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ABSTRACT

The problem of guessing a random string is revisited. A close rela-
tion between guessing and compression is first established. Then it is
shown that if the sequence of distributions of the information spectrum
satisfies the large deviation property with a certain rate function, then
the limiting guessing exponent exists and is a scalar multiple of the
Legendre-Fenchel dual of the rate function. Other sufficient conditions
related to certain continuity properties of the information spectrum
are also studied. This approach highlights the importance of the infor-
mation spectrum in determining the limiting guessing exponent. All
known prior results are then re-derived as example applications of our
unifying approach. Going beyond the known examples, the existence
of the limiting guessing exponent for a source that models a general
ferromagnet with summable interactions is also established.

Keywords: guessing, length function, source coding, informa-
tion spectrum, large deviations.

1 Introduction

Let Xn = (X1, · · · , Xn) denote n letters of a process where each letter
is drawn from a finite set X with joint probability mass function (pmf)
(Pn(x

n) : xn ∈ Xn). Let xn be a realization and suppose that we wish
to guess this realization by asking questions of the form “Is Xn = xn?”,
stepping through the elements of Xn until the answer is “Yes”. We wish to
do this using the minimum expected number of guesses. There are several
applications that motivate this problem. Consider cipher systems employed
in digital television or DVDs to block unauthorized access to special features.
The ciphers used are amenable to such exhaustive guessing attacks and it is
of interest to quantify the effort needed by an attacker (Merhav & Arikan
[1]).

Massey [2] observed that the expected number of guesses is minimized
by guessing in the decreasing order of Pn-probabilities. Define the guessing
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function
G∗

n : Xn → {1, 2, · · · , |X|n}

to be one such optimal guessing order1. G∗
n(x

n) = g implies that xn is the
gth guess. Arikan [3] considered the growth of E [G∗

n(X
n)ρ] as a function of

n for an independent and identically distributed (iid) source with marginal
pmf P1 and ρ > 0. He showed that the growth is exponential in n; the
limiting exponent

E(ρ) := lim
n→∞

1

n
lnE[G∗

n(X
n)ρ] (1)

exists and equals ρHα(P1) with α = 1/(1 + ρ), where Hα(Pn) is the Rényi
entropy of order α for the pmf Pn, given by

1

1− α
ln

( ∑
xn∈Xn

Pn(x
n)α

)
, α ̸= 1. (2)

Malone & Sullivan [4] showed that the limiting exponent E(ρ) of an ir-
reducible Markov chain exists and equals the logarithm of the Perron-
Frobenius eigenvalue of a matrix formed by raising each element of the tran-
sition probability matrix to the power α. From their proof, one obtains the
more general result that the limiting exponent exists for any source if the
Rényi entropy rate of order α,

lim
n→∞

n−1Hα(Pn), (3)

exists for α = 1/(1+ρ). Pfister & Sullivan [5] showed the existence of (1) for
a class of stationary probability measures, beyond Markov measures, that
are supported on proper subshifts of XN [5]. A particular example is that of
shifts generated by finite-state machines. For such a class, they showed that
the guessing exponent has a variational characterization (see (25) later). For
unifilar sources Sundaresan [6] obtained a simplification of this variational
characterization using a direct approach and the method of types.

Merhav & Arikan remark that their proof in [7] for the limiting guess-
ing exponent is equally applicable to finding the limiting exponent of the
moment generating function of compression lengths. Moreover, the two ex-
ponents are the same. The latter is a problem studied by Campbell [8].

Our contribution is to give a large deviations perspective to these results,
shed further light on the aforementioned connection between compression
and guessing, and unify all prior results on existence of limiting guessing
exponents. Specifically, we show the following.

• If the sequence of distributions of the information spectrum

(1/n) ln(1/Pn(X
n))

1If there are several sequences with the same probability of occurrence, they may be
guessed in any order without affecting the expected number of guesses.
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(see Han [9]) satisfies the large deviation property, then the limiting
exponent exists. This is useful because several existing large devia-
tions results can be readily applied. We then show that all but one
previously considered cases in the literature (without side information
and key-rate constraints) satisfy this sufficient condition. See Exam-
ples 1-5 in section 4. The one exception is an example of Arikan &
Merhav [7, Sec. VI-B] which is addressed next.

