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ABSTRACT

This paper considers the problem of guessing the realization of a finite
alphabet source when some side information is provided. The only
knowledge the guesser has about the source and the correlated side
information is that the joint source is one among a family. A notion of
redundancy is first defined and a new divergence quantity that mea-
sures this redundancy is identified. This divergence quantity shares
the Pythagorean property with the Kullback-Leibler divergence. Good
guessing strategies that minimize the supremum redundancy (over the
family) are then identified. The min-sup value measures the richness
of the uncertainty class. The min-sup redundancies for two examples
- the classes of discrete memoryless sources and finite-state arbitrarily
varying sources - are then determined.

Keywords:

f -divergence, guessing, I-projection, mismatch, Pythagorean iden-
tity, redundancy, Rényi entropy, Rényi information divergence,
side information

1 Introduction

Let X be a random variable on a finite set X with probability mass function
(PMF) given by (P (x) : x ∈ X). Suppose that we wish to guess the realiza-
tion of this random variable X by asking questions of the form “Is X equal
to x?”, stepping through the elements of X, until the answer is “Yes” ([1],
[2]). If we know the PMF P , the best strategy is to guess in the decreasing
order of P -probabilities.

The aim of this paper is to identify good guessing strategies and analyze
their performance when the PMF P is not completely known. Throughout
this paper, we will assume that the only information available to the guesser
is that the PMF of the source is one among a class T of PMFs.

By way of motivation, consider a crypto-system in which Alice wishes
to send to Bob a secret message. The message is encrypted using a private
key stream. Alice and Bob share this private key stream. The key stream
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is generated using a random and perhaps biased source. The cipher-text is
transmitted through a public channel. Eve, the eavesdropper, guesses one
key stream after another until she arrives at the correct message. Eve can
guess any number of times, and she knows when she has guessed right. She
might know this, for example, when she obtains a meaningful message. From
Alice’s and Bob’s points of view, how good is their key stream generating
source? In particular, what is the minimum expected number of guesses
that Eve would need to get to the correct realization? From Eve’s point of
view, what is her best guessing strategy? These questions were answered by
Arikan in [2].

Taking this example a step further, suppose that Alice and Bob have
access to a few sources. How can they utilize these sources to increase the
expected number of guesses Eve will need to identify the realization? What
is Eve’s guessing strategy? We answer these questions in this paper.

When P is known, Massey [1] and Arikan [2] sought to lowerbound the
minimum expected number of guesses. For a given guessing strategy G, let
G(x) denote the number of guesses required when X = x. The strategy
that minimizes E [G(X)], the expected number of guesses, proceeds in the
decreasing order of P -probabilities. Arikan [2] showed that the exponent of
the minimum value, i.e., log [minG E [G(X)]], satisfies

H1/2(P )− log(1 + ln |X|) ≤ log
[
min

G
E [G(X)]

]
≤ H1/2(P ),

where Hα(P ) is the Rényi entropy of order α > 0.
For ρ > 0, Arikan [2] also considered minimization of (E[G(X)ρ])1/ρ over

all guessing strategies G; the exponent of the minimum value satisfies

Hα(P )− log(1 + ln |X|) ≤ 1
ρ

log
[
min

G
E [G(X)ρ]

]
≤ Hα(P ), (1)

where α = 1/(1 + ρ).
Arikan [2] applied these results to a discrete memoryless source on X

with letter probabilities given by the PMF P , and obtained that the mini-
mum guessing moment, minG E [G(Xn)ρ], grows exponentially with n. The
minimum growth rate of this quantity (after normalization by ρ) is given
by the Rényi entropy Hα(P ). This gave an operational significance for the
Rényi entropy. In particular, the minimum expected number of guesses
grows exponentially with n and has a minimum growth rate of H1/2(P ).

Suppose now that the guesser only knows that the source belongs to a
set T of PMFs. The uncertainty set may be finite or infinite in size. The
guesser’s strategy should not be tuned to any one particular PMF in T, but
should be designed for the entire uncertainty set. The performance of such a
guessing strategy on any particular source will not be better than the optimal
strategy for that source. Indeed, for any source P , the exponent of E [G(X)ρ]
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is at least as large as that of the optimal strategy E [GP (X)ρ], where GP is
the guessing strategy matched to P that guesses in the decreasing order of
P -probabilities. Thus for any given strategy, and for any source P ∈ T, we
can define a notion of penalty or redundancy, R(P, G), given by

R(P, G) =
1
ρ

logE [G(X)ρ]− 1
ρ

logE [GP (X)ρ] ,

which represents the increase in the exponent of the guessing moment after
an appropriate normalization by ρ.

A natural means of measuring the effectiveness of a guessing strategy G
on the set T is to find the worst redundancy over all sources in T. In this
paper, we are interested in identifying the value of

min
G

sup
P∈T

R(P,G),

and in obtaining the G that attains this min-sup value.
We first show that R(P, G) is bounded on either side in terms of a di-

vergence quantity Lα(P, QG); QG is a PMF that depends on G, and Lα is a
measure of dissimilarity between two PMFs. The above observation enables
us to transform the min-sup problem above into another one of identifying

inf
Q

sup
P∈T

Lα(P, Q).

The role of Lα in guessing is similar to the role of Kullback-Leibler divergence
in mismatched source compression. The parameter α is given by α = 1/(1+
ρ). The quantity Lα is such that the limiting value as α → 1 is the Kullback-
Leibler divergence. Furthermore, they share the Pythagorean property with
the Kullback-Leibler divergence [3]. The results of this paper thus generalize
the “geometric” properties satisfied by the Kullback-Leibler divergence [3].

Consider the special case of guessing an n-string output by a discrete
memoryless source (DMS) with single letter alphabet A. The parameters
of this DMS are unknown to the guesser. Arikan and Merhav [4] proposed
a “universal” guessing strategy for the class of DMSs on A. This universal
guessing strategy asymptotically achieves the minimum growth exponent for
all sources in the uncertainty set. Their strategy guesses in the increasing
order of empirical entropy. In the language of this paper, their results imply
that the normalized redundancy suffered by the aforementioned strategy is
upper-bounded by a positive sequence of real numbers that vanishes as n →
∞. One can interpret this fact as follows: the class of discrete memoryless
sources is not “rich” enough; we have a universal guessing strategy that is
asymptotically optimal.

The redundancy quantities studied in this paper also arise in the study of
mismatch in Campbell’s minimum average exponential coding length prob-
lem [5], [6]. Fischer [7] addressed the same problem in the context of mis-
matched source coding and identified the supremum average exponential

3



coding length for a class of sources. In particular, he showed that the supre-
mum value is the supremum of the Rényi entropies of the sources in the class.
In contrast, our focus in this paper is on identifying the worst redundancy
suffered by a code.

Most of the results obtained in this paper were inspired by similar results
for mismatched and universal source compression ([8], [9], [10]). We now
highlight some comparisons between source compression and guessing.

Suppose that the source outputs an n-string of bits. In lossless source
compression, one can think of an encoding scheme as asking questions of
the form, “Does Xn ∈ Ei?” where (Ei : i = 1, 2, · · · ) is a carefully chosen
sequence of subsets of Xn. More specifically, one can ask the questions “Is
X1 = 0?”, “Is X2 = 0?”, and so on. The goal is to minimize the number of
such questions one needs to ask (on the average) to get to the realization.
The minimum expected number of questions one can hope to ask (on the
average) is the Shannon entropy H(P ). In the context of guessing, one can
only test an entire string in one attempt, i.e., ask questions of the form
“Is Xn = xn?”. The guessing moment grows exponentially with n and the
minimum exponent after scaling by ρ is given by the Rényi entropy Hα(P ).

The quantity Lα plays the same role as Kullback-Leibler divergence does
in mismatched source compression. Lα shares the Pythagorean property
with the Kullback-Leibler divergence [11]. Moreover, the best guessing strat-
egy is based on a PMF that is a mixture of sources in the uncertainty class,
analogous to the source compression case. The min-sup value of redun-
dancy for the problem of compression under source uncertainty is given by
the capacity of a channel [9] with inputs corresponding to the indices of
the uncertainty set, and channel transition probabilities given by the vari-
ous sources in the uncertainty set. We show that a similar result holds for
guessing under source uncertainty. In particular, the min-sup value is the
channel capacity of order 1/α [12] of an appropriately defined channel.

The following is an outline of the paper. In Section 2 we review known
results for the problem of guessing, introduce the relevant measures that
quantify redundancy, and show the relationship between this redundancy
and the divergence quantity Lα. In Section 3, we see how the same quanti-
ties arise in the context of Campbell’s minimum average exponential coding
length problem. In Section 4, we pose the min-sup problem of quantifying
the worst-case redundancy and identify another inf-sup problem in terms
Lα. In Section 5 we undertake a systematic study of the properties of Lα

divergence. In particular, we show the Pythagorean property and identify
the so-called centers and radii of finite as well as infinite uncertainty classes.
In Section 6, we specialize our results to two examples: the class of discrete
memoryless sources on finite alphabets, and the class of finite-state arbitrar-
ily varying sources. We establish results on the asymptotic redundancies of
these two uncertainty classes. In Section 7 we make some concluding re-
marks.
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2 Inaccuracy and redundancy in guessing

In this section, we prove previously known results in guessing. Our aim is
to motivate the study of quantities that measure inaccuracy in guessing. In
particular, we introduce a measure of divergence, and show how it is related
to the α-divergence of Csiszár [12].

Let X and Y be a finite alphabet sets. Consider a correlated pair of
random variables (X,Y ) with joint PMF P on X×Y. Given side information
Y = y, we would like to guess the realization of X. Formally, a guessing list
G with side information is a function G : X×Y→ {1, 2, · · · , |X|} such that
for each y ∈ Y, the function G(·, y) : X → {1, 2, · · · , |X|} is a one-to-one
function that denotes the order in which the elements of X will be guessed
when the guesser observes Y = y. Naturally, knowing the PMF P , the best
strategy which minimizes the expected number of guesses, given Y = y, is
to guess in the decreasing order of P (·, y)-probabilities. Let us denote such
an order GP . Due to lack of exact knowledge of P , suppose we guess in the
decreasing order of probabilities of another PMF Q. This situation leads to
mismatch. In this section, we analyze the performance of guessing strategies
under mismatch.

In some of the results we will have ρ > 0, and in others ρ > −1, ρ 6= 0.
The ρ > 0 case is of primary interest in the context of guessing. The
other case is also of interest in Campbell’s average exponential coding length
problem where similar quantities are involved.

