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ABSTRACT

A guessing wiretapper’s performance on a Shannon cipher system is
analyzed for a source with memory. Close relationships between guess-
ing functions and length functions are first established. Subsequently,
asymptotically optimal encryption and attack strategies are identified
and their performances analyzed for sources with memory. The per-
formance metrics are exponents of guessing moments and probabil-
ity of large deviations. The metrics are then characterized for unifi-
lar sources. Universal asymptotically optimal encryption and attack
strategies are also identified for unifilar sources. Guessing in the in-
creasing order of Lempel-Ziv coding lengths is proposed for finite-state
sources, and shown to be asymptotically optimal. Finally, competitive
optimality properties of guessing in the increasing order of description
lengths and Lempel-Ziv coding lengths are demonstrated.

Keywords: cipher systems, compression, cryptography, guess-
ing, Lempel-Ziv code, length function, minimum description length,
sources with memory, source coding, unifilar, universal source
coding

1 INTRODUCTION

We consider the classical Shannon cipher system [1]. Let Xn = (X1, · · · , Xn)
be a message where each letter takes values on a finite set X. This message
should be communicated securely from a transmitter to a receiver, both of
which have access to a common secure key Uk of k purely random bits inde-
pendent of Xn. The transmitter computes the cryptogram Y = fn(Xn, Uk)
and sends it to the receiver over a public channel. The cryptogram may
be of variable length. The function fn is invertible given Uk. The receiver,
knowing Y and Uk, computes Xn = f−1

n (Y, Uk). The functions fn and f−1
n

are published. An attacker (wiretapper) has access to the cryptogram Y ,
knows fn and f−1

n , and attempts to identify Xn without knowledge of Uk.
The attacker can use knowledge of the statistics of Xn. We assume that the
attacker has a test mechanism that tells him whether a guess X̂n is correct
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or not. For example, the attacker may wish to attack an encrypted pass-
word or personal information to gain access to, say, a computer account,
or a bank account via internet, or a classified database [2]. In these situa-
tions, successful entry into the system or a failure provides the natural test
mechanism. We assume that the attacker is allowed an unlimited number of
guesses. Given the probability mass function (PMF) of Xn, the function fn,
and the cryptogram Y , the attacker can determine the posterior probabili-
ties of the message PXn|Y (· | y). His best guessing strategy having observed
Y = y is then to guess in the decreasing order of these posterior probabilities
PXn|Y (· | y). The key rate for the system is k/n = R which represents the
number of bits of key used to communicate one message letter.

Merhav and Arikan [2] study discrete memoryless sources (DMS) in the
above setting and characterize the best attainable moments of the number
of guesses that the attacker has to submit before success. In particular, they
show that for a DMS with the governing single letter PMF P on X, the value
of the optimal guessing exponent is given by

E(R, ρ) = max
Q

[ρ min{H(Q), R} −D(Q ‖ P )] ,

where the maximization is over all PMFs Q on X, H(Q) is the Shannon
entropy of the PMF Q, and D(Q ‖ P ) is the Kullback-Leibler divergence
between Q and P . They also show that E(R, ρ) equals ρR for R < H(P ),
and equals the constant ρH1/(1+ρ)(P ) for R > H(Pρ). When R < H(P ),
the key rate is not sufficiently large, and an exhaustive key-search attack
is asymptotically optimal. When R > H(Pρ), the randomness introduced
by the key is near perfect, and the cryptogram is useless to the attacker.
The attacker submits guesses based directly on the message statistics, and
ρH1/(1+ρ)(P ) is known to be the optimal guessing exponent in this scenario
[3], where H1/(1+ρ)(P ) is the Rényi entropy of the DMS P . For H(P ) <
R < H(Pρ), the optimal strategy makes use of both the key and the message
statistics. Pρ is the PMF of an auxiliary DMS given by (47). Merhav and
Arikan [2] also determine the best achievable performance based on the large
deviations of the number of guesses for success, and show that it equals the
Fenchel-Legendre transform of E(R, ρ) as a function of ρ.

Secret messages typically come from the natural languages which can be
well-modeled as sources with memory, for e.g., a Markov source of an ap-
propriate order. In this report, we extend the results of Merhav and Arikan
[2] to sources with memory. As a first step towards this, we first consider
the perfect secrecy scenario (for e.g., those analogous to R ≥ H(Pρ) in the
DMS case), and identify a tight relationship between the number of guesses
for success and a lossless source coding length function. Specifically, we
sandwich the number of guesses on either side by a suitable length function.
Arikan’s result [3] that the best value of the guessing exponent for mem-
oryless sources is the Rényi entropy of an appropriate order immediately
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follows by recognizing that it is the least value of an average exponential
coding length problem proposed and solved by Campbell [4]. Our approach
based on length functions has the benefit of showing that guessing in the
increasing order of lengths of compressed strings can yield a good attack
strategy for sources with memory. In particular, guessing in the increasing
order of Lempel-Ziv code lengths [5] for finite-state sources and increasing
description lengths for unifilar sources [6] are asymptotically optimal in a
sense made precise in the sequel. In the perfect secrecy context, our approach
is closely related to that of Weinberger et al [7] who use Lempel-Ziv code
lengths for universal ordering of sequences. However, the quantities studied
here and in [7] differ. We study the asymptotics of the ratio of the expected
number of guesses (resp. moments) under a universal guessing scheme over
the optimal expected number of guesses (resp. moments). Weinberger et al
[7] consider the asymptotics of the expected value of the point-wise ratio of
the same quantities. Consequently, our asymptotics involves Rényi entropies
while theirs involves Shannon entropy.

Next, we establish similar connections between guessing and source com-
pression for the key-constrained scenarios (i.e., those analogous to R <
H(Pρ) in the memoryless case). We then study guessing exponents for the
cipher system on sources with memory, and then specialize our results to
show that all conclusions of Merhav and Arikan in [2] for memoryless sources
extend to unifilar sources. We also consider the large deviations performance
of the number of guesses and show that attacks based on the Lempel-Ziv
coding lengths and minimum description lengths are asymptotically optimal
for finite-state and unifilar sources, respectively. We then establish compet-
itive optimality results for guessing based on these two length functions.

The report is organized as follows. In Section 2 we study guessing under
perfect secrecy and establish the relationship between guessing and source
compression. In Section 3, we study the key-rate constrained system, estab-
lish optimal strategies for both parties for sources with memory, and study
the relationship between guessing and a new source coding problem. In Sec-
tion 4, we characterize the performance for unifilar sources. In Section 5, we
study the large deviations performance and establish the optimality prop-
erties of guessing based on Lempel-Ziv and minimum description lengths.
Section 6 summarizes the report and presents some open problems.