• If the information spectrum sequence satisfies some continuity condi-
tions, subadditivity arguments or an application of Laplace’s method
as generalized by Varadhan [10, Th. 3.4] enable us to show that the
Rényi entropy rate (3) exists and therefore so does the limiting guess-
ing exponent. The exception indicated above is a source with a certain
mixing property (Arikan & Merhav [7, Sec. VI-B]). While this source’s
information spectrum sequence need not satisfy the large deviation
property, it does have a limiting exponent (for guessing and moment
generating function of compression lengths). Our argument to show
this is more direct (in comparison to [7, Sec. VI-B]) and exploits sub-
additivity. See Example 6 of section 4. This exception also serves to
shed light on the additional properties one obtains from having the
large deviation property for the information spectrum.

• We then demonstrate that the Rényi entropy rate, and therefore the
limiting exponent, exists for a family of sources represented by any
summable ferromagnetic interaction on Z [11, Ch. IV]. See Example
7 of section 4.

The large deviation theoretic ideas are already present in the works of
Pfister & Sullivan [5] and the method of types approach of Arikan & Merhav
[7]. Our work however brings out the essential ingredient (the sufficient
conditions on the information spectrum), enables us to see the previously
obtained specific results under one light, and apply them to a new class of
sources representing summable ferromagnetic interactions.

The quest for a general sufficient condition under which the information
spectrum satisfies a large deviation property is a natural line of inquiry,
and one of independent interest, in view of the Shannon-McMillan-Breiman
theorem which asserts that the information spectrum of a stationary and er-
godic source converges to the Shannon entropy almost surely and in Lq, for
all q ≥ 1; see for example [12]. In particular, the large deviation property
implies exponentially fast convergence to entropy. In the several specific
examples we consider, the information spectrum does satisfy the large devi-
ation property. One sufficient condition for the weaker property of exponen-
tially fast convergence to entropy is the so-called blowing up property. (See
Marton & Shields [13, Th. 2], or the survey article by Shields [14]). One
family of sources, that includes most of the sources we consider in this re-
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port and goes beyond, is that of finitary encodings of memoryless processes,
also called finitary processes. These are known to have the blowing-up prop-
erty, and therefore exponentially fast convergence to entropy (see Marton
& Shields [13, Th. 3]). It is an interesting open question to see if finitary
processes, or what other sources with the blowing up property, satisfy the
large deviation property.

The rest of the report is organized as follows. Section II studies the
tight relationship between guessing and compression. Section III states the
relevant large deviations results and the main sufficiency results. Section
IV re-derives prior results by showing that in each case the information
spectrum satisfies the LDP. The example of Merhav & Arikan [7, Sec. VI-
B] and the source modeling ferromagnetic interactions are also addressed.
Section V contains proofs and section VI contains some concluding remarks.

2 Guessing and Compression

In this section we relate the problem of guessing to one of source compres-
sion. An interesting conclusion is that robust source compression strategies
lead to robust guessing strategies.

For ease of exposition, let us assume that the message space is simply X.
The extension to strings of length n is straightforward and will be returned
to shortly. A guessing function

G : X → {1, 2, · · · , |X|}

is a bijection that denotes the order in which the elements of X are guessed.
If G(x) = g, then the gth guess is x. Let N denote the set of natural
numbers. A length function

L : X → N
is one that satisfies Kraft’s inequality∑

x∈X
exp2{−L(x)} ≤ 1, (4)

where we have used the notation exp2{−L(x)} = 2−L(x). To each guessing
function G, we associate a PMF QG on X and a length function LG as
follows.

Definition 1 Given a guessing function G, we say QG defined by

QG(x) = c−1 ·G(x)−1, ∀x ∈ X, (5)

is the PMF on X associated with G. The quantity c in (5) is the normaliza-
tion constant. We say LG defined by

LG(x) = ⌈− log2QG(x)⌉ , ∀x ∈ X, (6)

is the length function associated with G.
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Observe that

c =
∑
a∈X

G(a)−1 =

|X|∑
i=1

1

i
≤ 1 + ln |X|, (7)

and therefore the PMF in (5) is well-defined. We record the intimate rela-
tionship between these associated quantities in the following result. (This
is also available in the proof of [15, Th. 1, p.382]).