Following the proof in [2], we have the following simple result for guessing
under mismatch.

Proposition 1 (Guessing under mismatch) Let ρ > 0. Consider a source
pair (X, Y ) with PMF P . Let Q be another PMF with Supp(Q) = X × Y.
Let GQ be the guessing list with side information Y obtained under the
assumption that the PMF is Q, with ties broken using an arbitrary but fixed
rule. Then the guessing moment for the source with PMF P under GQ

satisfies

1
ρ

log (E [GQ(X, Y )ρ])

≤ 1
ρ

log


∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
Q(a, y)
Q(x, y)

) 1
1+ρ

]ρ

 ,

(2)

where the expectation E is with respect to P . ¤
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Proof: For ρ > 0, for each y ∈ Y, observe that

GQ(x, y) ≤
∑

a∈X
1{Q(a, y) ≥ Q(x, y)}

≤
∑

a∈X

(
Q(a, y)
Q(x, y)

) 1
1+ρ

,

for each x ∈ X, which leads to the proposition.

For a source P on X×Y, the conditional Rényi entropy of order α, with
α > 0, is given by

Hα(P ) =
α

1− α
log


∑

y∈Y

(∑

x∈X
P (x, y)α

)1/α

 .

For the case when |Y| = 1, i.e., when there is no side information, we may
think of P as simply a PMF on X. The above conditional Rényi entropy of
order α is then the Rényi entropy of order α of the source P , given by

Hα(P ) =
1

1− α
log

(∑

x∈X
P (x)α

)
.

It is known that
0 ≤ Hα(P ) ≤ log |X|. (3)

Suppose that our guessing order is “matched” to the source, i.e., we
guess according to the list GP . We then get the following corollary.

Corollary 2 (Matched guessing, Arikan [2]) Under the hypotheses in Propo-
sition 1, the guessing strategy GP satisfies

1
ρ

log (E [GP (X, Y )ρ]) ≤ Hα(P ), (4)

where α = 1/(1 + ρ). ¤

Proof: Set Q = P in Proposition 1.

Let us now look at the converse direction.

Proposition 3 (Converse) Let ρ > 0. Consider a source pair (X, Y ) with
PMF P . Let G be an arbitrary guessing list with side information Y . Then,
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there is a PMF QG on X× Y with Supp(QG) = X× Y, and

1
ρ

log (E [G(X, Y )ρ])

≥ 1
ρ

log


∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
QG(a, y)
QG(x, y)

) 1
1+ρ

]ρ



− log(1 + ln |X|), (5)

where the expectation E is with respect to P . ¤

Proof: The proof is very similar to that of [2, Theorem 1]. Observe
that because ρ > 0, for each y ∈ Y, we have

∑

x∈X

(
1

G(x, y)

)1+ρ

=
|X|∑

i=1

1
i1+ρ

= c < ∞

regardless of the (finite) size |X|. Define the PMF QG as

QG(x, y) =
1
|Y| ·

1
cG(x, y)1+ρ

, ∀(x, y) ∈ X× Y.

Note that Supp(QG) = X × Y. Clearly, guessing in the decreasing order of
QG-probabilities leads to the guessing order G. By virtue of the definition
of QG, we have

∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
QG(a, y)
QG(x, y)

) 1
1+ρ

]ρ

=
∑

y∈Y

∑

x∈X
P (x, y)G(x, y)ρ ·

(∑

a∈X

1
G(a, y)

)ρ

≤

∑

y∈Y

∑

x∈X
P (x, y)G(x, y)ρ


 · (1 + ln |X|)ρ , (6)

where the last inequality follows from (as in [2])

∑

a∈X

1
G(a, y)

=
|X|∑

i=1

1
i
≤ 1 + ln |X|, ∀y ∈ Y.

The proposition follows from (6).

Observe the similarity of the terms in the right-hand sides of equations
(2) and (5) in Propositions 1 and 3, respectively. The analog of this term in

7



mismatched source coding is −∑
x∈X P (x) log Q(x), which is the expected

length of a codebook built using a mismatched PMF Q. The Shannon
inequality (see, for example, [13]) states that

−
∑

x∈X
P (x) log Q(x) ≥ −

∑

x∈X
P (x) log P (x) = H(P )

The next inequality is analogous to the Shannon inequality. We can
interpret this as follows: if we guess according to some mismatched distri-
bution, then the expected number of guesses can only be larger. We will
let α = 1/(1 + ρ) and expand the range of α to 0 < α < ∞. A special
case (when no side information is available) was shown by Fischer (cf. [7,
Theorem 1.3]).

Proposition 4 (Analog of Shannon inequality) Let α = 1
1+ρ > 0, α 6= 1.

Then

α

1− α
log


∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
Q(a, y)
Q(x, y)

)α
] 1−α

α




≥ Hα(P ), (7)

with equality if and only if P = Q. ¤

Proof: We will prove this directly using Holder’s inequality. The right
side of (7) is bounded. Without loss of generality, we may assume that
the left side of (7) is finite, for otherwise the inequality trivially holds and
P 6= Q. We may therefore assume Supp(P ) ⊂ Supp(Q) under 0 < α < 1,
and Supp(P ) ∩ Supp(Q) 6= ∅ under 1 < α < ∞ which are the conditions
when the left side of (7) is finite.

With α = 1/(1 + ρ), (7) is equivalent to

sign(ρ) ·
∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
Q(a, y)
Q(x, y)

) 1
1+ρ

]ρ

≥ sign(ρ) ·
∑

y∈Y

(∑

x∈X
P (x, y)

1
1+ρ

)1+ρ

.

The above inequality holds term by term for each y ∈ Y, a fact that can be
verified by using the Hölder inequality

sign(λ) ·
(∑

x

ux

)λ

·
(∑

x

vx

)1−λ

≥ sign(λ) ·
(∑

x

uλ
xv1−λ

x

)
(8)
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with λ = ρ/(1 + ρ) = 1− α, ux = Q(x, y)1/(1+ρ),

vx = P (x, y)Q(x, y)−ρ/(1+ρ),

and raising the resulting inequality to the power 1 + ρ > 0. From the
condition for equality in (8), equality holds in (7) if and only if P = Q.

Proposition 4 motivates us to define the following quantity that will be
the focus of this paper:

Lα(P, Q) ∆=

α

1− α
log


∑

y∈Y

∑

x∈X
P (x, y)

[∑

a∈X

(
Q(a, y)
Q(x, y)

)α
] 1−α

α




− Hα(P ). (9)

Proposition 4 indicates that Lα(P,Q) ≥ 0, with equality if and only if
P = Q.

Just as Shannon inequality can be employed to show the converse of the
source coding theorem, we employ Proposition 4 to get the converse part of
a guessing theorem. We thus have a slightly different proof of [2, Theorem
1(a)].

Theorem 5 (Arikan’s Guessing Theorem [2]) Let ρ > 0. Consider a source
pair (X,Y ) with PMF P . Let α = 1

1+ρ . Then

Hα(P )− log(1 + ln |X|)
≤ 1

ρ
log

(
min

G
E [G(X, Y )ρ]

)

≤ Hα(P ).

¤

Proof: It is easy to see that the minimum is attained when the guess-
ing list is GP , i.e., when guessing proceeds in the decreasing order of P -
probabilities. Application of Proposition 3 with G = GP and Proposition
4 with Q = QGP

yields the first inequality. The upper bound follows from
Corollary 2.

Remarks: 1) QGP
may be different from P even though they lead to the

same guessing order.
2) Theorem 5 gives an operational meaning to Hα(P ); it indicates the

exponent of the minimum guessing moment to within log(1 + ln |X|).
3) Loosely speaking, Proposition 4 indicates that mismatched guessing

will perform worse than matched guessing. The looseness is due to the
looseness of the bound in Theorem 5.
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Suppose now that we use an arbitrary guessing strategy G to guess X
with side information Y , when the source (X,Y )’s PMF is P . G may not
necessarily be matched to the source, as would be the case when the source
statistics is unknown. Let us define its redundancy in guessing X with side
information Y when the source is P as follows:

R(P, G) ∆=
1
ρ

log (E [G(X,Y )ρ])− 1
ρ

log (E [GP (X,Y )ρ]) (10)

The dependence of R(P, G) on ρ is understood and suppressed. The follow-
ing proposition bounds the redundancy on either side.

Theorem 6 Let ρ > 0, α = 1/(1 + ρ). Consider a source pair (X, Y ) with
PMF P . Let G be an arbitrary guessing list with side information Y and
QG the associated PMF given by Proposition 3. Then

|R(P, G)− Lα(P, QG)| ≤ log(1 + ln |X|).

¤

Proof: The inequality R(P,G) ≤ Lα(P, QG) + log(1 + ln |X|) follows
from Proposition 1 applied with Q = QG, the first inequality of Theorem 5,
and (9).

The inequality R(P, G) ≥ Lα(P, QG)−log(1+ln |X|) follows from Propo-
sition 3, the second inequality of Theorem 5, and (9).

3 Campbell’s coding theorem and redundancy

Campbell in [5] and [6] gave another operational meaning to the Rényi
entropy of order α > 0. In this section we show that Lα(·, ·) arises as “inac-
curacy” in this problem as well, when we encode according to a mismatched
source. To be consistent with the development in the previous section, we
will assume that X is coded when the source coder has side information Y .

Let X and Y be finite alphabet sets as before. Let the true source
probabilities be given by the PMF P on X × Y. We wish to encode each
realization of X using a variable-length code, given side information Y . More
precisely, let the (nonnegative) integer code lengths, l(x, y) satisfy the Kraft
inequality, ∑

x∈X
2−l(x,y) ≤ 1, ∀y ∈ Y

The problem is then to choose l among those that satisfy the Kraft inequality
so that the following is minimized:

1
ρ

log
(
E

[
2ρl(X,Y )

])
, − 1 < ρ < ∞, ρ 6= 0, (11)
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where the expectation E is with respect to the PMF P . As ρ → 0, this quan-
tity tends to the expected length of the code, E[l(X,Y )], more commonly
represented as E[l(X, Y ) | Y ].