2 Guessing under perfect secrecy and source com-
pression

Let us first consider the following ideal setting where k = nR ≥ n log |X|.
Enumerate all the sequences in Xn from 0 to |X|n−1 and let the function fn

be the bit-wise XOR of the key bits and the bits representing the index of the
message. The cryptogram is the message whose index is the output of fn.
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The decryption function is also clear - simply XOR the bits representing the
cryptogram with the key bits. Such an encryption renders the cryptogram
completely useless to an attacker who does not have knowledge of the key.
The attacker’s optimal strategy is to guess the message in the decreasing
order of message probabilities. In case the attacker does not have access
to the message probabilities, a robust strategy is needed. We first relate
the problem of guessing to one of source compression. As we will see soon,
robust source compression strategies lead to robust guessing strategies.

For ease of exposition, and because we have perfect encryption, let us
assume that the message space is simply X. The extension to strings of
length n is straightforward.

A guessing function

G : X→ {1, 2, · · · , |X|}

is a bijection that denotes the order in which the elements of X are guessed.
If G(x) = i, then the ith guess is x. A length function

L : X→ N

is one that satisfies Kraft’s inequality
∑

x∈X
2−L(x) ≤ 1. (1)

To each guessing function G, we associate a PMF QG on X and a length
function LG as follows.

Definition 1 Given a guessing function G, we say QG defined by

QG(x) = c−1 ·G(x)−1, ∀x ∈ X, (2)

is the PMF on X associated with G. The quantity c in (2) is the normaliza-
tion constant. We say LG defined by

LG(x) = d− log QG(x)e , ∀x ∈ X, (3)

is the length function associated with G.

Observe that

c =
∑

a∈X
G(a)−1 =

|X|∑

i=1

1
i
≤ 1 + ln |X|, (4)

and therefore the PMF in (2) is well-defined. We record the intimate rela-
tionship between these associated quantities in the following result. (This
is also available in the proof of [7, Th. 1, p.382]).
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Proposition 2 Given a guessing function G, the associated quantities sat-
isfy

c−1 ·QG(x)−1 = G(x) ≤ QG(x)−1, (5)
LG(x)− 1− log c ≤ log G(x) ≤ LG(x). (6)

Proof: The first equality in (5) follows from the definition in (2), and
the second inequality from the fact that c ≥ 1.

The upper bound in (6) follows from the upper bound in (5) and from
(3). The lower bound in (6) follows from

log G(x) = log
(
c−1 ·QG(x)−1

)

= − log QG(x)− log c

≥ (d− log QG(x)e − 1)− log c

= LG(x)− 1− log c.

We now associate a guessing function GL to each length function L.

Definition 3 Given a length function L, we define the associated guessing
function GL to be the one that guesses in the increasing order of L-lengths.
Messages with the same L-length are ordered using an arbitrary fixed rule,
say the lexicographic order on X. We also define the associated PMF QL on
X to be

QL(x) =
2−L(x)

∑
a∈X 2−L(a)

. (7)

Proposition 4 For a length function L, the associated PMF and the guess-
ing function satisfy the following:

1. GL guesses messages in the decreasing order of QL-probabilities;

2.
log GL(x) ≤ log QL(x)−1 ≤ L(x). (8)

Proof: The first statement is clear from the definition of GL and from
(7).
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Letting 1{E} denote the indicator function of an event E, we have as a
consequence of statement 1) that

GL(x) ≤
∑

a∈X
1 {QL(a) ≥ QL(x)}

≤
∑

a∈X

QL(a)
QL(x)

= QL(x)−1, (9)

which proves the left inequality in (8). This inequality was known to Wyner
[8].

The last inequality in (8) follows from (7) and Kraft’s inequality (1) as
follows:

QL(x)−1 = 2L(x) ·
∑

a∈X
2−L(a) ≤ 2L(x).

Let {L(x) ≥ B} denote the set {x ∈ X | L(x) ≥ B}. We then have the
following easy to verify corollary to Propositions 2 and 4.

Corollary 5 For a given G, its associated length function LG, and any
B ≥ 1, we have

{LG(x) ≥ B + 1 + log c}
⊆ {

G(x) ≥ 2B
}

⊆ {LG(x) ≥ B} . (10)

Analogously, for a given L, its associated guessing function GL, and any
B ≥ 1, we have

{GL(x) ≥ 2B} ⊆ {L(x) ≥ B}. (11)

The inequalities between the associates in (6) and (8) indicate the direct
relationship between guessing moments and Campbell’s coding problem [4],
and that the Rényi entropies are the optimal growth exponents for guessing
moments. See (14) below. They also establish a simple and new result: the
minimum expected value of the logarithm of the number of guesses is close
to the Shannon entropy.

We now demonstrate other relationships between guessing moments and
average exponential coding lengths which will be useful in establishing uni-
versality properties.

Proposition 6 Let L be any length function on X, GL the guessing function
associated with L, P a PMF on X, ρ ∈ (0,∞), L∗ the length function that
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minimizes E
[
2ρL∗(X)

]
, where the expectation is with respect to P , G∗ the

guessing function that proceeds in the decreasing order of P -probabilities
and therefore the one that minimizes E [G∗(X)ρ], and c as in (4). Then

E [GL(X)ρ]
E [G∗(X)ρ]

≤ E
[
2ρL(X)

]

E
[
2ρL∗(X)

] · 2ρ(1+log c). (12)

Analogously, let G be any guessing function, and LG its associated length
function. Then

E [G(X)ρ]
E [G∗(X)ρ]

≥ E
[
2ρLG(X)

]

E
[
2ρL∗(X)

] · 2−ρ(1+log c). (13)

Also, ∣∣∣∣
1
ρ

logE [G∗(X)ρ]− 1
ρ

logE
[
2ρL∗(X)

]∣∣∣∣ ≤ 1 + log c. (14)

Proof: Observe that

E
[
2ρL(X)

]

≥ E [GL(X)ρ] (15)
≥ E [G∗(X)ρ]

≥ E
[
2ρLG∗ (X)

]
2−ρ(1+log c) (16)

≥ E
[
2ρL∗(X)

]
2−ρ(1+log c), (17)

where (15) follows from (8), and (16) from the left inequality in (6). The
result in (12) immediately follows. A similar argument shows (13). Finally,
(14) follows from the inequalities leading to (17) by setting L = L∗.

Thus if we have a length function whose performance is close to opti-
mal, then its associated guessing function is close to guessing optimal. The
converse is true as well. Moreover, the optimal guessing exponent is within
1 + log c of the optimal coding exponent for the length function.