Proposition 1 Given a guessing function G, the associated quantities sat-
isfy

c−1 ·QG(x)
−1 = G(x) ≤ QG(x)

−1, (8)

LG(x)− 1− log2 c ≤ log2G(x) ≤ LG(x). (9)

Proof: The first equality in (8) follows from the definition in (5), and
the second inequality from the fact that c ≥ 1.

The upper bound in (9) follows from the upper bound in (8) and from
(6). The lower bound in (9) follows from

log2G(x) = log2
(
c−1 ·QG(x)

−1
)

= − log2QG(x)− log2 c

≥ (⌈− log2QG(x)⌉ − 1)− log2 c

= LG(x)− 1− log2 c.

We now associate a guessing function GL to each length function L.

Definition 2 Given a length function L, we define the associated guessing
function GL to be the one that guesses in the increasing order of L-lengths.
Messages with the same L-length are ordered using an arbitrary fixed rule,
say the lexicographical order on X. We also define the associated PMF QL

on X to be

QL(x) =
exp2{−L(x)}∑
a∈X exp2{−L(a)}

. (10)

Proposition 2 For a length function L, the associated PMF and the guess-
ing function satisfy the following:

1. GL guesses messages in the decreasing order of QL-probabilities;

2.
log2GL(x) ≤ log2QL(x)

−1 ≤ L(x). (11)
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Proof: The first statement is clear from the definition of GL and from
(10).

Letting 1{E} denote the indicator function of an event E, we have as a
consequence of statement 1) that

GL(x) ≤
∑
a∈X

1 {QL(a) ≥ QL(x)}

≤
∑
a∈X

QL(a)

QL(x)

= QL(x)
−1, (12)

which proves the left inequality in (11). This inequality was known to Wyner
[16].

The last inequality in (11) follows from (10) and Kraft’s inequality (4)
as follows:

QL(x)
−1 = exp2{L(x)} ·

∑
a∈X

exp2{−L(a)} ≤ exp2{L(x)}.

Let {L(x) ≥ B} denote the set {x ∈ X | L(x) ≥ B}. We then have the
following easy to verify corollary to Propositions 1 and 2.

Corollary 3 For a given G, its associated length function LG, and any
B ≥ 1, we have

{LG(x) ≥ B + 1 + log2 c}
⊆ {G(x) ≥ exp2{B}}
⊆ {LG(x) ≥ B} . (13)

Analogously, for a given L, its associated guessing function GL, and any
B ≥ 1, we have

{GL(x) ≥ exp2{B}} ⊆ {L(x) ≥ B}. (14)

The inequalities between the associates in (9) and (11) indicate the direct
relationship between guessing moments and Campbell’s coding problem [8],
and that the Rényi entropies are the optimal growth exponents for guessing
moments, as highlighted in the following Proposition.

Proposition 4 Let L be any length function on X, GL the guessing function
associated with L, P a PMF on X, ρ ∈ (0,∞), L∗ the length function that
minimizes E [exp2{ρL∗(X)}], where the expectation is with respect to P , G∗

the guessing function that proceeds in the decreasing order of P -probabilities
and therefore the one that minimizes E [G∗(X)ρ], and c as in (7). Then

E [GL(X)ρ]

E [G∗(X)ρ]
≤ E [exp2{ρL(X)}]

E [exp2{ρL∗(X)}]
· exp2{ρ(1 + log2 c)}. (15)
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Analogously, let G be any guessing function, and LG its associated length
function. Then

E [G(X)ρ]

E [G∗(X)ρ]
≥ E [exp2{ρLG(X)}]

E [exp2{ρL∗(X)}]
· exp2{−ρ(1 + log2 c)}. (16)

Also, ∣∣∣∣1ρ log2 E [G∗(X)ρ]− 1

ρ
log2 E [exp2{ρL∗(X)}]

∣∣∣∣ ≤ 1 + log2 c. (17)

Proof: Observe that

E [exp2{ρL(X)}]
≥ E [GL(X)ρ] (18)

≥ E [G∗(X)ρ]

≥ E [exp2{ρLG∗(X)}] exp2{−ρ(1 + log2 c)} (19)

≥ E [exp2{ρL∗(X)}] exp2{−ρ(1 + log2 c)}, (20)

where (18) follows from (11), and (19) from the left inequality in (9). The
result in (15) immediately follows. A similar argument shows (16). Finally,
(17) follows from the inequalities leading to (20) by setting L = L∗.