Observe that we may assume that
∑

x∈X 2−l(x,y) > 1/2 for each y; oth-
erwise we can reduce all lengths uniformly by 1, still satisfy the Kraft in-
equality and get a strictly smaller value for (11). Henceforth, we focus only
on length functions that satisfy

1
2

<
∑

x∈X
2−l(x,y) ≤ 1, ∀y ∈ Y. (12)

Theorem 7 (Campbell’s Coding Theorem, Campbell [5]) Let −1 < ρ < ∞,
ρ 6= 0. Consider a source with PMF P . Let α = 1

1+ρ . Then

Hα(P ) ≤ 1
ρ

log
(

min
l
E

[
2ρl(X,Y )

])
≤ Hα(P ) + 1,

where the minimization is over all those length functions that satisfy (12).
¤

For a PMF Q on X× Y, let lQ be defined by

lQ(x, y) ∆=

⌈
− log

(
Q(x, y)

1
1+ρ

∑
a∈XQ(a, y)

1
1+ρ

)⌉
(13)

=
⌈− log

(
Q′(x | y)

)⌉
, (14)

where d·e refers to the ceiling function and Q′(· | y) is a conditional PMF
on X. Clearly, lQ satisfies (12).

Analogously, for any length function satisfying (12), we can define a
PMF on X× Y as follows:

Ql(x, y) =
1
|Y|

2−(1+ρ)l(x,y)

∑
a∈X 2−(1+ρ)l(a,y)

. (15)

We can easily check that lQl
= l.

Let us define the redundancy for any l satisfying (12) as

Rc(P, l)
∆=

1
ρ

log
(
E

[
2ρl(X,Y )

])
− 1

ρ
log

(
min

g
E

[
2ρg(X,Y )

])

Following the same sequence of steps as in the mismatched guessing problem,
it is straightforward to show the following:
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Theorem 8 Let −1 < ρ < ∞, ρ 6= 0, α = 1/(1 + ρ). Consider a source
pair (X, Y ) with PMF P on X. Let l be an length function that denotes an
encoding of X with side information Y , and Ql the associated PMF given
by (15). Then

|Rc(P, l)− Lα(P,Ql)| ≤ 1.

¤

The quantity Lα(P, Ql) therefore gives the redundancy to within a con-
stant. We interpret this as the penalty for mismatched coding when Ql is
not matched to P .

4 Problem statement

Let T denote a set of PMFs on the finite alphabet X×Y. T may be infinite
in size. Associated with T is a family T of measurable subsets of T and thus
(T, T ) is a measurable space. We assume that for every x ∈ X, the mapping
P 7→ P (x) is T -measurable.

For a fixed ρ > 0, we seek a good guessing strategy G that works well for
all P ∈ T. G can depend on knowledge of T, but not on the actual source
PMF. More precisely, for P ∈ T the redundancy denoted by R(P, G) when
the true source is P and when the guessing list is G, is given by (10). The
worst redundancy under this guessing strategy is given by

sup
P∈T

R(P, G)

Our aim is to minimize this worst redundancy over all guessing strategies,
i.e., find a G that attains the minimum

R∗ = min
G

sup
P∈T

R(P, G) (16)

In view of Theorem 6, clearly, the following quantity is relevant for 0 <
α < 1. The definition however is wider in scope.

Definition 9 For 0 < α < ∞, α 6= 1,

C
∆= min

Q
sup
P∈T

Lα(P,Q). (17)

The following theorem justifies the use of “min” instead of “inf”.

Theorem 10 There exists a unique PMF Q∗ such that

C = sup
P∈T

Lα(P, Q∗) = inf
Q

sup
P∈T

Lα(P, Q).

¤
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The proof is in Section 5.4.

Remark: 1) C ≤ log |X| and is therefore finite. Indeed, take Q to be
uniform PMF on X× Y. Then

Lα(P,Q) = log |X| −Hα(P ) ≤ log |X|, ∀P ∈ T.

2) The minimizing Q∗ has the geometric interpretation of a center of the
uncertainty set T. Accordingly, C plays the role of radius; all elements in
the uncertainty set T are within a “squared distance” C from the center Q∗.
The reason for describing Lα(P, Q) as “squared distance” will become clear
after Proposition 14.

The following result shows how to find good guessing schemes under
uncertainty.

Theorem 11 (Guessing under uncertainty) Let T be a class of PMFs.
There exists a guessing list G∗ for X with side information Y such that

sup
P∈T

R(P, G∗) ≤ C + log(1 + ln |X|).

Conversely, for any arbitrary guessing strategy G, the worst-case redundancy
is at least C − log(1 + ln |X|), i.e.,

sup
P∈T

R(P, G) ≥ C − log(1 + ln |X|).

¤

Proof: Let Q∗ be the PMF on X×Y that attains the minimum in (17),
i.e.,

C = sup
P∈T

Lα(P, Q∗). (18)

Let G∗ = GQ∗ . Then

R(P, G∗) ≤ Lα(P, Q∗) + log(1 + ln |X|) (19)

follows from Proposition 1 applied with Q = Q∗, the first inequality of
Theorem 5, and (9), as in the proof of Theorem 6. After taking supremum
over all P ∈ T, and after substitution of (18), we get

sup
P∈T

R(P, G∗) ≤ sup
P∈T

Lα(P, Q∗) + log(1 + ln |X|)
= C + log(1 + ln |X|),

which proves the first statement.
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For any guessing strategy G, observe that Theorem 6 implies that

R(P, G) ≥ Lα(P, QG)− log(1 + ln |X|),
and therefore

sup
P∈T

R(P, G) ≥ sup
P∈T

Lα(P, QG)− log(1 + ln |X|)
≥ C − log(1 + ln |X|),

which proves the second statement.

Remarks: 1) Thus one approach to obtain the minimum in (16) is to
identify minimum value in (17). This minimum value will be within log(1+
ln |X|) of R∗ in (16). Moreover, the corresponding minimizer Q∗ can be used
to generate a guessing strategy.

2) Theorem 11 can be easily restated for Campbell’s coding problem.
The nuisance term log(1 + ln |X|) is now replaced by the constant 1.

3) The converse part of Theorem 11 is meaningful only when C >
log(1 + ln |X|). This will hold, for example, when the uncertainty class
is sufficiently rich. The finite state, arbitrarily varying source is one such
example. Observe that if we have X × Y = An × Bn, then log(1 + ln |X|)
grows logarithmically with n if |X| ≥ 2. The uncertainty class will be rich
enough for the converse to be meaningful if C grows with n at a faster rate.

5 Properties of Lα

Having shown how Lα(P, Q) arises as a penalty function for mismatched
guessing and coding, let us now study its relevant properties. Throughout
this section, 0 < α < ∞, α 6= 1. Accordingly, −1 < ρ < ∞, ρ 6= 0. Let P
and Q be PMFs on X× Y.

1. As we saw before, Lα(P,Q) ≥ 0, with equality if and only if P = Q.

2. Lα(P, Q) = ∞ if and only if Supp(P ) ∩ Supp(Q) = ∅, or α < 1 and
Supp(P ) 6⊂ Supp(Q).

3. Given the joint PMF P , let us define the “tilted” conditional PMF on
X as follows:

P ′(x | y) ∆=





P (x, y)α /
∑

a∈X P (a, y)α,

if
∑

a∈X P (a, y)α > 0,

1/|X|, otherwise.

(20)

The above definition simplifies many expressions in the sequel. The
dependence on α in the mapping P 7→ P ′ is suppressed.
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4. When |Y| = 1, we interpret that no side information is available. Then
P and Q may be thought of PMFs on X with no reference to Y. P ′

and Q′ given by (20) are PMFs in one-to-one correspondence with P
and Q respectively.

Using the expression for Rényi entropy and (9), we have that

Lα(P, Q) =
1
ρ

log

(∑

x∈X
P ′(x)1+ρ ·Q′(x)−ρ

)

= D1/α(P ′ ‖ Q′), (21)

where Dβ(R ‖ S) is the Rényi’s information divergence of order β,

Dβ(R ‖ S) =
1

β − 1
log

(∑

x∈X
R(x)βS(x)1−β

)
,

which is ≥ 0 and equals 0 if and only if R = S. For the case when
|Y| = 1 we therefore have another proof of Proposition 4.

5. The conditional Kullback-Leibler divergence is recovered as follows:

lim
α→1

Lα(P,Q) =
∑

y

∑
x

P (x, y) log
(

P (x | y)
Q(x | y)

)
,

where Q(· | y) and P (· | y) are the respective conditional PMFs of X
given Y = y.

6. In general, Lα(P, Q) is not a convex function of P . Moreover, it is not,
in general, a convex function of Q.

7. In general, Lα(P,Q) does not satisfy the so-called data-processing
inequality. More precisely, if X′ and Y′ are finite sets, and if f :
X×Y→ X′×Y′ is a function, it is not necessarily true that Lα(P,Q) ≥
Lα(Pf−1, Qf−1).

8. When |Y| = 1, i.e., in the no side information case, using (20) we can
write Lα(P, Q) as follows:

Lα(P,Q) =
1
ρ

log
[
sign(ρ) · If (P ′ ‖ Q′)

]
, (22)

where If (R ‖ S) is the f -divergence [14] given by

If (R ‖ S) =
∑

x∈X
S(x)f

(
R(x)
S(x)

)
, (23)

with
f(x) = sign(ρ) · x1+ρ, x ≥ 0. (24)
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Since f is a strictly convex function for ρ > 0, an application of
Jensen’s inequality in (23) indicates that

If (R ‖ S) ≥ f(1) =
{ −1, −1 < ρ < 0,

1, 0 < ρ < ∞.
(25)

Moreover, when −1 < ρ < 0, we have the following bounds:

−1 ≤ If (R ‖ S) ≤ 0. (26)

9. Let us define

h(P ) ∆=
∑

y∈Y

(∑

x∈X
P (x, y)α

) 1
α

.

The dependence of h on α is understood, and suppressed for conve-
nience. Clearly,

Hα(P ) =
α

1− α
log h(P ). (27)

Motivated by the relationship in (22), let us write Lα in the general
case as follows:

Lα(P,Q) =
1
ρ

log [sign(ρ) · I(P,Q)] , (28)

where I(P, Q) is given by

I(P,Q)
∆=

sign(ρ)
h(P )

∑

y∈Y

∑

x∈X
P (x, y)

(
Q′(x | y)

)−ρ
, (29)

=
sign(1− α)

h(P )

∑

y∈Y

∑

x∈X
P (x, y)

(
Q′(x | y)

)α−1
α .

(30)

These expressions turn out to be useful in the sequel.

It is not difficult to show that

I(P, Q) =
∑

y∈Y
w(y) · If (P ′(· | y) ‖ Q′(· | y)),

where w is the PMF on Y given by

w(y) =
1

h(P )
·
(∑

x∈X
P (x, y)α

) 1
α

.