Let us now consider strings of length n. Let Xn denote the set of messages
and consider n → ∞. Let T denote a class of sources. It is now easy to
see that universality (within the class) in the average exponential coding
rate sense implies existence of a universal guessing strategy that achieves
the optimal exponent for guessing. For each source in the class, let Pn be its
restriction to strings of length n and let L∗n denote an optimal length function
that attains the minimum value E

[
2ρL∗n(Xn)

]
among all length functions,

the expectation being with respect to Pn. On the other hand, let Ln be a
sequence of length functions for the class of sources that does not depend on
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the actual source within the class. Suppose further that the length sequence
Ln is asymptotically optimal, i.e.,

lim
n→∞

1
nρ

logE
[
2ρLn(Xn)

]

= lim
n→∞

1
nρ

logE
[
2ρL∗n(Xn)

]
,

for every source belonging to the class. Ln is thus “univeral” for (i.e., asymp-
totically optimal for all sources in) the class. An application of (12) by de-
noting c in (12) as cn followed by the observation (1 + log cn)/n → 0 shows
that the sequence of guessing strategies GLn is asymptotically optimal for
the class, i.e.,

lim
n→∞

1
nρ

logE [GLn(Xn)ρ]

= lim
n→∞

1
nρ

logE [G∗(Xn)ρ] .

Arikan and Merhav [9] provide a universal guessing strategy for the class
of discrete memoryless sources (DMS). For the class of unifilar sources with a
known number of states, the minimum description length encoding is asymp-
totically optimal for Campbell’s coding length problem (see Merhav [6]). It
follows as a consequence of the above argument that guessing in the increas-
ing order of description lengths is asymptotically optimal. (See also the
development in Section 4). The left side of (12) is the extra factor in the
expected number of guesses (relative to the optimal value) due to lack of
knowledge of the specific source in class. Our prior work [10] characterizes
this loss as a function of the uncertainty class.

3 Guessing with key-rate constraints and source
compression

We continue to consider strings of length n. Let Xn be a message and Uk

the secure key of purely random bits independent of Xn. Recall that the
transmitter computes the cryptogram Y = fn(Xn, Uk) and sends it to the
receiver over a public channel. Given a PMF of Xn, the function fn, and the
cryptogram Y , the attacker’s optimal strategy is to guess in the decreasing
order of posterior probabilities PXn|Y (· | y). Let us denote this optimal
attack strategy as Gfn . The key rate for the system is k/n = R < log |X|. If
the attacker does not know the source statistics, a robust guessing strategy
is needed. The following is a first step in this direction.
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Proposition 7 Let Ln be an arbitrary length function on Xn. There is a
guessing list G such that for any encryption function fn, we have

G(xn | y) ≤ 2min
{

2nR, 2Ln(xn)
}

.

Proof: We use a technique of Merhav and Arikan [2]. Let GLn denote
the associated guessing function that proceeds in the increasing order of
the lengths and completely ignores the cryptogram. Let GLn proceed in
the order xn

1 , xn
2 , · · · . By Proposition 4, we need at most 2Ln(xn) guesses to

identify xn.
Consider the alternative exhaustive key-search attack defined by the fol-

lowing guessing list:

f−1
n

(
y, uk

1

)
, f−1

n

(
y, uk

2

)
, · · · ,

where uk
1, u

k
2, · · · is an arbitrary ordering of the keys. This strategy identifies

xn in at most 2nR guesses.
Finally, let G(· | y) be the list that alternates between the two lists,

skipping those already guessed, i.e., the one that proceeds in the order
{

xn
1 , f−1

n

(
y, uk

1

)
, xn

2 , f−1
n

(
y, uk

2

)
, · · ·

}
. (18)

Clearly, for every xn, we need at most twice the minimum of the two original
lists.

We now look at a weak converse to the above in the expected sense.
Our proof also suggests an asymptotically optimal encryption strategy for
sources with memory.

Proposition 8 Fix n ∈ N, ρ > 0, and let cn denote the constant in (4) as
a function of n with Xn replacing X. There is an encryption function fn

and a length function Ln such that every guessing strategy G(· | y) (and in
particular Gfn) satisfies

E [G(Xn | Y )ρ]

≥ 1
(2cn)ρ(2 + ρ)

E
[(

min
{

2Ln(Xn), 2nR
})ρ]

.

Proof: The proof is an extension of Merhav and Arikan’s proof of
[2, Th. 1] to sources with memory. The idea is to identify an encryption
mechanism that maps messages of roughly equal probability to each other.

Let Pn be any PMF on Xn. Enumerate the elements of Xn in the de-
creasing order of their probabilities. For convenience, let M = 2nR. If M
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does not divide |X|n, append a few dummy messages of zero probability to
make the number of messages N a multiple of M . Index the messages from
0 to N − 1. Henceforth, we identify a message by its index.

Divide the messages into groups of M so that message m belongs to
group Tj , where j = bm/Mc, and b·c is the floor function. Enumerate the
key streams from 0 to M − 1, so that 0 ≤ u ≤ M − 1. The function fn is
now defined as follows. For m = jM + i set

fn(jM + i, u) ∆= jM + (i⊕ u) ,

where i ⊕ u is the bit-wise XOR operation. Thus messages in group Tj

are encrypted to messages in the same group. The index i identifying the
specific message in group Tj , i.e., the last nR bits of m, are encrypted via
bit-wise XOR with the key stream. Given u and the cryptogram, decryption
is clear – perform bit-wise XOR with u on the last nR bits of y.

Given a cryptogram y, the only information that the attacker gleans is
that the message belongs to the group determined by y. Indeed, if y ∈ Tj

Pn {Y = y} =
1
M

Pn {Xn ∈ Tj}

and therefore

Pn {Xn = m | Y = y} =

{
Pn{Xn=m}
Pn{Xn∈Tj} , bm/Mc = j,

0, otherwise,

decreases with m for m ∈ Tj , and is 0 for m /∈ Tj . The attacker’s best
strategy Gfn(· | y) is therefore to restrict his guesses to Tj and guess in the
order jM, jM + 1, · · · , jM + M − 1. Thus, when xn = jM + i, the optimal
attack strategy requires i + 1 guesses.
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We now analyze the performance of this attack strategy as follows.

E [Gfn(Xn|Y )ρ]

=
N/M−1∑

j=0

M−1∑

i=0

Pn{Xn = jM + i}(i + 1)ρ

≥
N/M−1∑

j=0

M−1∑

i=0

Pn{Xn = (j + 1)M − 1}(i + 1)ρ (19)

≥
N/M−1∑

j=0

Pn{Xn = (j + 1)M − 1}M1+ρ

1 + ρ
(20)

≥ 1
1 + ρ

N/M−1∑

j=0

M−1∑

i=0

Pn{Xn = (j + 1)M + i}Mρ

(21)

=
1

1 + ρ

N−1∑

m=M

Pn{Xn = m}Mρ (22)

where (19) follows because the arrangement in the decreasing order of prob-
abilities implies that

Pn{Xn = jM + i} ≥ Pn{Xn = (j + 1)M − 1}

for i = 0, · · · ,M − 1. Inequality (20) follows because

M−1∑

i=0

(i + 1)ρ =
M∑

i=1

iρ ≥
∫ M

0
zρ dz =

M1+ρ

1 + ρ
,

(21) follows because by the decreasing probability arrangement

Pn{Xn = (j + 1)M − 1} ≥ 1
M

M−1∑

i=0

Pn{Xn = (j + 1)M + i}.