Thus if we have a length function whose performance is close to opti-
mal, then its associated guessing function is close to guessing optimal. The
converse is true as well. Moreover, the optimal guessing exponent is within
1 + log2 c of the optimal coding exponent for the length function.

2.1 Strings of length n

Let us now consider strings of length n. Let Xn denote the set of messages
and consider n → ∞. Let M(Xn) denote the set of pmfs on Xn. By a
source, we mean a sequence of pmfs (Pn : n ∈ N), where Pn ∈ M(Xn). We
replace the normalization constant c in (7) by cn and observe that

cn ≤ 1 + n ln |X|.

If we normalize both sides of equation (17) by n, the difference between
two quantities as a function of n decays as O((log2 n)/n), and vanishes as n
tends to infinity. The following theorem follows immediately, with a change
of base to natural logarithms.

Theorem 5 Given ρ > 0, the limit

lim
n→∞

n−1 lnE[G∗
n(X

n)ρ]

exists if and only if the limit

lim
n→∞

inf
Ln

n−1 lnE[exp2{ρLn(X
n)}]

exists. Furthermore, the two limits are equal.
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It is therefore sufficient to restrict our attention to the Campbell’s coding
problem [8] and study if the limit

lim
n→∞

inf
Ln

1

n
lnE[exp{(ρ ln 2)Ln(X

n)}] (21)

exists, where the infimum is taken over all length functions Ln : Xn → N
and exponentiation is with respect to the base of the natural logarithm.

2.2 Universality

Before we proceed to studying the limit, we make a further remark on the
connection between universal strategies for guessing and universal strategies
for compression.

Let T denote a class of sources. For each source in the class, let Pn be
its restriction to strings of length n and let L∗

n denote an optimal length
function that attains the minimum value E [exp{(ρ ln 2)L∗

n(X
n)}] among all

length functions, the expectation being with respect to Pn. On the other
hand, let Ln be a sequence of length functions for the class of sources that
does not depend on the actual source within the class. Suppose further that
the length sequence Ln is asymptotically optimal, i.e.,

lim
n→∞

1

nρ
lnE [exp{(ρ ln 2)Ln(X

n)}]

= lim
n→∞

1

nρ
lnE [exp{(ρ ln 2)L∗

n(X
n)}] ,

for every source belonging to the class. Ln is thus “univeral” for (i.e., asymp-
totically optimal for all sources in) the class. An application of (15) with cn
in place of c followed by the observation (1+ log2 cn)/n → 0 shows that the
sequence of guessing strategies GLn is asymptotically optimal for the class,
i.e.,

lim
n→∞

1

nρ
lnE [GLn(X

n)ρ]

= lim
n→∞

1

nρ
lnE [G∗(Xn)ρ] .

Arikan and Merhav [7] provide a universal guessing strategy for the class
of discrete memoryless sources (DMS). For the class of unifilar sources with a
known number of states, the minimum description length encoding is asymp-
totically optimal for Campbell’s coding length problem (see Merhav [17]).
It follows as a consequence of the above argument that guessing in the in-
creasing order of description lengths is asymptotically optimal. The left
side of (15) is the extra factor in the expected number of guesses (relative to
the optimal value) due to lack of knowledge of the specific source in class.
Sundaresan [18] characterized this loss as a function of the uncertainty class.
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3 Large Deviation Results

We begin with some words on notation. Recall that M(Xn) denotes the set
of pmfs on Xn. The Shannon entropy for a Pn ∈ M(Xn) is

H(Pn) = −
∑

xn∈Xn

Pn(x
n) lnPn(x

n)

and the Rényi entropy of order α ̸= 1 is (2). The Kullback-Leibler divergence
or relative entropy between two pmfs Qn and Pn is

D(Qn ∥ Pn) =


∑

xn∈Xn

Qn(x
n) ln

Qn(x
n)