Consequently, the bounds given in (25) and (26) are valid for I(P, Q),
under corresponding conditions on α.
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10. Inequalities involving Lα result in inequalities involving I with or-
dering preserved. More precisely, for r ≥ 0, if Lα(P, Q) < r, then
I(P, Q) < t, for t = sign(ρ) · 2ρr.

11. From the known bounds 0 ≤ Hα(P ) ≤ log |X|, it is easy to see the
following bounds:

1 ≤ h(P ) ≤ |X| 1−α
α , for 0 < α < 1, (31)

and
|X| 1−α

α ≤ h(P ) ≤ 1, for 1 < α < ∞. (32)

In both cases, we see that h(P ) is bounded away from 0 and therefore
(29) and (30) are well-defined.

The quantity Lα(P, Q) does not have many of the useful properties en-
joyed by the Kullback-Leibler divergence, or other f -divergences, even in
the case when |Y| = 1. However, it behaves like squared distance and shares
a “Pythagorean” property with the Kullback-Leibler divergence.

5.1 Lα-projection

We proceed along the lines of [3]. Let X and Y be finite alphabet sets. Let
P(X×Y) denote the set of PMFs on X×Y. Given a PMF R on X×Y, the
set

B(R, r) ∆= {P ∈ P(X× Y) | Lα(P, R) < r} , 0 < r ≤ ∞,

is called an Lα-sphere (or ball) with center R and radius r. The term
“sphere” conjures the image of a convex set. That the set is indeed convex
needs a proof since Lα(P, R) is not convex in its arguments.

Proposition 12 B(R, r) is a convex set. ¤

Proof: Let Pi ∈ B(R, r) for i = 0, 1. For any λ ∈ [0, 1], we need
to show that Pλ = (1 − λ)P0 + λP1 ∈ B(R, r). With α = 1/(1 + ρ), and
t = sign(ρ) · 2ρr, we get from (28) that

I(Pi, R) < t, i = 0, 1. (33)
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The proof will be complete if we can show that I(Pλ, R) < t. To this end,

I(Pλ, R)

=
sign(1− α)

h(Pλ)
·
∑

y∈Y

∑

x∈X
Pλ(x, y)

(
R′(x | y)

)α−1
α

=
sign(1− α)

h(Pλ)
· (1− λ)

∑

y∈Y

∑

x∈X
P0(x, y)

(
R′(x | y)

)α−1
α

+
sign(1− α)

h(Pλ)
· (λ)

∑

y∈Y

∑

x∈X
P1(x, y)

(
R′(x | y)

)α−1
α

=
(1− λ)h(P0)I(P0, R) + λh(P1)I(P1, R)

h(Pλ)
(34)

< t
(1− λ)h(P0) + λh(P1)

h(Pλ)
(35)

= |t|(1− λ) · sign(1− α)h(P0) + λ · sign(1− α)h(P1)
h(Pλ)

≤ |t|sign(1− α)h(Pλ)
h(Pλ)

(36)

= t;

where (34) follows from (30), (35) follows from (33), and (36) follows from
the concavity of sign(1− α)h.

When we talk of closed sets, we refer to the usual Euclidean metric on
the |X||Y|-dimensional Euclidean vector space. The set of PMFs on X × Y
is closed and bounded (and therefore compact).

If E is a closed and convex set of PMFs on X×Y intersecting B(R,∞),
i.e. there exists a PMF P such that Lα(P,R) < ∞, then a PMF Q ∈ E
satisfying

Lα(Q, R) = min
P∈E

Lα(P,R),

is called the Lα-projection of R on E .

Proposition 13 (Existence of Lα-projection) Let E be a closed and convex
set of PMFs on X × Y. If B(R,∞) ∩ E is nonempty, then R has an Lα-
projection on E.

Proof: Pick a sequence Pn ∈ E with Lα(Pn, R) < ∞ such that
Lα(Pn, R) → infP∈E Lα(P, R). This sequence being in the compact space E
has a cluster point Q and a subsequence converging to Q. We can sim-
ply focus on this subsequence and therefore assume that Pn → Q and
Lα(Pn, R) → infP∈E Lα(P, R). E is closed and hence Q ∈ E . The conti-
nuity of the logarithm function, wherever it is finite, and Lα(Pn, R) < ∞
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imply that

lim
n

Lα(Pn, R) =
1
ρ

log
(
sign(ρ) · lim

n
I(Pn, R)

)

=
1
ρ

log (sign(ρ) · I(Q, R)) (37)

= Lα(Q,R),

where (37) follows from the observation that (30) is the ratio of a continuous
linear function of P and the continuous concave function sign(1− α)h that
is positive, bounded, and bounded away from 0.

From the uniqueness of limits we have that Lα(Q,R) = infP∈E Lα(P,R).
Q is then an Lα-projection of R on E .

We next state generalizations of [3, Lemma 2.1, Theorem 2.2]. Here
Lα(P,Q) plays the role of squared Euclidean distance (analogous to the
Kullback-Leibler divergence).

Proposition 14 Let 0 < α < ∞, α 6= 1.

1. Let Lα(Q,R) and Lα(P,R) be finite. The segment joining P and Q
does not intersect the Lα-sphere B(R, r) with radius r = Lα(Q,R),
i.e.,

Lα(Pλ, R) ≥ Lα(Q, R)

for each
Pλ = λP + (1− λ)Q, 0 ≤ λ ≤ 1,

if and only if
Lα(P, R) ≥ Lα(P, Q) + Lα(Q, R). (38)

2. (Tangent hyperplane) Let

Q = λP + (1− λ)S, 0 < λ < 1. (39)

Let Lα(Q,R), Lα(P,R), and Lα(S, R) be finite. The segment joining
P and S does not intersect B(R, r) (with r = Lα(Q, R)) if and only if

Lα(P, R) = Lα(P, Q) + Lα(Q, R). (40)

¤

Remarks: 1) Under the hypotheses in Proposition 14.1, we deduce that
Lα(P,Q) < ∞ as a consequence.

2) The condition (39) implies that P ≤ λ−1Q, and therefore supp(P ) ⊂
supp(Q). If 0 < α < 1, and Lα(Q,R) < ∞, then we have supp(P ) ⊂
supp(Q) ⊂ supp(R). Thus both Lα(P,R) and Lα(P, Q) are necessarily
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finite. For α ∈ (0, 1), the requirement that Lα(P,R) be finite can therefore
be removed. The requirement is however needed for 1 < α < ∞ because
even though supp(P ) ⊂ supp(Q) and supp(Q) ∩ supp(R) 6= ∅, we may have
supp(P ) ∩ supp(R) = ∅ leading to Lα(P, R) = ∞.

3) Proposition 14.2 extends the analog of Pythagoras theorem, known
to hold for the Kullback-Leibler divergence, to the family Lα parameterized
by α > 0.

4) By symmetry between P and S, (40) holds when P is replaced by S.

Proof: 1) ⇒: Since Lα(P, R) and Lα(Q,R) are finite, from (29), we
gather that both

∑
y

∑
x P (x, y)R′(x | y)−ρ and

∑
y

∑
x Q(x, y)R′(x | y)−ρ

are finite and nonzero.
Observe that P0 = Q, and Lα (Pλ, R) ≥ Lα (P0, R) implies that

I(Pλ, R) ≥ I(P0, R).

Thus
I(Pλ, R)− I(P0, R)

λ
≥ 0 (41)

for every λ ∈ (0, 1]. The limiting value as λ ↓ 0, the derivative of I(Pλ, R)
with respect to λ evaluated at λ = 0, should be ≥ 0. This will give us the
necessary condition.

Note that the derivative evaluated at λ = 0 is a one-sided limit since
λ ∈ [0, 1]. We will first check that this one-sided limit exists.

From (29), I(Pλ, R) can be written as s(λ)/t(λ), where t(λ) is bounded,
positive, and lower-bounded away from 0, for every λ. Let ṡ(0) and ṫ(0) be
the derivatives of s and t evaluated at λ = 0. Clearly,

ṡ(0) = lim
λ↓0

s(λ)− s(0)
λ

= sign(ρ)

(∑
y

∑
x

P (x, y)
(
R′(x | y)

)−ρ

−
∑

y

∑
x

Q(x, y)
(
R′(x | y)

)−ρ

)
.

Similarly, it is easy to check that

ṫ(0) =
∑

y

∑
x

P (x, y)
(
Q′(x | y)

)−ρ − t(0),

with the possibility that it is +∞ (only when 0 < α < 1 and supp(P ) 6⊂
supp(Q)).

Since we can write
1
λ

(
s(λ)
t(λ)

− s(0)
t(0)

)

=
1

t(λ)t(0)

[
t(0)

s(λ)− s(0)
λ

− s(0)
t(λ)− t(0)

λ

]
,
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it follows that the derivative of s(λ)/t(λ) exists at λ = 0 and is given by(
t(0)ṡ(0)− s(0)ṫ(0)

)
/t2(0), with the possibility that it might be +∞. How-

ever, (41) and t(0) > 0 imply that

ṡ(0)− s(0)
ṫ(0)
t(0)

≥ 0.

Consequently, ṫ(0) is necessarily finite. In particular, when 0 < α < 1, we
have ascertained that Lα(P, Q) is finite. After substitution of s(0), t(0), ṡ(0),
and ṫ(0) we get

sign(ρ) ·
∑

y

∑
x

P (x, y)
(
R′(x | y)

)−ρ

≥ sign(ρ) ·
(∑

y

∑
x

P (x, y)
(
Q′(x | y)

)−ρ

)

·
(∑

y

∑
x Q(x, y) (R′(x | y))−ρ

h(Q)

)

(42)

When −1 < ρ < 0, clearly,
∑

y

∑
x P (x, y) (Q′(x | y))−ρ cannot be zero, due

to the nonzero assumptions on the other quantities in (42). This implies
that Lα(P,Q) is finite when 1 < α < ∞ as well. An application of (28) and
(29) shows that (42) and (38) are equivalent. This concludes the proof of
the forward implication.

The reader will recognize that the basic idea is quite simple: evaluation
of a derivative at λ = 0 and a check that it is nonnegative. The technical
details above ensure that the case when the derivative of the denominator
is infinite is carefully examined.