Thus (22) implies that

N−1∑

m=0

Pn{Xn = m} (min{m + 1,M})ρ

=
M−1∑

m=0

Pn{Xn = m}(m + 1)ρ +
N−1∑

m=M

Pn{Xn = m}Mρ

≤ E [Gfn(Xn|Y )ρ] + (1 + ρ)E [Gfn(Xn|Y )ρ]
= (2 + ρ)E [Gfn(Xn|Y )ρ] , (23)
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Set GP to be the guessing function that guesses in the decreasing order of
P -probabilities without regard to Y , i.e., GP (m) = m + 1. Let LGP

be the
associated length function. Now use (23) and (6) to get

E [Gfn(Xn|Y )ρ]

≥ 1
2 + ρ

E [(min {GP (Xn),M})ρ]

≥ 1
2 + ρ

E

[(
min

{
2LGP

(Xn)

2cn
,M

})ρ]

≥ 1
(2cn)ρ(2 + ρ)

E
[(

min
{

2LGP
(Xn), M

})ρ]
.

Since Gfn is the strategy that minimizes E [G(Xn | Y )ρ] , the proof is com-
plete.

For a given ρ > 0, key rate R > 0, encryption function fn, define

En(R, ρ) ∆= sup
fn

1
n

logE [Gfn(Xn | Y )ρ] .

Propositions 7 and 8 naturally suggest the following coding problem: iden-
tify

En,l(R, ρ) ∆= min
Ln

1
n

logE
[(

min
{

2Ln(Xn), 2nR
})ρ]

. (24)

Analogous to (14), we can relate En(R, ρ) and En,l(R, ρ) for a specified key
rate R. The following is a corollary to Propositions 7 and 8.

Corollary 9 For a given R, ρ > 0, we have

|En,l(R, ρ)− En(R, ρ)| ≤ log(22ρcρ
n(2 + ρ))
n

.

Proof: Let L∗n be the length function that achieves En,l(R, ρ). By
Proposition 7, and after taking expectations, we have the guessing strategy
G(· | y) that satisfies

E
[(

min
{

2L∗n(Xn), 2nR
})ρ]

≥ sup
fn

1
2ρ
E [G(Xn | Y )ρ]

≥ sup
fn

1
2ρ
E [Gfn(Xn | Y )ρ]

≥ 1
22ρcρ

n(2 + ρ)
E

[(
min

{
2Ln(Xn), 2nR

})ρ]
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for a particular fn and Ln guaranteed by Proposition 8

≥ 1
22ρcρ

n(2 + ρ)
E

[(
min

{
2L∗n(Xn), 2nR

})ρ]
.

Take logarithms and normalize by n to get the bound.
The magnitude of the difference between En(R, ρ) and En,l(R, ρ) van-

ishes as n →∞. Thus, the problem of finding the optimal guessing exponent
is the same as that of finding the optimal exponent for a coding problem.
When R ≥ log |X|, the coding problem in (24) reduces to the one considered
by Campbell in [4]. Proposition 7 shows that the optimal length function
attaining the minimum in (24) yields an asymptotically optimal attack strat-
egy on the cipher system. Moreover, the encryption strategy in Proposition
8 is asymptotically optimal.

The following Proposition upper bounds the guessing effort needed to
identify the correct message for sources with memory. A sharper result
analogous to the DMS case is shown later for unifilar sources.

Proposition 10 For a given R, ρ > 0, we have

lim sup
n→∞

En(R, ρ) ≤ min
{

ρR, lim sup
n→∞

En(ρ)
}

, (25)

where
En(ρ) ∆= min

Ln

1
n

logE
[
2ρLn(Xn)

]
.

Proof: By Corollary 9, it is sufficient to show that the sequence
En,l(R, ρ) is upperbounded by the sequence on the right side of (25). Let L∗n
be the length function that minimizes E

[
2ρLn(Xn)

]
. Observe that min

{
2ρnR, x

}
is a concave function of x for a fixed ρ and R. Jensen’s inequality then yields

E
[
min

{
2ρnR, 2ρL∗n(Xn)

}]
≤ min

{
2ρnR,E

[
2ρL∗n(Xn)

]}
.

Take logarithms, normalize by n, and use the definition of En,l(ρ,R) to get

En,l(R, ρ) ≤ 1
n

log
(
min

{
2ρnR,E

[
2ρL∗n(Xn)

]})

= min
{

ρR,
1
n

logE
[
2ρL∗n(Xn)

]}
.

Now take the limsup as n →∞ to complete the proof.
Our results thus far are applicable to a rather general class of sources

with memory. In the next section, we specialize our results to the important
class of unifilar sources. If the source is a DMS with defining PMF P , then
the second term within the min in (25) is known to be ρH1/(1+ρ)(P ), where
H1/(1+ρ)(P ) is Rényi’s entropy of order 1/(1+ρ) for the source. For unifilar
sources, we soon show that the limsup can be replaced by a limit which
equals ρ times a generalization of the Rényi entropy for such a source.

13



4 Unifilar Sources

In this section, we generalize the DMS results of Merhav and Arikan [2] to
unifilar sources. We first make some definitions largely following Merhav’s
notation in [6].

Let xn = (x1, · · · , xn) be a string taking values in Xn. The string xn

needs to be guessed. Let sn = (s1, · · · , sn) be another sequence taking values
in Sn where |S| < ∞. Let s0 ∈ S be a fixed initial state. A probabilistic
source Pn is finite-state with |S| states [6] if the probability of observing the
sequence pair (xn, sn) is given by

Pn(xn, sn) =
n∏

i=1

P (xi, si | si−1),

where P (xi, si | si−1) is the joint probability of letter xi and state si given the
previous state si−1. The dependence of Pn on the initial state s0 is implicit.
Typically, the letter sequence xn is observable and the state sequence sn is
not. Let H denote the entropy-rate of a finite-state source, i.e.,

H
∆= − lim

n→∞n−1
∑

xn∈Xn

Pn(xn) log Pn(xn).

A finite-state source is unifilar [11, p.187] if the state si is given by a
deterministic mapping φ : X× S→ S as

si = φ(xi, si−1),

and the mapping x 7→ φ(x, s) is one-to-one 1 for each s ∈ S. Given s0

and the sequence xn, the state sequence is uniquely determined. Moreover,
given s0 and the state sequence sn, xn is uniquely determined. An im-
portant example of a unifilar source is a kth order Markov source where
si = (xi, xi−1, · · · , xi−k+1).

