, call them S3, S4, · · · , SN .

Thus we have S1 ⊆ [K], a desired subset for SQRT SUBSET. This proves I ∈ Y (SQRT SUBSET).

V. ANALYSIS OF THE LPT ALGORITHM

In this section, we extend Chandra & Wong’s analysis in [1] of the performance of the LPT algorithm under the cost function

log
1
N

N∑
n=1

2r(Sn), (14)

12

which is the logarithm of the normalized objective function in problem SLOTTED PMIN. This objective function is a measure

of the power required per slot in the logarithmic scale (usually in decibel units) and happens to be the appropriate scale in

practice for making comparisons.

The LPT algorithm is as follows. Let r1, r2, · · · , rK be strictly positive and in descending order. Start with N empty sets.

At step k, include rk in any one of the slots with the least subset-sum.

For SUM PRODUCT, the LPT algorithm should include the index to the subset with the least subset-product instead of

subset-sum. This is of course the same as including the index to the subset with the least subset-sum of exponents. It therefore

follows that the bounds obtained below hold equally well for both problems even though they are presented in the context of

SLOTTED PMIN.

Let lpt be the value of the objective function (14) on the output of the LPT algorithm, and let opt be that of the optimal

one. Further, let A := 1
N

∑K
k=1 rk be the average load per slot. The analysis of Chandra & Wong [1, Sec.5] shows that for

the normalized Lp metrics, p > 1, the performance of the LPT algorithm relative to that of the optimal algorithm is upper

bounded by

max
q

(∫ 1

0
(q(t))p dt

Ap

)1/p

, (15)

where the maximization is over q : [0, 1] → R+ that are piecewise-continuous, monotonically nonincreasing, with the following

additional constraints:

q(0) ≤ 3
2
q(1),

∫ 1

0

q(t) dt = A.

The same analysis holds for any strictly increasing strictly convex cost function of which the exponential cost function is but

a particular example. We therefore have
lpt
opt

≤ max
q

log
∫ 1

0
eq(t) dt

A
, (16)

where q is subjected to the same constraints indicated above. There is, however, one significant difference between the upper

bounds in (15) for Lp metrics and the upper bound in (16) for the exponential cost function. The upper bound in (15) is

invariant to scaling in q, while the upper bound in (16) is not. The latter upper bound will therefore depend on the parameter

A which is the average load per slot of the given problem instance. This enables us to give better bounds that is based on the

problem parameters. We next proceed to evaluate the upper bound as a function of average offered load per slot.

It is straightforward to see that worst-case (maximizing) q is of the form

q∗(t; λ) =





3A
λ+2 t ∈ [0, λ]

2A
λ+2 t ∈ (λ, 1],

where λ ∈ [0, 1] is a parameter. This choice of q∗ satisfies all the specified constraints. We thus have

lpt
opt

≤ max
λ∈[0,1]

log
(
λe

3A
λ+2 + (1− λ)e

2A
λ+2

)

A
.

A plot of this worst-case inefficiency factor is given in Figure 1. The upper bound, and therefore ratio lpt/opt, is near 1

for small values of A, i.e., the LPT algorithm is asymptotically efficient as A → 0. As might be expected, the worst-case

inefficiency factor lpt/opt is upper bounded by 3/2, and the upper bound approaches this limiting value for large A.

13

0 5 10 15 20 25 30 35 40 45 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

A

lp
t /

 o
pt

Fig. 1. Upper bound on the performance of the LPT algorithm relative to the optimal one, as a function of the load per slot.

VI. SUMMARY AND CONCLUDING REMARKS

We now summarize and provide a compilation of related open questions.

1) We showed that SLOTTED PMIN is NP-complete and N-SLOTTED PMIN ∈ P. The running time of our algorithm for

the latter problem is O
(

Length (I)N+1
)

. Open question : Is SLOTTED PMIN strongly NP-complete?