1) ⇐: The hypotheses imply that Lα(P,R), Lα(Q,R), and Lα(P, Q) are
finite. As observed above, (42) and (38) are equivalent. Observe that both
sides of (42) are linear in P . This property will be exploited in the proof.
Clearly, if we set P = Q in (38) and (42), we have the equalities

Lα(Q,R) = Lα(Q,Q) + Lα(Q,R) (43)

and

sign(ρ) ·
∑

y

∑
x

Q(x, y)
(
R′(x | y)

)−ρ

= sign(ρ) ·
(∑

y

∑
x

Q(x, y)
(
Q′(x | y)

)−ρ

)

·
(∑

y

∑
x Q(x, y) (R′(x | y))−ρ

h(Q)

)

(44)
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A λ-weighted linear combination of the inequalities (42) and (44) yields (42)
with P replaced by Pλ. The equivalence of (38) and (42) result in

Lα(Pλ, R) ≥ Lα(Pλ, Q) + Lα(Q,R)
≥ Lα(Q,R).

This concludes the proof of the first part.
2) This follows easily from the first statement. For the forward implica-

tion, indeed, (42) holds for P . Moreover, (42) holds when P is replaced by S.
If either of these were a strict inequality, the linear combination of these with
the λ given by (39) will satisfy (44) with strict inequality, a contradiction.
The reverse implication is straightforward.

Let us now apply Proposition 14 to the Lα-projection of a convex set.
We first need the following definition.

For a convex E , we call Q an algebraic inner point of E if for every P ∈ E ,
there exist λ and S satisfying (39).

Theorem 15 (Projection Theorem) Let 0 < α < ∞, α 6= 1 and X a finite
set. A PMF Q ∈ E ∩B(R,∞) is the Lα-projection of R on the convex set E
if and only if every P ∈ E satisfies

Lα(P, R) ≥ Lα(P, Q) + Lα(Q,R). (45)

If the Lα-projection Q is an algebraic inner point of E, then every P ∈
E ∩B(R,∞) satisfies (45) with equality. ¤.

Proof: This follows easily from Proposition 14. For the case when
Lα(P,R) = ∞ not covered by Proposition 14, (45) holds trivially.

Corollary 16 Let 0 < α < 1, and a PMF Q ∈ E ∩ B(R,∞) be the Lα-
projection of R on the convex set E. If Q is an algebraic inner point of E,
then every P ∈ E satisfies (45) with equality.

Proof: Clearly, for any P ∈ E , we have supp(P ) ⊂ supp(Q) ⊂ supp(R),
and therefore E ⊂ B(R,∞). The corollary now follows from the second
statement of Theorem 15.

While existence of Lα-projection is guaranteed for certain sets by Propo-
sition 13, the following talks about uniqueness of the projection.

Proposition 17 (Uniqueness of projection) Let 0 < α < ∞, α 6= 1. If the
Lα-projection of R on the convex set E exists, it is unique.
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Proof: Let Q1 and Q2 be the projections. Then

∞ > Lα(Q1, R) = Lα(Q2, R) ≥ Lα(Q2, Q1) + Lα(Q1, R),

where the last inequality follows from Theorem 15. Thus Lα(Q2, Q1) = 0,
and Q2 = Q1.

Analogous to the Kullback-Leibler divergence case, our next result is the
transitivity property.

Theorem 18 Let E and E1 ⊂ E be convex sets of PMFs on X. Let R
have Lα-projection Q on E and Q1 on E1, and suppose that (45) holds with
equality for every P ∈ E. Then Q1 is the Lα-projection of Q on E1.

Proof: The proof is the same as in [3, Theorem 2.3]. We repeat it here
for completeness.

Observe that from the equality hypothesis applied to Q1 ∈ E1 ⊂ E , we
have

Lα(Q1, R) = Lα(Q1, Q) + Lα(Q,R). (46)

Consequently Lα(Q1, Q) is finite.
Furthermore, for a P ∈ E1, we have

Lα(P, R)
≥ Lα(P, Q1) + Lα(Q1, R) (47)
= Lα(P, Q1) + Lα(Q1, Q) + Lα(Q, R), (48)

where (47) follows from Theorem 15 applied to E1, and (48) follows from
(46).

We next compare (48) with Lα(P,R) = Lα(P,Q)+Lα(Q,R) and cancel
Lα(Q, R) to obtain

Lα(P, Q) ≥ Lα(P, Q1) + Lα(Q1, Q)

for every P ∈ E1. Theorem 15 guarantees that Q1 is the Lα-projection of Q
on E1.

As an application of Theorem 15 let us characterize the Lα-center of a
family.

Proposition 19 If the Lα-center of a family T of PMFs exists, it lies in
the closure of the convex hull of the family.
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Proof: Let E be the closure of the convex hull of T. Let Q∗ be an
Lα-center of the family, and C, which is at most log |X|, the Lα-radius. Our
first goal is to show that Q∗ ∈ E .

By Proposition 13, Q∗ has an Lα-projection Q on E , and by Proposition
17, the projection is unique on E . From Theorem 15, for every P ∈ T, we
have

Lα(P, Q∗) ≥ Lα(P, Q) + Lα(Q,Q∗).

Thus

C = sup
P∈T

Lα(P, Q∗)

≥ sup
P∈T

Lα(P, Q) + Lα(Q,Q∗)

≥ C + Lα(Q, Q∗).

Thus Lα(Q,Q∗) = 0, leading to Q∗ = Q ∈ E .

For the special case when |T| = m is finite, i.e., T = {P1, · · · , Pm}, we
can find a weight vector w such that Q∗ =

∑m
i=1 w(i)Pi and

∑m
i=1 w(θ) = 1.

This result can be obtained in a more direct way using already known results
for f -divergences and Rényi information divergence of order α; this is the
subject of the next subsection.

5.2 Lα-center and radius for a finite family

In this subsection, we identify the Lα-center and radius when |T| is finite
and when there is no side information. We will therefore use X instead of
the cumbersome X × Y. Our main goals here are to verify using known
results that the Lα-center exists, is unique, and lies is in the closure of the
convex hull of T. We then briefly touch upon connections with Gallager
exponents, capacity of order 1/α, and information radius of order 1/α. The
development in this section will suggest an approach to prove Theorem 10
for the case when T is infinite in size.

5.2.1 Proof of Theorem 10 for a finite family of PMFs

Let T = {P1, · · · , Pm} be PMFs on X. The problem of identifying the Lα-
center and radius can be solved by identifying the D1/α-center and radius
of the tilted family of PMFs {P ′

i | 1 ≤ i ≤ m}, where the invertible trans-
formation from Q 7→ Q′ is given by (20). Moreover, from (21) and (22), we

24



have

inf
Q

max
1≤i≤m

Lα(Pi, Q) (49)

= inf
Q

max
1≤i≤m

D1+ρ(P ′
i ‖ Q′) (50)

=
1
ρ

log
(

sign(ρ) inf
Q

max
1≤i≤m

If (P ′
i ‖ Q′)

)
, (51)

Csiszár considered the evaluation of (50) in [12, Proposition 1], and the
evaluation of the inf-max within parenthesis in (51) in [14].

From [14, Theorem 3.2] and its Corollary (the required conditions for
their application are f is strictly convex and f(0) < ∞; these clearly hold
since ρ 6= 0 and f(0) = 0) there exists a unique PMF (Q′)∗ on X, which
minimizes max1≤i≤m If (P ′

i ‖ Q′). From the bijectivity of the Q 7→ Q′ map-
ping, the infima in (49), (50), and (51) can all be replaced by minima. From
the inverse of the map Q 7→ Q′, we obtain the unique minimizer Q∗ for (49).
This proves the existence and uniqueness result of Theorem 10 for the case
when |T| is finite.

5.2.2 Minimizer is in the convex hull

Let E be the convex hull of T. That the minimizer Q∗ is in the convex hull
of the family, i.e., Q∗ ∈ E , can be gleaned from the results of [14, Equation
2.25], [14, Theorem 3.2], and its Corollary. Indeed, [14, Theorem 3.2] assures
that

min
Q′

max
1≤i≤m

If (P ′
i ‖ Q′) (52)

= max
µ

min
Q′

m∑

i=1

µ(i)If (P ′
i ‖ Q′), (53)

where the max-min in (53) is achieved at (µ∗, Q′∗), and Q′∗ is the PMF
which attains the min-max in (52). We now seek to find out the nature of
Q′∗ and thence Q∗.

For any arbitrary weight function µ, we have from [14, Equation 2.25]
that the Q′ which minimizes

m∑

i=1

µ(i)If (P ′
i ‖ Q′) (54)

is

Q′(x) = c−1 ·
(

m∑

i=1

µ(i)(P ′
i (x))1/α

)α

(55)

= c−1

(
m∑

i=1

µ(i)
h(Pi)

Pi(x)

)1/α

(56)
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for every x ∈ X, where c is the normalizing constant. From the correspon-
dence between the primed and the unprimed PMFs, and (56), we obtain

Q(x) = d−1
m∑

i=1

µ(i)
h(Pi)

Pi(x), ∀x ∈ X (57)

where d is the normalizing constant

d =
m∑

i=1

µ(i)
h(Pi)

. (58)

Thus, for an arbitrary µ, the Q (obtained from Q′) that minimizes (54) is
in the convex hull E . In particular, the minimizing Q∗ corresponding to the
µ∗ that attains the max-min objective in (53), and therefore the min-max
objective in (52), is also in E .

With some algebra, we can further show that

C = min
Q

max
1≤i≤m

Lα(Pi, Q) =
α

1− α
log(d · h(Q∗)), (59)

where Q∗ is given by (57) and d by (58) with µ = µ∗.

5.2.3 Necessary and sufficient conditions for finding the Lα-center
and radius

From [14, Theorem 3.2], a weight vector µ maximizes (53) if and only if

If (P ′
i ‖ Q′) ≤ K, i = 1, 2, · · · ,m, (60)

where equality holds whenever µ(i) > 0, and Q′ is given by (55). Under this
condition, clearly, the corresponding Q given by (57) is the Lα-center and
C = (1/ρ) log(sign(ρ) ·K) is the Lα-radius.

An interesting special case occurs when h(Pi) is independent of i. Then
we may simplify (57) to

Q =
m∑

i=1

µ(i) Pi, (61)

i.e., the weights that make the optimum mixture (of PMFs) are the same
as the given weights that form the objective function in (53).

5.2.4 Relationship with Gallager exponent

For the set of PMFs {Pi | 1 ≤ i ≤ m} the tilted set {P ′
i | 1 ≤ i ≤ m} can

be considered as a channel with input alphabet {1, 2, · · · ,m} and output
alphabet X. This channel will be represented as P ′.
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From the remarks in [12] on the connection between information radius
of order 1/α and the Gallager exponent of the channel P ′, and from [12,
Proposition 1], we have

min
Q

max
1≤i≤m

Lα(Pi, Q) = max
µ

1
α− 1

Eo(α− 1, µ, P ′),

where the right-hand side is the maximized Gallager exponent of the channel
P ′. (1 < α < 2 is relevant in [15, p. 138], 1 < α < ∞ in [15, p. 157], and
0 < α < 1 in [16]).