Fix xn ∈ Xn. For s ∈ S, x ∈ X, let

Qxn(x, s) =
1
n

n∑

i=1

1{xi = x, si−1 = s},

where 1{A} is the indicator function of the event A. Qxn is thus an empirical
PMF on S× X. Let

Qxn(s) =
∑

x∈X
Qxn(x, s).

The use of Qxn for both the joint and the marginal PMFs is an abuse of
notation. The context should make the meaning clear. Let

qxn(x | s) =
{

Qxn(x, s)/Qxn(s), Qxn(s) > 0,
0, Qxn(s) = 0

1The definition in [6] does not restrict φ to be one-to-one.
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denote the empirical letter probability given the state. (Given that φ is
one-to-one, this actually defines a transition probability matrix on the state
space). Denote the empirical conditional entropy as

H(Qxn) = −
∑

s∈S

∑

x∈X
Qxn(x, s) log qxn(x|s),

and the conditional Kullback-Leibler divergence between the empirical con-
ditional PMF and the one-step transition matrix P (x|s) as

D(Qxn ‖ P ) =
∑

s∈S

∑

x∈X
Qxn(x, s) log

qxn(x | s)
P (x | s) .

Given that we are dealing with multiple random variables, H(Q) and D(Q ‖
P ) usually stand for joint entropy and Kullback-Leibler divergence of a pair
of joint distributions. We however alert the reader that they stand for
conditional values in our notation.

Let us further define the type Txn of a sequence xn as follows:

Txn = {an ∈ Xn | Qan = Qxn} .

For the unifilar source under consideration, it is easy to see that

Pn(xn) = 2−n(H(Qxn)+D(Qxn‖P )), (26)

i.e., all elements of the same type have the same probability. Moreover, for
a fixed type Qxn , if we set P (x | s) = qxn(x | s) and observe that for the
resulting unifilar source matched to xn, we have 1 ≥ Pn{Txn} = |Txn |Pn(xn),
we easily deduce from (26) that

|Txn | ≤ 2nH(Qxn ). (27)

Consequently, for any unifilar Pn,

Pn{Txn} ≤ 2−nD(Qxn‖P ). (28)

Using the fact that the mapping x 7→ φ(x, s) is one-to-one for each s, it is
possible to get the following useful lower bounds on the size and probability
of a type for unifilar sources.

Lemma 11 (Merhav [6, Lemma 1], Gutman [12, Lemma 1]) For a unifilar
source, there exists a sequence ε(n) = Θ(n−1 log n) such that

∣∣∣∣
1
n

log Pn {Txn}+ D(Qxn ‖ P )
∣∣∣∣ ≤ ε(n) (29)

for every xn ∈ Xn.
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Consequently, we also have ([6, eqn. (17)]):
∣∣∣∣
1
n

log |Txn | −H(Qxn)
∣∣∣∣ ≤ ε(n). (30)

Let us now define in a fashion analogous to the DMS case

E(R, ρ) ∆= max
Q

[ρh(Q, R)−D(Q ‖ P )] (31)

where h(Q,R) = min{H(Q), R}, Q is a joint PMF on S×X with letter prob-
abilities given the state identified by q(x | s), and H(Q) is the conditional
entropy

H(Q) = −
∑

s∈S

∑

x∈X
Q(x, s) log q(x | s).

P (x|s) is the conditional PMF that defines the unifilar source. The string
s0 is irrelevant in the definition of E(R, ρ).

We now state and prove a generalization of the Merhav and Arikan result
[2, Th. 1].

Theorem 12 For any unifilar source, any ρ > 0,

lim
n→∞En(R, ρ) = E(R, ρ).

Proof: We show that the limiting value of En,l(R, ρ) exists for the
corresponding coding problem and equals E(R, ρ). Corollary 9 then implies
that En(R, ρ) for the guessing problem has the same limiting value.

Let Ln be a minimal length function that attains En,l(R, ρ). Arrange the
elements of Xn in the decreasing order of their probabilities. Furthermore,
ensure that all sequences belonging to the same type occur together. Enu-
merate the sequences from 0 to |X|n − 1. Henceforth we refer to a message
by its index.

We claim that we may assume Ln is a nondecreasing function of the
message index. Suppose this is not the case. Let j be the first index
where the nondecreasing property is violated, i.e. Ln(i) ≤ Ln(i + 1) for
i = 1, · · · , j − 1, and Ln(j) > Ln(j + 1). Identify the smallest index
j∗ that satisfies Ln(j∗) > Ln(j + 1). Modify the lengths as follows: set
L′n(j∗) = Ln(j + 1), then L′n(i + 1) = Ln(i) for i = j∗, · · · , j, and leave the
rest unchanged. Call the new set of lengths Ln. In effect, we have “bubbled”
Ln(j+1) towards the smaller indices to the nearest location that does not vi-
olate the nondecreasing condition. The new set of lengths will have the same
or lower E

[(
min{2Ln(Xn), 2nR})ρ

]
. By the optimality of the original set of

lengths, the new lengths are also optimal. Furthermore, as a consequence

16



of the modification, the location of the first index where Ln(i) � Ln(i + 1)
has strictly increased. Continue the process until it terminates; it will after
a finite number of steps. The resulting Ln is nondecreasing and optimal.

Next, observe that
2Ln(i) ≥ i + 1 (32)

because the length functions are such that the sequences are uniquely deci-
pherable. Another way to see (32) is to observe that index i is the i + 1st
guess when guessing in the increasing order of Ln as prescribed by the in-
dices, and therefore (8) implies (32).

We then have the following sequence of inequalities
∑

an∈Xn

Pn(an)
(
min

{
2Ln(an), 2nR

})ρ

≥ Pn(xn)
∑

an∈Txn

(
min

{
2Ln(an), 2nR

})ρ
(33)

≥ Pn(xn)
i0(Txn )+|Txn |−1∑

i=i0(Txn)

(
min

{
i + 1, 2nR

})ρ
(34)

≥ Pn(xn)
|Txn |∑

i=1

(
min

{
i, 2nR

})ρ
(35)

≥ Pn(xn)
∫ |Txn |

0

(
min

{
y, 2nR

})ρ
dy

≥ Pn(xn)|Txn | 1
1 + ρ

(
min

{|Txn |, 2nR
})ρ

(36)

≥ P{Txn} 1
1 + ρ

(
min

{
2nH(Qxn )−nε(n), 2nR

})ρ
(37)

≥ 2−2nε(n)

1 + ρ
2n(ρ min{H(Qxn ),R}−D(Qxn‖P )), (38)

where (33) follows by restricting the sum to sequences in type Txn , (34)
follows because of (32) and by setting i0(Txn) as the starting index of type
Txn . We can do this because our ordering clustered all sequences of the
same type. Inequality (35) holds because every term under the summation
is lower bounded by the corresponding term on the right side. Inequality
(36) follows because of the following. For simplicity, let |Txn | = N and
2nR = M . When N ≤ M ,

1
N

∫ N

0
yρ dy =

Nρ

1 + ρ
,
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and when N > M ,

1
N

∫ N

0
(min {y,M})ρ dy

=
1
N

∫ M

0
yρ dy +

1
N

∫ N

M
Mρ dy

=
M

N

Mρ

1 + ρ
+

(
1− M

N

)
Mρ

≥ Mρ

1 + ρ
.