2) We showed SUM PRODUCT is strongly NP-complete and N-SUM PRODUCT is NP-complete. Our reduction from

SQRT SUBSET to N-SUM PRODUCT generates only integers. Thus the problem of N-SUM PRODUCT restricted to

positive integers is also NP-complete. A dynamic programming approach can easily be employed to arrive at a pseudo

polynomial time algorithm [13, p.94] to solve N-SUM PRODUCT, when restricted to integers. Thus N-SUM PRODUCT

when restricted to integers is not strongly NP-complete. Is N-SUM PRODUCT with rational numbers strongly NP-

complete?

3) SUM PRODUCT when restricted to integers is also NP-complete. This can be shown for example via a reduction from

MULTIPROCESSOR SCHEDULING [13, SS8]. Is it strongly NP-complete?

4) Our intractability results on SUM PRODUCT (and those in the appendices) are of independent interest since they could

be starting points of reductions to show intractability of other similar problems.

5) We identified performance bounds on Graham’s LPT rule. Our upper bound is rather crude in that it is multiplicative in

the logarithmic scale. It would be interesting to get other schemes with better performance.

APPENDIX A

PRODUCTS OF 8 IS STRONGLY NP-COMPLETE

Proof: It is easy to verify PRODUCTS OF 8 ∈ NP. We now provide a PPTM from 3DM (three-dimensional matching)

to prove PRODUCTS OF 8 is strongly NP-complete. The proof was inspired by the proof of [13, Theorem 4.3] and uses a

similar argument.

Let |X| = |Y | = |Z| = t and denote X = {x1, x2, · · · , xt} and similarly Y and Z. For a v ∈ V , let v (x) denote the index

in X of the x-component, and so on, so that v =
(
xv(x), yv(y), zv(z)

)
. Let N (xi) , N (yj) , N (zk) denote number of triples in

14

V that contain xi ∈ X, yj ∈ Y, zk ∈ Z, respectively. Let p1, p2, · · · , pt, q1, q2, · · · , qt, r1, r2, · · · , rt be 3t consecutive primes

starting from 3. We now identify 4|V | rational numbers as follows:

• For i = 1, 2, · · · , t, associate with xi ∈ X the primary rational number 2pi, and (N (xi)− 1) secondary rational numbers

pi, pi · · · , pi.

• For j = 1, 2, · · · , t, associate with yj ∈ Y the primary rational number 2qj , and (N (yj)−1) secondary rational numbers

qj , qj , · · · , qj .

• For k = 1, 2, · · · , t, associate with zk ∈ Z the primary rational number rk, and (N (zk)− 1) secondary rational numbers

4rk, 4rk, · · · , 4rk.

• Associate with each triplet v ∈ V the rational number 2
pv(x)qv(y)rv(z)

.

We now verify that these rational numbers form a valid instance of PRODUCTS OF 8 with N = |V |. Note that
t∑

i=1

N (xi) =
t∑

j=1

N (yj) =
t∑

k=1

N (zk) = |V |.

The product of numerators of numbers associated with elements of X is
t∏

i=1

(2pi) p
(N(xi)−1)
i = 2t

t∏

i=1

p
N(xi)
i = 2t

∏

v∈V

pv(x)

Using similar relationships for rational numbers associated with elements of Y and Z we see that ratio of numerators and

denominators is

2t · 2t · 4
∑t

k=1(N(zk)−1) · 2|V | = 8|V |

and therefore 4|V | rational numbers form a valid instance of PRODUCTS OF 8 with N = |V |.
We now prove that under the above transformation I is a yes-instance of 3DM iff it is a yes-instance of PRODUCTS OF 8.

Let V ′ ⊆ V be a matching for X, Y, Z. For v′ ∈ V ′, group the rational number associated to v′ with primary rational

numbers corresponding to components of v′, i.e.,
{

2
pv′(x)qv′(y)rv′(z)

, 2pv′(x), 2qv′(y), rv′(z)

}

For v ∈ V \ V ′ group the rational number associated to v with secondary rational numbers corresponding to components of

v, i.e., {
2

pv(x)qv(y)rv(z)
, pv(x), qv(y), 4rv(z)

}

By our choice of the number of secondaries, such a grouping exists, and all numbers will belong to exactly one subset of four

elements. Each subset has product 8, and we have our desired partition for PRODUCTS OF 8.