5.2.5 The max-min problem for Lα

Thus far our focus has been on the min-max problem of finding the Lα-
center. We briefly looked at identifying the max-min value of If in (53), but
only as a means to study the min-max problem.

Suppose that our new objective is to find

max
µ

min
Q

m∑

i=1

µ(i)Lα(Pi, Q). (62)

This problem is the same as identifying the “capacity of order 1/α” of the
channel P ′ [12], i.e.,

max
µ

min
Q′

m∑

i=1

µ(i)D1/α(P ′
i ‖ Q′).

[12, Proposition 1] solves this problem; the value is the same as the min-max
value minQ′ max1≤i≤m D1/α(P ′

i ‖ Q′). Consequently, the max-min value of
(62) is the same as the Lα-radius of the family.

5.3 Lα-center and radius for an arbitrary family

We are now back to the case with side information and an infinite family T.
The development in this subsection will be analogous to Gallager’s approach
[9] for the source coding problem. We first recall the technical condition
indicated in Section 4. T is a family of PMFs on X×Y, (T, T ) a measurable
space, and for every x ∈ X, the mapping P 7→ P (x) is T -measurable.

Our focus will be on the following:

Definition 20 For 0 < α < ∞, α 6= 1,

K+
∆= min

Q
sup
P∈T

I(P, Q). (63)

27



Taking Q to be the uniform PMF on X × Y it is easy to check that
K+ is finite; indeed 1 ≤ K+ ≤ |X|ρ when ρ > 0 and −1 ≤ K+ ≤ 0 when
−1 < ρ < 0.

Let us define some other auxiliary quantities. Let us first define the
mapping f : T→ R|X||Y|+ , as follows:

f(P ) ∆= P/h(P ).

For a probability measure µ on (T, T ), let

F
∆=

∫

T
dµ(P )f(P ). (64)

We define the PMF µf ∈ P(X) as the scaled version of F ,

µf
∆= d−1F (65)

where d as in the finite case is the normalizing constant

d
∆=

∫

T

dµ(P )
h(P )

=
∑

x∈X
F (x). (66)

These definitions are extensions of (57) and (58) to arbitrary T. Moreover,
let

J(µ,T) ∆=
∫

T
dµ(P ) I(P, µf). (67)

Simple algebraic manipulations result in

J(µ,T) = sign(ρ) · h(F ) (68)
= sign(ρ) · d · h(µf), (69)

an extension of [14, Equation (2.24)] for arbitrary T.
The following auxiliary problem will be useful.

Definition 21 For 0 < α < ∞, α 6= 1,

K−
∆= sup

µ
J(µ,T). (70)

The following parallels will help fix ideas. The quantity µf in (65) is
analogous to the PMF at the output of a channel represented by T when
the input measure is µ. J(µ,T) in (67) is the analogue of mutual information;
Csiszár calls it informativity in his work on finite-sized families [14].
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Proposition 22 K− ≤ K+.

Proof: Fix an arbitrary PMF Q on X × Y. It is straightforward to
show that [14, Equation 2.26] holds even when |T| is not finite, and is given
by ∫

T
dµ(P ) I(P, Q) = sign(ρ) · J(µ,T) · I(µf,Q).

Since I(µf, Q) ≥ sign(ρ), it follows that
∫

T
dµ(P ) · I(P, Q) ≥ J(µ,T).

Consequently

J(µ,T) = min
Q

∫

T
dµ(P ) I(P,Q),

which leads to

K− = sup
µ

J(µ,T)

= sup
µ

min
Q

∫

T
dµ(P ) I(P, Q)

≤ min
Q

sup
µ

∫

T
dµ(P ) I(P, Q)

= min
Q

sup
P∈T

I(P, Q)

= K+.

The following Proposition is similar to [9, Theorem A]. The proof largely
runs along similar lines.

Proposition 23 A real number R equals K− if and only if there exist a
sequence of probability measures (µn : n ∈ N) on (T, T ) and a PMF Q∗ on
X× Y with the following properties:

1. limn J(µn,T) = R;

2. limn µnf = Q∗;

3. I(P, Q∗) ≤ R, for every P ∈ T.

Furthermore Q∗ is unique, attains the minimum in (63), and K− = K+. ¤
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Proof: ⇐: Observe that on account of 1), 3), and Proposition 22 we
have

K− ≥ R

≥ sup
P∈T

I(P, Q∗)

≥ min
Q

sup
P∈T

I(P, Q)

= K+

≥ K−,

where the first inequality follows from 1), the second from 3), and the last
from Proposition 22. Consequently, all the inequalities are equalities, R =
K− = K+, and the use of “min” in the definition of K+ is justified.

⇒: Since R = K− ≤ K+ < ∞, it follows from the definition of K− that
there exists a sequence (µn : n ∈ N) such that limn J(µn,T) = R.

Now consider the sequence of |X||Y|-dimensional vectors given by Fn =∫
T dµn(P )f(P ). This is a sequence of scaled PMFs given by Fn = dn · µnf ,

where dn is given by (66). The sequence resides in a compact space of scaled
PMFs and therefore has a cluster point F ∗ which can be normalized to get
the PMF Q∗. Moreover we can find a subsequence of (Fn : n ∈ N) such that
limk Fnk

= F ∗. We redefine the sequence µn as given by this subsequence,
and properties 1) and 2) hold.

Suppose now that there is a P0 ∈ T such that 3) is violated, i.e.,

I(P0, Q
∗) > K−.

Consider the convex combinations of measures

νn,λ = (1− λ)µn + (λ)δP0 , (71)

where δP0 is the atomic distribution on P0.
From (71), (64), and (68), we have

sn(λ) ∆= J(νn,λ,T)
= sign(ρ) · h ((1− λ)Fn + λf(P0)) .

Since sign(ρ)h(·) is a concave and therefore continuous function of its vector-
valued argument, sn(λ) converges point-wise to

s(λ) = sign(ρ) · h ((1− λ)F ∗ + λf(P0)) ,

for λ ∈ [0, 1]. In particular, s(0) = limn sn(0) = K−. Now, s(λ) is a concave
function of λ since sign(ρ)h(·) is concave and the argument is linear in λ.
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Next, we can straightforwardly check that

ṡ(0) = I(P0, Q
∗)−K− > 0,

with the possibility that the value (slope at λ = 0) may be +∞.
We have therefore established that s(λ) has s(0) = K−, is concave and

therefore continuous in [0, 1], and has strictly positive slope at λ = 0. Con-
sequently, s(λ) > K− for some 0 < λ < 1. Since

J(νn,λ,T) = sn(λ) → s(λ) > K−

contradicts the definition of K−, 3) must hold.
To show uniqueness of Q∗, suppose there were another R∗ and another

sequence of measures (πn : n ∈ N) satisfying 1), 2) and 3). We can get
two cluster points F ∗ and G∗ that when normalized lead to Q∗ and R∗,
respectively. Then with νn = 1

2µn + 1
2πn, we have

J (νn,T) → sign(ρ) · h
(

1
2
F ∗ +

1
2
G∗

)

>
1
2
· sign(ρ) · h (F ∗) +

1
2
· sign(ρ) · h (G∗)

=
1
2
K− +

1
2
K−

= K−,

a contradiction. The strict inequality above is due to strict concavity of
sign(ρ)h(·) when ρ > −1.

5.4 Proof of Theorem 10

Proof: From (28), it is clear that

C =
1
ρ

log (sign(ρ) ·K+) .

Q attains the min-sup value K+ in Definition 20 if and only if Q attains the
min-sup value C in Definition 9. Proposition 23 guarantees the existence
and uniqueness of such a Q.

6 Examples

In this section we look at two example classes of PMFs, and identify their Lα-
centers and radii. We focus on guessing without side information. Through-
out this section, therefore, 0 < α < 1 and |Y| = 1. The uncertainty class
will thus be PMFs in X (with no reference to |Y|).
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6.1 The class of discrete memoryless sources

Let A be a finite alphabet set, n a positive integer, and X = An. We wish
to guess n-strings with letters drawn from A. Let an = (a1, · · · , an) ∈ An.
Let P(X) denote the set of all PMFs on X.

Let T be the class of all discrete memoryless sources (DMS) on A, i.e.,

T =

{
Pn ∈ P (An) | Pn(an) =

n∏

i=1

P (ai), ∀an ∈ An,

and P ∈ P(A)} ,

The parameters of the source P are unknown to the guesser. Arikan and
Merhav [4] provide a guessing scheme for this uncertainty class. The scheme
happens to be independent of ρ. Moreover, their guessing scheme has the
same asymptotic performance as the optimal guessing scheme. The guessing
order was to guess in the increasing order of empirical entropies; strings with
identical letters are guessed first, then strings with exactly one different
letter, and so on. Within each type of sequence, the order of guessing is
irrelevant. Denote this guessing list by Gn. Arikan and Merhav [4, Theorem
1] showed that for any Pn ∈ T,

lim
n→∞

1
n

R(Pn, Gn) = 0.

The above result is couched in our notation. This indicates that T, the
class of all DMSs on A, is not rich enough in the sense that there exists a
“universal” guessing scheme. The following result makes this notion more
precise.

Theorem 24 (Class of DMS on A) Let m = |A|. The Lα-radius Cn of the
class of discrete memoryless sources on A satisfies

Cn ≤ m− 1
2

log
n

2π
+ um + εn,

where um = log (Γ(1/2)m/Γ(m/2)), a constant that depends on the alphabet
size, and εn is a sequence in n that vanishes as n →∞. ¤

Proof: Recall that ρ > 0. Pn is the joint PMF of the n-string with
individual letter probabilities P . It is easy to verify that P ′

n is the joint PMF
of the n-string with individual letter probabilities P ′, and therefore P ′

n also
belongs to T. Xie and Barron [17, Theorem 2] show that there is a PMF
on An, say Q′

n, and a vanishing sequence εn, such that for every discrete
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memoryless source P ′
n, the following holds:

max
an∈An

log
P ′

n(an)
Q′

n(an)
≤ max

an∈An
log

P̂ ′
n(an)

Q′
n(an)

(72)

≤ rn

∆=
m− 1

2
log

n

2π
+ um + εn, (73)

where P̂ ′
n in the right-side of (72) is the DMS that maximizes R′

n(an) =∏n
i=1 R′(ai), for a given sequence an.
Define the PMF Qn as follows:

Qn(·) ∝ (
Q′

n(·))1/α
,

the inverse of the mapping in (20). We then have the following series of
inequalities:

Lα(Pn, Qn)

=
1
ρ

log

( ∑

an∈An

P ′
n(an)

(
P ′

n(an)
Q′

n(an)

)ρ
)

(74)

≤ 1
ρ

(
log

∑

an∈An

P ′
n(an) · exp{ρrn}

)
(75)

=
1
ρ

log (exp{ρrn})
= rn,

where (74) follows from (21) and (75) from (73). Taking the supremum over
all Pn yields the theorem.