Inequality (37) follows from (30) and (38) follows from (29).
The type Txn in (38) is arbitrary. Moreover, D(Q ‖ P ) and H(Q) are

continuous functions of Q, and the set of rational empirical functions {Qxn}
become dense in the class of unifilar sources with |S| states and |X| alphabets,
as n → ∞. From (38) and the above facts, we get lim infn→∞En,l(R, ρ) ≥
E(R, ρ).

To show the other direction, we define a universal encoding for the class
of unifilar sources on state space S with alphabet X. Given a sequence xn,
encode each one of the |S|(|X|− 1) source parameters {qxn(x | s)} estimated
from xn. Each parameter requires log(n + 1) bits. Then use nH(Qxn) bits
to encode the index of xn within the type Txn . The resulting description
length can be set to

L∗n(xn) = nH(Qxn) + |S|(|X| − 1) log(n + 1),

where we have ignored constants arising from integral length constraints.
We call this strategy the minimum description length coding and L∗n the
minimum description lengths.

L∗n depends on xn only through its type Txn . Moreover, there are at
most (n + 1)|S|(|X|−1) types. Using these facts, (27), and (28), we get

E
[(

min
{

2L∗n(Xn), 2nR
})ρ]

(39)

≤ (n + 1)(1+ρ)|S|(|X|−1) (40)

· max
Txn⊆Xn

P{Txn}min
{

2nρH(Qxn ), 2nρR
}

(41)

≤ (n + 1)(1+ρ)|S|(|X|−1)2nE(R,ρ). (42)

Take logarithms and normalize by n to get

lim sup
n→∞

En,l(R, ρ) ≤ E(R, ρ).

This completes the proof.
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The minimum description length coding works without knowledge of the
true source parameters. Knowledge of the transition function φ is sufficient.
In the context of guessing, the optimal attack strategy does not depend
on knowledge of the source parameters. Interlacing the exhaustive key-
search attack with the attack based on increasing description lengths is
asymptotically optimal. Incidentally, the encryption strategy of Merhav and
Arikan [2, Th. 1] uses only type information for encoding, and is applicable
to unifilar sources. The same arguments in the proof of [2, Th. 1] go to show
that their encryption strategy is asymptotically optimal for unifilar sources.

Let us define the quantity

E(ρ) ∆= max
Q

[ρH(Q)−D(Q ‖ P )] . (43)

Observe that E(ρ) = E(R, ρ) for R ≥ log |X|, i.e., E(ρ) determines the
guessing exponent under perfect encryption. The following result identifies
useful properties of these functions.

Proposition 13 E(ρ) is a convex function of ρ. E(ρ,R) is a convex func-
tion of ρ and a concave function of R.

Proof: Equation (43) is a maximum of affine functions of ρ and is
therefore convex in ρ. The same is the case for E(R, ρ). To see the concavity
of E(R, ρ) in R, write (31) as done in [2, Sec. IV] as

E(R, ρ)

= max
Q

[
ρ min

0≤θ≤ρ

[
θ

ρ
H(Q) +

(
1− θ

ρ

)
R

]
−D(Q ‖ P )

]

= max
Q

min
0≤θ≤ρ

[θH(Q) + (ρ− θ)R−D(Q ‖ P )]

= min
0≤θ≤ρ

max
Q

[θH(Q) + (ρ− θ)R−D(Q ‖ P )] (44)

= min
0≤θ≤ρ

[E(θ) + (ρ− θ)R)] . (45)

The maximization and minimization interchange in (44) is justified because
the term within square brackets, sum of a scaled conditional entropy and
the negative of a conditional divergence, is indeed concave in Q and affine
in θ. Since (45) is a minimum of affine functions in R, it is concave in R.

It is easy to see the following fact for a unifilar source:

lim
n→∞

1
n

log

( ∑

xn∈Xn

Pn(xn)1/(1+ρ)

)1+ρ

= E(ρ). (46)

That the left side in (46) is at least as large as the right side follows from
the proof in [6, Appendix B] and the observation that ρH(Q) −D(Q ‖ P )
is continuous in Q and that the set of rational empirical PMFs Qxn is dense
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in the set of unifilar sources with state space S and alphabet X, as n →∞.
The other direction is an easy application of the method of types. The
initial state which is implicit in Pn does not affect the value of the limit (as
one naturally expects in this Markov case). In the memoryless case, i.e.,
when si = xi, and P (x|s) is independent of s, this quantity converges to
E(ρ) = ρH1/(1+ρ)(P ) where H1/(1+ρ)(P ) is the Rényi entropy of the DMS
P on X.

Analogous to a DMS case, we can characterize the behavior of E(R, ρ)
as a function of R for a particular source P .

Proposition 14 For a given ρ > 0 and a unifilar source, let E′(ρ) exist.
Then

E(R, ρ) =





ρR, R < H,
(ρ− θ0)R + E(θ0), H ≤ R ≤ E′(ρ),
E(ρ), R > E′(ρ)

where θ0 ∈ [0, ρ] in the second case.

Proof: Indeed, from (45) it is clear by the continuity of the term within
square brackets that for all values of R, E(R, ρ) = (ρ − θ0)R + E(θ0) for
some θ0 ∈ [0, ρ], and the second case is directly proved.

Suppose R < H. Then we may choose Q = P in (31) to get E(R, ρ) ≥
ρR. However, (25) indicates that E(R, ρ) ≤ ρR, which leads us to conclude
that E(R, ρ) = ρR when R < H.

Next observe that E(R, ρ) ≤ E(ρ) is direct for all values of R, and in
particular for R > E′(ρ). To show the reverse direction, (45) yields

E(R, ρ) = min
0≤θ≤ρ

[E(θ) + (ρ− θ)R]

= E(ρ) + min
0≤θ≤ρ

(ρ− θ)
(

R− E(ρ)− E(θ)
ρ− θ

)
.

The proof will be complete if we can show that the term within parentheses
is nonnegative for 0 ≤ θ ≤ ρ. This holds because of the following. By the
convexity of E(θ), the largest value of (E(ρ) − E(θ))/(ρ − θ) for the given
range of θ is E′(ρ) (see for example, Royden [13, Lemma 5.5.16]), and this
is upper bounded by R.