Conversely suppose Sn : n ∈ [N] is an appropriate partition for PRODUCTS OF 8. We claim that every Sn contains one

rational number corresponding to a triplet in V , and three other rational numbers, each corresponding to elements in X, Y, Z,

respectively.

Consider an Sn. There is at least one rational number corresponding to a triplet because otherwise the odd primes cannot be

cancelled. Moreover, there are N subsets and N triplets, which implies that there is exactly one rational number corresponding

to a triplet in each subset.

15

Let the denominator of this rational number in Sn be pi(n)qj(n)rk(n). Then the other rational numbers in Sn contribute a

product equal to

4pi(n)qj(n)rk(n). (17)

By the uniqueness of prime factor decomposition there must be exactly one element from the rational numbers corresponding to

xi(n), exactly one element from those corresponding to yj(n), and exactly one from those corresponding to zk(n), i.e., there are

exactly 4 elements in Sn. Since the product in (17) has 4 as a factor, the three elements are either all primary or all secondary.

We thus conclude that Sn contains one rational number corresponding to V and three rational numbers corresponding to

xi(n), yj(n), zk(n) all primary or all secondary. Since Sn, n ∈ [N] is a partition of the rational numbers, t of these sets contain

primary rational numbers and N − t of them contain secondary rational numbers. Consider the t sets with the primaries. The

set of triplets associated with these t subsets is a matching V ′ for X, Y, Z, and the instance is a yes-instance of 3DM.

The size of an input instance to 3DM is polynomial in |V | (≥ t). We now prove that the rational numbers in the transformed

instance of PRODUCTS OF 8 can be generated in time polynomial in |V |. This requires identification of (3t + 1) primes. We

identify in a brute-force fashion 3t + 1 prime numbers starting from 3. The nth prime does not exceed 12n
(
log n + log 12

e

)

[15, Theorem 4.7]. Since 12n
(
log n + log 12

e

) ≤ 12n (log n + 2) ≤ 12n (2 log n + 2) ≤ 24n2, a polynomial in n, we need to

check at most 24 (3t + 1)2 numbers to identify (3t + 1) primes. Checking a number for prime can be done in polynomial time

[16]. Thus (3t + 1) primes can be identified in time polynomial in t. Consequently, the rational numbers can be computed in

polynomial time, and we have a polynomial time reduction.

Finally, the numbers that represent the rational numbers are bounded by q3
t ≤ 243 (3t + 1)6, i.e., a polynomial function of

size of input instance. The transformation is therefore a PPTM from 3DM to PRODUCTS OF 8. This proves the strongly

NP-complete nature of the latter.

APPENDIX B

SQRT SUBSET IS NP-COMPLETE

Proof: It is easy to verify SQRT SUBSET ∈ NP. We provide a reduction from SUBSET PRODUCT, a product analog of

SUBSET SUM.

SUBSET PRODUCT : Given positive integers b1, b2, · · · , bK and P such that P divides
∏K

k=1 bk, is there a subset S ⊆ [K]

such that
∏

k∈S

bk = P holds? ¤

SUBSET PRODUCT, as defined above, is restricted to those instances of SUBSET PRODUCT [SP14] [13, p.224] where P

divides
∏K

k=1 bk. Given an instance of SUBSET PRODUCT [SP14], this condition is a necessary condition for it to be a yes-

instance. Furthermore, this necessity can be checked in polynomial time. Thus the NP-completeness of SUBSET PRODUCT

[SP14] [13, p.224] implies SUBSET PRODUCT as defined above is NP-complete.

16

Consider the following reduction f : D (SUBSET PRODUCT) → D (SQRT SUBSET).