Pn(xn)
, if Qn ≪ Pn,

∞, otherwise,

where Qn ≪ Pn means Qn is absolutely continuous with respect to Pn.
Recall that a source is a sequence of pmfs (Pn : n ∈ N) where Pn ∈ M(Xn).
It is usually obtained via n-length marginals of some probability measure in
M(XN). Also recall the definitions of limiting guessing exponent in (1) and
Rényi entropy rate in (3) when the limits exist. G∗

n is an optimal guessing
function for a pmf Pn ∈ M(Xn). From the results in Section 2 on the
equivalence between guessing and compression, it is sufficient to focus on
the Campbell coding problem.

Our first contribution is a proof of the following implicit result of Malone
& Sullivan [4]. The proof is given in Section 5.1.

Proposition 6 Let ρ > 0. For a source (Pn : n ∈ N), E(ρ) exists if and
only if the Rényi entropy rate (3) exists. Furthermore, E(ρ)/ρ equals the
Rényi entropy rate.

The question now boils down to the existence of the limit in the definition
of Rényi entropy rate. The theory of large deviations immediately yields a
sufficient condition. We begin with a definition.

Definition 3 (Large deviation property) [11, Def. II.3.1] A sequence
(νn : n ∈ N) of probability measures on R satisfies the large deviation prop-
erty (LDP) with rate function I : R → [0,∞] if the following conditions
hold:

• I is lower semicontinuous on R;

• I has compact level sets;

• lim supn→∞ n−1 ln νn{K} ≤ − inft∈K I(t) for each closed subset K of
R;
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• lim infn→∞ n−1 ln νn{G} ≥ − inft∈G I(t) for each open set G of R.

Several commonly encountered sources satisfy the LDP with known and
well-studied rate functions. We describe some of these in the examples
treated subsequently.

Let νn denote the distribution of the information spectrum given by
the real-valued random variable −n−1 lnPn(X

n). The following proposition
gives a sufficient condition for the existence of the limiting Rényi entropy
rate (and therefore the limiting guessing exponent).

Proposition 7 Let the sequence of distributions (νn : n ∈ N) of the infor-
mation spectrum satisfy the LDP with rate function I. Then the limiting
Rényi entropy rate of order 1/(1 + ρ) exists for all ρ > 0 and equals

β−1 sup
t∈R

{βt− I(t)},

where β = ρ/(1 + ρ). Consequently, the limiting guessing exponent exists
and equals

(1 + ρ) sup
t∈R

{βt− I(t)}.

The function I∗(β) := supt∈R {βt−I(t)} is the Legendre-Fenchel dual of
the rate function I. Proposition 7 says that, under the sufficient condition,
the limiting guessing exponent equals (1+ρ)I∗(ρ/(1+ρ)), a direct relation to
the large deviations rate function for information spectrum. This is however
different from Merhav & Arikan’s [7, Th. 2] for memoryless sources which
states that the limiting guessing exponent is the Legendre-Fenchel dual of
the source coding error exponent function. We refer the reader to Merhav
and Arikan [7, Sec. IV] for further interesting connections between source
coding error exponent, guessing exponent, and two other exponents related
to lossy source coding.

Let us briefly discuss another approach to verify the existence of Rényi
entropy rate (see Proposition 6). With α = 1/(1 + ρ), we can rewrite 1− α
times the Rényi entropy rate in (3) as

(1− α) lim
n→∞

n−1Hα(Pn)

= lim
n→∞

n−1 ln
∑

xn∈Xn

exp {−nαFn(x
n)}Un(x

n), (22)

where
Fn(x

n) :=
(
−n−1 lnPn(x

n)− (ln |X|)/α
)
,

and U is the iid process on XN with uniform marginal on X. One can then
view α ∈ (0, 1) as the inverse temperature (when ρ > 0) of a statistical
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mechanical system, Fn(x
n) as the energy of the configuration xn, and the

right side of (22) as a scaled version of (i.e., α times) the specific Gibbs
free energy of the corresponding statistical mechanical system, if the limit
exists. This view point is particularly useful because the iid process U
satisfies a sample path large deviation property. If the information spectrum
sequence satisfies the continuity conditions in Varadhan [10, Th. 3.4], then
the limiting specific Gibbs free energy exists, and so does the Rényi entropy
rate. We illustrate a similar approach in Example 7 in section 4.