For a DMS, Merhav and Arikan [2] show that E′(ρ) = H(Pρ), where Pρ

is the PMF given by

Pρ(x) =
P (x)1/(1+ρ)

∑
a∈X P (a)1/(1+ρ)

. (47)

They also show that θ0 is the unique solution to R = H(Pθ).
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5 Large Deviations Performance

5.1 General Sources With Memory

We now study the problem of large deviations in guessing and its relation
to source compression. Our goal is to extend the large deviations results
of Merhav and Arikan [2] to sources with memory using the tight relation-
ship between guessing functions and length functions. We begin with the
following general result.

Proposition 15 1. When B > R > 0, there is an attack strategy that
satisfies

sup
fn

Pn

{
G(Xn | Y ) ≥ 2nB

}
= 0

for all sufficiently large n.

2. When B ≤ R, there is an attack strategy that satisfies

sup
fn

Pn

{
G(Xn | Y ) ≥ 2nB

}

≤ min
Ln

Pn {Ln(Xn) ≥ nB − 1} .

3. When B < R, there is an encryption function fn such that

Pn

{
Gfn(Xn | Y ) ≥ 2nB

}

≥ 1
3
·min

Ln

Pn {Ln(Xn) ≥ nB + 1 + log cn} .

Remarks: When B = R, the large deviations behavior of guessing and
coding may differ. If we define

Fn(R, B) ∆= inf
fn

[
− 1

n
log Pn

{
Gfn(Xn|Y ) ≥ 2nB

}]
(48)

and

Fn,l(B) ∆= max
Ln

[
− 1

n
log Pn

{
Ln(Xn) ≥ 2nB

}]
, (49)

then Fn(R, B) = ∞ for all sufficiently large n if R < B. When R > B,
Fn(R,B) is bounded between Fn,l(B − 1/n) and Fn,l(B + (1 + log cn)/n))
ignoring vanishing terms.

Proof: Observe first that for any encryption function, the strategy (18)
requires at most 2nR+1 guesses. If B > R, 2nB > 2nR+1 for all sufficiently
large n, and therefore

sup
fn

Pn

{
G(Xn|Y ) ≥ 2nB

}
= 0.
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When B ≤ R, the same strategy with an optimal Ln that minimizes
Pn{Ln(Xn) ≥ nB − 1} requires G(xn | y) ≤ 2min

{
2L(xn), 2nR

}
guesses.

Hence {
G(xn | y) ≥ 2nB

} ⊆ {Ln(xn) ≥ nB − 1}
and therefore

Pn{G(Xn | Y ) ≥ 2nB} ≤ Pn{Ln(Xn) ≥ nB − 1}.
Since this is true for any encryption function fn, the second statement fol-
lows. The attack G(· | y) given by (18) interlaces guesses in the increasing
order of the Ln that attains the minimum in minLn Pn {Ln(Xn) ≥ nB − 1}
with the exhaustive key-search strategy.

Next, let B < R and consider the encryption strategy given in the proof
of Proposition 8 with N = Md|X|n/Me (with dummy messages possibly
appended) and M = 2nR. Let GPn denote guessing in the decreasing order
of Pn-probabilities. Once again we refer to messages by their indices. For
the optimal guessing strategy Gfn , we have

Pn

{
Gfn(Xn | Y ) ≥ 2nB

}

=
N/M−1∑

j=0

M−1∑

i=2nB−1

Pn {Xn = jM + i}

≥
N/M−1∑

j=0

Pn {Xn = (j + 1)M − 1} (
M − 2nB

)

≥
N/M−1∑

j=0

M−1∑

i=0

Pn {Xn = (j + 1)M + i} M − 2nB

M

=
(

1− 2nB

M

) N−1∑

m=M

Pn {Xn = m}

≥ 1
2

N−1∑

m=M

Pn {Xn = m} ,

where the last inequality follows because B < R. (When B = R, the lower
bound is 0 and this technique does not work). Also, rather trivially,

Pn

{
Gfn(Xn | Y ) ≥ 2nB

} ≥
M−1∑

m=2nB−1

Pn {Xn = m} .

Putting these together, we get
N−1∑

m=2nB−1

Pn {Xn = m} = Pn

{
GPn(Xn) ≥ 2nB

}

≤ 3Pn

{
Gfn(Xn | Y ) ≥ 2nB

}
.
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Since {LGPn
(xn) ≥ nB + 1 + log cn} ⊆ {GPn(xn) ≥ 2nB}, we get

Pn{Gfn(Xn | Y ) ≥ 2nB}
≥ 1

3
· Pn{LGPn

(Xn) ≥ nB + 1 + log cn}

≥ 1
3
·min

Ln

Pn{Ln(Xn) ≥ nB + 1 + log cn},

and this concludes the proof.

5.2 Unifilar Sources

In this subsection, we specialize the result of Proposition 15 to unifilar
sources.

Corollary 16 For a unifilar source,

F (R, B) ∆= lim
n→∞Fn(R, B) =

{ ∞, B > R,
F (B), B < R,

where
F (B) ∆= min

Q:H(Q)≥B
D(Q ‖ P )

is the source coding error exponent for the unifilar source.

Proof: This follows straightforwardly from the remarks immediately
following Proposition 15 if we can show that limn→∞ Fn,l(B) = F (B) and
that F (B) is continuous in (0, log |X|). This was proved by Merhav in [6,
Sec. III].

We remark that the optimal attack strategy does not depend on the
source parameters. Guessing in the increasing order description lengths, in-
terlaced with the exhaustive key-search attack is an asymptotically optimal
attack. Furthermore, as is the case for guessing moments, the encryption
strategy of Merhav and Arikan [2, Th. 2] is easily verified to be an asymp-
totically optimal encryption strategy for unifilar sources when B < R.

E(R, ρ) and F (R, B) for unifilar sources are related via the Fenchel-
Legendre transform, i.e.,

E(R, ρ) = sup
B>0

[ρB − F (R, B)]

and
F (R, B) = sup

ρ>0
[ρB − E(R, ρ)] .

The proof is identical to that of [2, Th. 3] where this result is proved for
DMSs.
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5.3 Finite-State Sources

We now consider the larger class of finite state sources. The Lempel-Ziv
coding strategy [5] asymptotically achieves the entropy rate of a finite-state
source without knowledge of the source parameters. It is therefore natural
to consider its use in attacking a cipher system that attempts to securely
transmit a message put out by a finite-state source. Our next goal is to
show that guessing in the increasing order of Lempel-Ziv coding lengths has
an interesting universality property.

Let ULZ : Xn → N be the length function for the Lempel-Ziv code [5].
The following theorem due to Merhav [6] indicates that the Lempel-Ziv
algorithm is asymptotically optimal in achieving the minimum probability
of buffer overflow.