SQRT SUBSET ← SUBSET PRODUCT

ak := bk for k = 1, 2, · · · ,K

aK+1 :=

(
K∏

k=1

bk

)2

/P

aK+2 := P

K∏

k=1

bk

Note that
∏K+2

k=1 ak is a perfect square and aK+1 is a positive integer; thus ak : k ∈ [K + 2] is a valid instance of SQRT

SUBSET. From the observations made in Section II, it is clear that f can be computed in time polynomial in the size of

SUBSET PRODUCT. It remains to prove I ∈ Y (SUBSET PRODUCT) ⇔ f(I) ∈ Y (SQRT SUBSET).

Suppose I ∈ Y (SUBSET PRODUCT). Let S ⊆ [K] be the desired subset for SUBSET PRODUCT. It is easily verified

that SQ = S ∪ {K + 1} is a desired subset for SQRT SUBSET. Thus f(I) ∈ Y (SQRT SUBSET). Conversely, suppose SQ

is a square root subset for SQRT SUBSET. Exactly one of K + 1,K + 2 is an element of SQ. Without loss of generality we

assume K + 1 ∈ SQ. Then S : = SQ \ {K + 1} ⊆ [K] is the desired subset for SUBSET PRODUCT. This completes the

proof.

ACKNOWLEDGEMENT

The authors are indebted to Dr. Kavitha Telikepalli of the CSA department, Indian Institute of Science, for an initial proof

of Theorem 7 and for several discussions that led to the results in this paper.

REFERENCES

[1] A. K. Chandra and C. K. Wong, “Worst-case analysis of a placement algorithm related to storage allocation,” SIAM Journal of Computing, vol. 4, no. 3,

pp. 249–263, 1975.

[2] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J. Appl. Math., vol. 17, pp. 263–269, 1969.

[3] D. N. C. Tse and S. Hanly, “Multi-access fading channels - Part I: Polymatroid structure, optimal resource allocation and throughput capacities,” IEEE

Trans. Inf. Theory, vol. 44, pp. 2796–2815, Nov. 1998.

[4] TIA/EIA/IS-856-A, “cdma2000 High Rate Packet Data Air Interface Specification,” Telecommunications Industry Association, March 2004

(http://www.3gpp2.org).

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.

[6] W.-T. Chen and N.-F. Huang, “The strongly connecting problem on multihop packet radio networks,” IEEE Transactions on Communications, vol. 37,

pp. 293–295, March 1989.

[7] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc, “Power consumption in packet radio networks,” in Lecture Notes In Computer Science; Vol. 1200

archive, Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science. Nice, France: Springer-Verlag, London, UK, 1997,

pp. 363 – 374.

[8] E. Arikan, “Some complexity results about packet radio networks,” IEEE Trans. Inf. Theory, vol. 30, pp. 681–685, Jul. 1984.

[9] L. Tassiulas, “Linear complexity algorithms for maximum throughput in radio networks and input queued switches,” in Proc. of IEEE INFOCOM, Apr.

1998, pp. 533–539.

[10] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and Cross-Layer Control in Wireless Networks, ser. Foundations and Trends in

Networking. Hanover, MA, USA: now Publishers Inc., 2006, vol. 1, no. 1.

[11] J. Y. T. Leung and W. D. Wei, “Tighter bounds on a heuristic for a partition problem,” Inform. Process. Lett., vol. 56, pp. 51–57, 1995.

[12] R. R. Goldberg and J. Shapiro, “A tight upper bound for the k-partition problem on ideal sets,” Operations Research Letters, vol. 24, pp. 165–173, 1999.

17

[13] M. R. Garey and D. S.Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness. New York: W.H Freeman and Company,

1979.

[14] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. Academic, 1979.

[15] T. M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition ed. New Delhi: Narosa Publishing House, 1993.

[16] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in P,” Annals of Mathematics, vol. 160, pp. 781–793, Sep. 2004.