3.1 Additional results from Large Deviations Theory

In order to study the examples in Section 4, we state some additional results
on LDP of transformed variables. (See [19, Sec. 4.2]), [20, Th. 6.12 and
6.14]).

Proposition 8 (Contraction Principle) Let (ξn : n ∈ N) denote a se-
quence of X -valued random variables where X is a complete separable metric
space (Polish space). Let νn denote the distribution of ξn for n ∈ N, and let
the sequence of distributions (νn : n ∈ N) on X satisfy the LDP with rate
function I : X → [0,∞]. Let ϕ : X → R be a continuous function. The
sequence of distributions of (ϕ(ξn) : n ∈ N) on R also satisfies the LDP with
rate function J : R → [0,∞] given by

J(y) = inf{I(x) : x ∈ R, ϕ(x) = y}.

Proposition 9 (Exponential Approximation) Suppose that the sequence
of distributions of (ξn : n ∈ N) satisfies the LDP with rate function I on R.
Assume also that the sequence of random variables (ζn : n ∈ N) is superex-
ponentially close to (ξn : n ∈ N) in the following sense: for each δ > 0

lim sup
n→∞

1

n
ln Pr{|ξn − ζn| > δ} = −∞. (23)

Then the sequence of distributions of (ζn : n ∈ N) also satisfies the LDP on
R with the same rate function I. The condition in (23) is satisfied if

lim
n→∞

sup
ω∈Ω

|ξn(ω)− ζn(ω)| = 0, (24)

where Ω is the underlying sample space.

4 Examples

We are now ready to apply Proposition 7 and related techniques to various
examples. In first five examples that follow, our goal is to show that the
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sufficient condition for the existence of the limiting guessing exponent holds,
i.e., that the sequence of distributions of the information spectrum satisfies
the LDP. In the last two examples, we show that the limiting Rényi entropy
rate exists using more general approaches.

4.1 LDP for information spectrum

Example 1 (An iid source) This example was first studied by Arikan [3].
Recall that an iid source is one for which Pn(x

n) =
∏n

i=1 P1(xi), where P1

is the marginal of X1. It is then clear that the information spectrum can be
written as a sample mean of iid random variables

−n−1 lnPn(X
n) = −n−1

n∑
i=1

lnP1(Xi).

It is well-known that the sequence (νn : n ∈ N) of distributions of this sample
mean satisfies the LDP with rate function given by the Legendre-Fenchel dual
of the cumulant of the random variable − lnP1(X1) (see for example [11, Th.
II.4.1] or [9, eqn. (1.9.66-67)]):

lnE
[
exp

{
β(− lnP1(X1))

}]
= ln

(∑
x∈X

P1(x)
α

)
= (1− α)Hα(P1).

The Legendre-Fenchel dual of the rate function is therefore the cumulant
itself ([11, Th. VI.4.1.e]). An application of Proposition 7 yields that (1+ρ)
times this cumulant, given by ρHα(P1), is the guessing exponent. We thus
recover Arikan’s result [3].

The rate function I can also be obtained using the contraction principle
(Proposition 8) as follows. This method will provide a recipe to obtain the
limiting guessing exponent in subsequent examples. Consider a mapping that
takes xn to its empirical pmf in M(X). Empirical pmf is then a random
variable. The distribution of Xn induces a pmf on M(X). It is well-known
that the sequence of distributions of these empirical pmfs, indexed by n,

satisfies the level-2 LDP2 with rate function I
(2)
P1

(·) = D(· ∥ P1). See for
example [11, Th II.4.3]. Observe that the mapping from the empirical pmf to
the information spectrum random variable is continuous. We can therefore

use the contraction principle to get a formula for I in terms of I
(2)
P1

(·) as
follows [11, Th II.5.1]. For any t in R, let

θ(t) :=
{
Q ∈ M(X) :

∑
x∈X

Q(x) ln
1

P1(x)
= t
}
,

2Level-1 refers to sequence of distributions (indexed by n) of sample means, level-2
refers to sample histograms, and level-3 to sample paths.
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i.e.,

θ(t) =
{
Q ∈ M(X) : H(Q) +D(Q ∥ P1) = t

}
.