Remark : Redundancy in guessing is thus upper bounded by rn +log(1+
n ln |A|). Since the Lα-radius grows with n as O(log n), the normalized
redundancy Cn/n vanishes. This implies that we can get a “universal”
guessing strategy. Theorem 24 suggests the use of Qn, which in general may
depend on ρ. Arikan and Merhav’s technique of guessing in the order of
increasing empirical entropy is another universal guessing technique.

Given any guessing scheme, how do we “measure” the set of DMSs which
result in relatively large redundancy? The following theorem answers this
question, and uses a strong version of the redundancy capacity theorem of
universal coding in [18] and [19].

Theorem 25 Let Qn be any PMF on An. Let µ be a probability measure
on (T, T ) and let P ′

n,µ =
∫
T dµ(P ′

n) P ′
n. Then for any DMS Pn, we have

L(Pn, Qn) ≥ D(P ′
n ‖ P ′

n,µ)− λn

except on a set B of µ-probability µ{B} ≤ 2−nλn.
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Proof: Observe that ρ > 0. An application of Jensen’s inequality to
the concave function log(·) yields

L(Pn, Qn) =
1
ρ

log

( ∑

an∈An

P ′
n(an)

(
P ′

n(an)
Q′

n(an)

)ρ
)

≥ 1
ρ

∑

an∈An

P ′
n(an) log

(
P ′

n(an)
Q′

n(an)

)ρ

= D(P ′
n ‖ Q′

n).

The theorem then follows from [19, Theorem 2] which states that the
source coding redundancy D(P ′

n ‖ Q′
n) is at least as large as D(P ′

n ‖ P ′
n,µ)−

λn except on a set B of µ-probability upper bounded by 2−nλn .

Remark : In particular, we may do the following. We choose µ such
that D(P ′

n ‖ P ′
n,µ) = rn. (This can be done since the inf-sup value of

infQ′n supP ′n D(P ′
n ‖ Q′

n) is rn, as remarked in [17, Remark 5 after Theorem
2]. We may then choose λn such that nλn → ∞ so that 2−nλn vanishes
with n, but λn is negligibly small compared to rn. (For example, for the
class of DMSs, rn = O(log n). We may choose λn as log log n or even
(log log n)/(log n)). Then, the set of sources P for which Lα(Pn, Qn) ≤
rn − λn has negligible µ-probability for all sufficiently large n. Or in other
words, with very high µ-probability (at least 1− 2−nλn), the redundancy in
guessing for any strategy is at least rn − λn − log(1 + n ln |A|).

6.2 Arbitrarily varying sources

For the class of DMSs, we saw in Section 6.1 that the redundancy is upper-
bounded by O(log n). In this section we look at the example of finite-state
arbitrarily varying sources (FS-AVS) for which the redundancy grows lin-
early with n. Yet again, for exposition purposes, we assume |Y| = 1.

As before, let X = An. Let S be a finite set of states, and for each s ∈ S,
let P (· | s) be a PMF on the finite set A. An arbitrarily varying source
(AVS) is a sequence of A-valued random variables X1, X2, · · · , such that
Xi’s are independent and the probability of an n-string xn is governed by
an arbitrary state sequence sn ∈ Sn as follows:

Pn(xn | sn) =
n∏

i=1

P (xi | si).

Observe that for a fixed n, there are only |S|n sources in the uncertainty
set. Let Tsn be the subset of all sequences in Sn with the same letter-
frequencies as sn. Tsn is also referred to as the type of the sequence sn [20].
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If the letter frequencies are given by a PMF U on S, we refer to TU as the
type of sequences. Let V be a stochastic matrix given by V (x | s) for x ∈ A
and s ∈ S. Then for a particular sequence sn, we refer to TV (sn), the set of
sequences that are of conditional type V given sn, as the V -shell of sn.

Proposition 26 Let 0 < α < 1. Let TU be a type of sequences on Sn. Let
the uncertainty set T be given by T = {Pn(· | sn) | sn ∈ TU}. The Lα-radius
of this family is given by

Rn(TU ) ∆= Hα(Q∗
n)− 1

|TU |
∑

sn∈TU

Hα(Pn(· | sn)), (76)

where the Lα-center Q∗
n is given by

Q∗
n(·) =

1
|TU |

∑

sn∈TU

Pn(· | sn). (77)

¤

Remarks : 1) It will be apparent from the proof that the quantity
Hα(Pn(· | sn)) in (76) depends on sn only through its type, and hence
the average over all sequences in the type may be replaced by the value for
any specific sn ∈ TU .

2) All PMFs in the uncertainty set are spaced equally apart (in the sense
of Lα-divergence) from the Lα-center Q∗

n.
3) Guessing in the decreasing order of Q∗

n-probabilities results in a re-
dundancy in guessing that is upper bounded by Rn(TU ) + log(1 + n ln |A|).

4) sign(ρ) · h(P ) is a concave function of P . It follows from (27) that
Hα(P ) is also a concave function of P for 0 < α < 1. By Jensen’s inequality,
Rn(TU ) ≥ 0. (For α > 1, Hα(P ) is neither concave nor convex in P ).

5) For any guessing strategy, there exists at least one sequence sn ∈ TU

for which the redundancy is lower bounded by Rn(TU ) − log(1 + n ln |A|).
We will see later in Proposition 28 that if the U sequence (parameterized
by n) converges as n → ∞ to a PMF U∗ ∈ P(S), then 1

nRn(TU ) converges
to a strictly positive constant. Thus Rn(TU ) grows linearly with n, thereby
making the converse meaningful; the nuisance term log(1 + n ln |A|) grows
only logarithmically in n.

Proof: Note that given an n, the uncertainty set is finite. We will sim-
ply show that the candidate Lα-center satisfies the necessary and sufficient
condition (60) given in Section 5.2.3. From (29), it is sufficient to show that

If (P ′
n(· | sn ‖ Q∗′

n )

=

∑
xn∈An Pn(xn | sn)

(
Q∗′

n (xn)
)−ρ

h(Pn(· | sn))
(78)

= K,
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where K is some constant that depends only on n and TU . We will show
that the numerator and denominator in (78) do not depend on the actual
sn, so long as sn ∈ TU .

Observe that the stochastic matrix that defines the conditional PMF is
given by P (x | s) for x ∈ A and s ∈ S. Consider h(Pn(· | sn)). First

∑

xn∈An

(Pn(xn | sn))α

=
∑

V

|TV (sn)| exp {−nα [D(V ‖ P | U) + H(V | U)]}

where the sum is over all conditional types V . All the quantities inside the
summation, including |TV (sn)|, depend on sn only through TU , and therefore
h(Pn(· | sn)) depends on sn only through TU .

Next, Q∗
n(xn) depends on xn only through Txn . This is easily seen via a

permutation argument. Given two A-sequences of the same type, let π be
a permutation that takes (xn, sn) to ((xπ(1), · · · , xπ(n)), (sπ(1), · · · , sπ(n))),
where sn and (sπ(1), · · · , sπ(n)) are the two given A-sequences. This permu-
tation π leaves Pn(xn | sn) unchanged. Moreover, the sum continues to be
over

TU =
{
(sπ(1), sπ(2), · · · , sπ(n)) ∈ Sn |

sn = (s1, · · · , sn) ∈ TU} .

Thus Q∗
n(xn) and therefore Q∗′

n (xn) depend on xn only through Txn .
Finally, given two A-sequences of the same type TU , the above permu-

tation argument indicates that
∑

xn∈An

Pn(xn | sn)
(
Q∗′

n (xn)
)−ρ

,

the numerator of (78), depends on sn only through TU .
That Rn(TU ) is given by (76) follows from (57), (58), (59), the fact that

h(Pn(· | sn)) is a constant over all sn ∈ TU , and (27). This concludes the
proof.

The number of different types of sequences grows polynomially in n, in
particular, this number is upper bounded by (n+1)|S|. We can use this fact
to stitch together the guessing lists for the different types of sequences on
Sn and get one list that does only marginally worse than the list obtained
by knowing the type of the state sequence.

Proposition 27 Let 0 < α < 1. Let the uncertainty set T be given by
T = {Pn(· | sn) | sn ∈ Sn}. There is a guessing strategy such that for every
TU , the redundancy is upper bounded by

Rn(TU ) + log(1 + n ln |A|) + |S| log(n + 1).
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whenever sn ∈ TU . ¤

Proof: Let N be the number of types. N is upper bounded by (n +
1)|S|. Fix an arbitrary order on these types. Let the kth type be TU . Set
Gk = GTU

, where GTU
is the guessing strategy that is obtained knowing

that sn ∈ TU , via Proposition 26. It proceeds in the decreasing order of
probabilities of the Lα-center of the uncertainty set indexed by TU .

We now stitch together the guessing lists G1, G2, · · · , GN to get a new
guessing list G, as follows. Think of Gk as a column vector of size |An| × 1
and let H be the column vector of size N · |An| × 1 obtained by reading the
entries of the matrix [G1 G2 · · · GN ] in raster order (one row after another).
Every A would have figured exactly once in the Gk list, and therefore occurs
exactly N times in the H list. Next, prune the H list. For each i, if there
exists an index j with j < i and Hi = Hj , set Hi = δ. This indicates that
the ith string already figures in the final guessing list. Finally remove all δ’s
to obtain the desired guessing list G : An → {1, 2, · · · , |A|n}, where G(xn)
is the unique position at which xn occurs in the pruned H list.

Clearly, for every xn and for every k such that 1 ≤ k ≤ N , we have
G(xn) ≤ NGk(xn). Indeed, xn occurs in the position (Gk(xn), k) in the
matrix constructed above. It therefore occurs in position (Gk(xn)−1)N +k
and therefore before the position NGk(xn) in the unpruned H list. It cannot
be placed any later in the pruned H list, and thus G(xn) ≤ NGk(xn).