Theorem 17 (Merhav [6]) For any length function Ln, every finite-state
source Pn, every Bn ∈ (nH, n log |X|) where H is the entropy-rate of the
source Pn, and all sufficiently large n,

Pn{ULZ(Xn) ≥ Bn + nε(n)}
≤ (1 + δ(n)) · Pn{Ln(Xn) ≥ Bn} (50)

where ε(n) = Θ(1/
√

log n) is a positive sequence that depends on |X| and
|S|, and δ(n) = n22−nε(n).

Remark: Merhav’s result [6, Th. 1] assumes that Bn = nB for a constant
B ∈ (H, log |X|), but the proof is valid for any sequence Bn ∈ (nH, n log |X|).

Let GLZ be the short-hand notation for the more cumbersome GULZ
,

the guessing function associated with ULZ . Let cn be as given in (4) with
Xn replacing X. Furthermore, for the key-constrained cipher system, let
GLZ(· | y) denote the attack of guessing in the order prescribed by GLZ

interlaced with the exhaustive key-search attack. Observe that GLZ(· | y)
needs knowledge of fn.

Theorem 18 For any guessing function Gn, every finite-state source Pn,
every B ∈ (H, log |X|) where H is the entropy-rate of the source Pn, and all
sufficiently large n,

Pn

{
n−1 log GLZ(Xn) ≥ B + ε(n) + γ(n)

}

≤ (1 + δ(n)) · Pn

{
n−1 log Gn(Xn) ≥ B

}
(51)

where ε(n) and δ(n) are the sequences in (50), and γ(n) = (1 + log cn)/n =
Θ(n−1 log n).
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For the key-rate constrained cipher system, let B < R. Then for any
encryption function, we have

Pn

{
n−1 log GLZ(Xn | Y ) ≥ B + 1/n + ε(n) + γ(n)

}

≤ 3(1 + δ(n)) · sup
fn

Pn

{
n−1 log Gfn(Xn | Y ) ≥ B

}

(52)

for all sufficiently large n.

Remark: Thus the Lempel-Ziv coding strategy provides an asymptoti-
cally optimal universal attack strategy for the class of finite-state sources,
in the sense of attaining the limiting value of (48), if the limit exists.

Proof: Observe that

(1 + δ(n))Pn

{
Gn(Xn) ≥ 2nB

}

≥ (1 + δ(n))Pn {LGn(Xn) ≥ nB + 1 + log cn} (53)
≥ Pn {ULZ(Xn) ≥ nB + 1 + log cn + nε(n)} (54)

≥ Pn

{
GLZ(Xn) ≥ 2nB+nε(n)+nγ(n)

}
, (55)

where (53) follows from the first inclusion in (10), and (54) from (50). The
last inequality (55) follows from (11). This proves the first part.

To show the second part, we use Proposition 15.3 and Theorem 17 as
follows: for all sufficiently large n,

3(1 + δ(n)) sup
fn

Pn

{
Gfn(Xn | Y ) ≥ 2nB

}

≥ (1 + δ(n))Pn {Ln(Xn) ≥ nB + nγ(n)}
≥ Pn {ULZ(Xn) ≥ nB + nγ(n) + nε(n)}
≥ Pn

{
GLZ(Xn | Y ) ≥ 2nB+1+nγ(n)+nε(n)

}

where the last inequality holds for any arbitrary encryption function with
GLZ(· | y) being the interlaced attack strategy.

Observe that ε(n) + γ(n) = Θ(1/
√

log n). For unifilar sources, a result
analogous to Theorem 18 can be shown with ε(n) + γ(n) = Θ(n−1 log n).
Guessing for this class of sources proceeds in the order of increasing descrip-
tion lengths. This conclusion follows from a result analogous to Theorem 17
on the asymptotic optimality of minimum description coding (see Merhav
[6, Sec. III]).

5.4 Competitive Optimality

We now demonstrate a competitive optimality property for GLZ . From [6,
eqn. (28)] extended to finite-state sources, we have for any competing code
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Ln

Pn{ULZ(Xn) > Ln(Xn) + nε(n)}
≤ Pn{ULZ(Xn) < Ln(Xn) + nε(n)} (56)

where ε(n) = Θ((log log n)/(log n)). From (8) and (6), we get

ULZ(xn) ≥ log GLZ(xn)

and
log G(xn) ≥ LG(xn)− 1− log cn,

respectively. We therefore conclude that

{log GLZ(xn) > log G(xn) + n(ε(n) + γ(n))}
⊆ {ULZ(xn) > LG(xn) + nε(n)}

and that

{ULZ(xn) < LG(xn) + nε(n)}
⊆ {log GLZ(xn) < log G(xn) + n(ε(n) + γ(n))}.

From these two inclusions and (56), we easily deduce the following result.

Theorem 19 For any finite-state source and any competing guessing func-
tion G, we have

Pn{log GLZ(Xn) > log G(Xn) + nε′(n)}
≤ Pn{log GLZ(Xn) < log G(Xn) + nε′(n)}

where ε′(n) = ε(n) + γ(n).

For unifilar sources, the above sequence of arguments for minimum de-
scription length coding and [6, eqn. (28)] imply that we may take ε′(n) =
Θ(n−1 log n).

6 Concluding Remarks

In this report, we studied two measures of cryptographic security based on
guessing, for sources with memory. The first one was based on guessing
moments and the second on large deviations performance of the number of
guesses. We identified an asymptotically optimal encryption strategy that
orders the messages in the decreasing order of their probabilities, enumerates
them, and then encrypts as many least-significant bits as there are key bits.
We also identified an optimal attack strategy based on a length function that
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attains the optimal value for a source coding problem. Both these strategies
need knowledge of the message probabilities.

We then specialized our results to the case of unifilar sources, gave for-
mulas for computing the two measures of performance, and argued that the
optimal encryption strategy as well as the optimal attack strategy depended
on the source parameters only through the number of states and letters, i.e.,
the optimal encryption and attack strategies are universal for this class.

We also showed that an attack strategy based on the Lempel-Ziv coding
lengths is asymptotically optimal for the class of finite state sources. Fi-
nally, we provided competitive optimality results for guessing in the order
of increasing description lengths and Lempel-Ziv lengths.

We end this report with a short list of related open problems.

• Consider a modification to the encryption technique of Proposition 8
where the messages are enumerated in the increasing order of their
Lempel-Ziv lengths instead of message probabilities. Does this order-
ing lead to an asymptotically optimal encryption strategy? Such a
strategy would not depend on the specific knowledge of source param-
eters.

• It would be of interest to see if the results on guessing moments for
unifilar sources can be extended to finite-state sources.

• The large deviations behavior of guessing when B = R is not well-
understood and might be worth investigating.

• As mentioned in [2], one might wish to consider a scenario where only
a noisy version of the cryptogram is available to the attacker. The
degradation in the attacker’s performance could be quantified.
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