The above observation leads to

1
ρ

logE [G(Xn)ρ] ≤ 1
ρ

logE [G(Xn)ρ] + log N.

The proposition follows from Theorem 6, Proposition 26, and the bounding
N ≤ (n + 1)|S|.

We finally remark that the min-sup redundancy for the finite-state arbi-
trarily varying source grows linearly with n under some circumstances.

Proposition 28 For a fixed n, let U be a PMF on S and TU the corre-
sponding type. Let the sequence U (as a function of n) converge to a PMF
U∗ ∈ P(S) as n →∞. Then

lim
n

1
n

Rn(TU ) = R,

where R ≥ 0. ¤

Proof: The second term in the right-hand side of (76), after normal-
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ization by n, converges to a nonnegative real number as seen below:

1
n

Hα(Pn(· | sn))

=
1

n(1− α)
log

∑

xn∈An

n∏

i=1

P (xi | si)α

=
1

n(1− α)
log

∏

s∈S

(∑

x∈A
P (x | s)α

)nU(s)

=
∑

s∈S
U(s)Hα(P (· | s))

→
∑

s∈S
U∗(s)Hα(P (· | s)). (79)

We next consider the first term on the right-hand side of (76) after
normalization, i.e., Hα(Q∗

n)/n, where Q∗
n is given by (77).

Lemma 29 For a fixed n, let U be a PMF on S and TU the corresponding
type. Let the sequence U (as a function of n) converge to a PMF U∗ ∈ P(S)
as n →∞. Let V be the output PMF when the input PMF on S is U and the
channel is P . Furthermore, let V ∗ be the limiting output PMF as n → ∞.
Then limn

1
nHα(Q∗

n) = Hα(V ∗).

As a consequence of this lemma and (79), we have

1
n

Rn(TU ) → Hα(V ∗)−
∑

s∈S
U∗(s)Hα(P (· | s)) ∆= R.

By the strict concavity of Hα(·) for 0 < α < 1, and Jensen’s inequality, we
have R ≥ 0. This concludes the proof of the theorem.

Remarks : R = 0 if and only if either (i) U(s) = 1 for some s ∈ S, or
(ii) P (· | s) does not depend on s, i.e., the state does not affect the source.
Thus, for all but the trivial finite-state arbitrarily varying sources, the min-
sup redundancy grows exponentially with n at a rate R. This means that the
guessing strategy that achieves the min-sup redundancy has an exponential
growth rate strictly bigger than that of the best strategy obtained with
knowledge of the state sequence.

We now prove the rather technical Lemma 29.

Proof:
(a) We first show that limn

1
nHα(Q∗

n) ≤ Hα(V ∗).
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Let Un be the PMF on Sn given by Un(sn) =
∏n

i=1 U(si). Let Un{T}
denote the Un-probability of the set T . From (77), we may write

∑

xn∈An

Q∗
n(xn)α

=
∑

xn∈An


 1
|TU |

∑

sn∈TU

Pn(xn | sn)




α

=
∑

xn∈An


 1

Un{TU}
Un{TU}
|TU |

∑

sn∈TU

Pn(xn | sn)




α

=
1

Un{TU}
∑

xn∈An


 ∑

sn∈TU

Un(sn)Pn(xn | sn)




α

(80)

≤ (n + 1)|S|α
∑

xn∈An

( ∑

sn∈Sn

Un(sn)Pn(xn | sn)

)α

(81)

= (n + 1)|S|α
∑

xn∈An

Vn(xn)α

= (n + 1)|S|α
(∑

x∈A
V (x)α

)n

, (82)

where (80) follows from the observation that Un(sn) = Un{TU}/|TU | for all
sn ∈ TU , (81) from Un{TU} ≥ (n+1)−|S| (see proof of [20, Lemma 2.3]) and
by enlarging the sum over TU to include all of Sn.

From (82) and (27), we have

1
n

Hα(Q∗
n) ≤ α|S|

1− α

log(n + 1)
n

+ Hα(V )

→ Hα(V ∗).

(b) We now show that limn
1
nHα(Q∗

n) ≥ Hα(V ∗).
For a given PMF U on S and conditional source P , let V be the induced

PMF on X and W the reverse conditional probability matrix, i.e., W (s | x)
is the probability of a state s given x.
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Continuing from (80), we may write
∑

xn∈An

Q∗
n(xn)α

=
1

Un{TU}
∑

xn∈An


 ∑

sn∈TU

Un(sn)Pn(xn | sn)




α

≥
∑

xn∈TQ


 ∑

sn∈TU

Un(sn)Pn(xn | sn)




α

(83)

≥
∑

xn∈TQ


 ∑

sn∈TW (xn)⊂TU

Vn(xn)Wn(sn | xn)




α

(84)

=
∑

xn∈TQ

(
Vn(xn)Wn

{
TW (xn) | xn

})α
, (85)

where (83) follows because Un{TU} ≤ 1 and the sum over An is restricted to
a sum over a type TQ to be chosen later; (84) follows because Un(sn)Pn(xn |
sn) = Vn(xn)Wn(sn | xn) and the sum over sn is now restricted over a
non-void W -shell of xn, where W will be appropriately chosen later.

We next observe that for xn ∈ TQ, the following hold:

Vn(xn) = 2−n(H(Q)+D(Q‖V )),

Wn

{
TW (xn)

} ≥ (n + 1)−|S||X| · 2−nD(W‖W |Q), and

|TQ| ≥ (n + 1)−|X| · 2nH(Q).

Substitution of these inequalities into (85) yields
∑

xn∈An

Q∗
n(xn)α

≥ (n + 1)−|X|(1+α|S|)

· 2n[(1−α)H(Q)−α(D(Q‖V )+D(W‖W |Q))]

and therefore

1
n

Hα(Q∗
n)

≥ H(Q)− 1
ρ

[
D

(
Q ‖ V

)
+ D

(
W ‖ W | Q)]

− |X|(1 + α|S|)
1− α

log(n + 1)
n

(86)

for any type Q of sequences and for any W such that TW (xn) is a non-void
shell for an xn ∈ TQ.
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Clearly, the last term in (86) vanishes as n →∞.
If we can choose Q = V ′ and W = W , we will be done since Hα(V ) =

H(V ′)− 1
ρD(V ′ ‖ V ). We cannot do this if V ′ is not a type of sequences, or

if W is not a conditional type given an xn. But we will show that as n →∞,
we can get close enough. The following arguments make this idea precise.

Define

δ
∆= log min{W (s | x) | W (s | x) > 0, s ∈ S, x ∈ X}

and consider D(W (· | x) ‖ W (· | x)). We may restrict our choice of W to
those that are absolutely continuous with respect to W , i.e., W (· | x) ¿
W (· | x) for every x ∈ X. For sufficiently large n, we can choose such a W
that in addition satisfies

∑

s∈S

∣∣W (s | x)−W (s | x)
∣∣ ≤ εn ≤ 1

2
, ∀x ∈ X,

and εn → 0.
We then have

D(W (· | x) ‖ W (· | x))
= H(W (· | x))−H(W (· | x))

+
∑

s∈S

(
W (s | x)−W (s | x)

)
log W (s | x)

≤
∣∣H(W (· | x))−H(W (· | x))

∣∣
− (log δ)

∑

s∈S

∣∣W (s | x)−W (s | x)
∣∣

≤ −εn log
εn

|S| − εnδ, (87)

where (87) follows from [20, Lemma 2.7]. After averaging, we get

D(W ‖ W | Q) ≤ −εn log
εn

|S| − εnδ → 0.

A similar argument shows that

H(Q)− 1
ρ
D

(
Q ‖ V

)

= Hα(V ) +
[
H(Q)−H(V ′)

]

− 1
ρ

[
D

(
Q ‖ V

)−D
(
V ′ ‖ V

)]

→ Hα(V ∗),

where we have made use of the fact that Hα(V ) = H(V ′)− (1/ρ)D(V ′ ‖ V ).
This concludes the proof of Lemma 29
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7 Concluding remarks

We conclude this paper by applying some of our results to guessing of binary
n-strings. Let X = {0, 1}n, and P a PMF on {0, 1}. Let

Pn(xn) =
n∏

i=1

P (Xi = xi)

denote the PMF of the discrete memoryless source (DMS) where the n-
string xn = (x1, x2, · · · , xn). One can think of Xn as a string of outcomes of
independent tosses of the same biased coin. Theorem 5 says that for ρ = 1,
the minimum expected number of guesses grows exponentially with n; the
growth rate is given by H1/2(P ).

If the only information that the guesser has about the source is that
Pn ∈ T, the guesser suffers a penalty (interchangeably called redundancy);
growth rate of the minimum expected number of guesses is larger than that
achievable with knowledge of Pn. The increase in growth rate is given by
the normalized redundancy R(Pn, G)/n, where G is the guessing strategy
chosen to work for all sources in T. This normalized redundancy equals the
normalized L1/2-radius of T, i.e., Cn/n, where Cn is given by (17).

When Pn is a DMS, and the PMF P on {0, 1} is unknown to the guesser,
Arikan and Merhav [4] have shown that guessing strings in the increasing
order of their empirical entropies is a universal strategy. Their universality
result implies that the normalized L1/2-radius of the family of DMSs satisfies
Cn/n → 0. The set of DMSs is thus not rich enough from the point of
view of guessing. Knowledge of the PMF P is not needed; the universal
strategy achieves, asymptotically, the minimum growth rate achievable with
full knowledge of the source statistics.

Suppose now that two biased coins are available. To generate each Xi,
one of the two coins is chosen arbitrarily, and tossed. The outcome of the
toss determines Xi. This is a two-state arbitrarily varying source. We may
assume S = {a, b}. Let us assume that as n →∞, the fraction of time when
the first coin is picked approaches a limit U∗(a). Let us further assume that
for each n, the receiver knows how many times the first coin was picked, i.e.,
it knows the type of the state sequence. If the two coins are not statistically
identical, the normalized L1/2-radius approaches a strictly positive constant
as n → ∞. This implies that the growth rate in the minimum expected
number of guesses for a strategy without full knowledge of source statistics
is strictly larger than that achievable with full knowledge of source statistics.
We note that in order to maximize the expected number of guesses, the right
solution may be to pick one coin, the one with the higher entropy, all the
time.

The guesser’s lack of knowledge of the number of times the first coin is
picked results in additional redundancy. However this additional redundancy
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asymptotically vanishes. The guesser “stitches” together the best guessing
lists for each type of state sequences.
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