Then
I(t) = inf{I(2)P1

(Q) : Q ∈ θ(t)}.

Using this, we can write

I∗(β) = sup
t∈R

{
βt− inf

Q∈θ(t)
D(Q ∥ P1)

}
= sup

t∈R
sup

Q∈θ(t)

{
βt−D(Q ∥ P1)

}
= sup

Q∈M(X)

{
β(H(Q) +D(Q ∥ P1))−D(Q ∥ P1)

}
= (1 + ρ)−1 sup

Q∈M(X)

{
ρH(Q)−D(Q ∥ P1)

}
,

thus yielding

E(ρ) = sup
Q∈M(X)

{
ρH(Q)−D(Q ∥ P1)

}
. (25)

This formula extends to more general sources, as is seen in the next few
examples.

Example 2 (Markov source) This example was studied by Malone & Sul-
livan [4]. Consider an irreducible Markov chain taking values on X with
transition probability matrix π. Our goal is to verify that the sufficient con-
dition holds and to calculate E(ρ) defined by (1) for this source.

Let Ms(X2) denote the set of stationary pmfs defined by

Ms

(
X2
)
=
{
Q ∈ M

(
X2
)
:∑

x1∈X
Q(x1, x) =

∑
x2∈X

Q(x, x2)∀x ∈ X
}
.

Denote the common marginal by q and let

η(· | x1) :=
{

Q(x1, ·)/q(x1), if q(x1) ̸= 0,
1/|X|, otherwize.

We may then denote Q = q× η, where q is the distribution of X1 and η the
conditional distribution of X2 given X1. It is once again well known that the
empirical pmf random variable satisfies the level-2 LDP with rate function

I
(2)
π (Q), given by [21]

I(2)π (Q) = D(η ∥ π | q)
:=

∑
x1∈X

q(x1)D(η(· | x1) ∥ π(· | x1)).
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As in Example 1, the contraction principle then yields that the sequence of
distributions of information spectrum satisfies the LDP with rate function I
given by

I(t) = inf{I(2)π (Q) : Q ∈ θ(t)}.

where for t in R, θ(t) ⊂ Ms(X2) is defined by

θ(t) =

{
Q ∈ Ms(X2) :

∑
x1,x2

Q(x1, x2) ln
1

π(x2|x1)
= t

}
.

By Proposition 6, the limiting guessing exponent exists. Perron-Frobenius
theory (Seneta [22, Ch. 1], see also [23, pp.60-61]) yields the cumulant
directly as lnλ(β), where λ(β) is unique largest eigenvalue (Perron-Frobenius
eigenvalue) of a matrix formed by raising each element of π to the power α.
(Recall that α = 1/(1+ ρ) and β = ρ/(1+ ρ)). Thus E(ρ) = (1+ ρ) lnλ(β),
and we recover the result of Malone & Sullivan [4]. It is useful to note that
the steps that led to (25) hold in the Markov case (with appropriate changes
to entropy and divergence terms) and we may write

E(ρ) = sup
Q∈Ms(X2)

{
ρH(η | q)−D(η ∥ π | q)

}
, (26)

where H(η | q) is the conditional entropy of X2 given X1 under the joint
distribution Q, i.e.,

H(η | q) := −
∑
x∈X

q(x)H(η(· | x)).

Example 3 (Unifilar source) This example was studied by Sundaresan in
[6]. A unifilar source is a generalization of the Markov source in Example
2. Let X denote the alphabet set as before. In addition, let S denote a set of
finite states. Fix an initial state s0 and let the joint probability of observing
(xn, sn) be

Pn(x
n, sn) =

n∏
i=1

π(xi, si | si−1)

where π(xi, si | si−1) is the joint probability of (xi, si) given the previous
state si−1. The dependence of Pn on s0 is understood. Furthermore, assume
that π(xi, si | si−1) is such that si = ϕ(si−1, xi), where ϕ is a deterministic
function that is one-to-one for each fixed si−1. Such a source is called a
unifilar source.

PS,X(si−1, xi) and ϕ completely specify the process: the initial state S0

is random with distribution that of marginal of S in PS,X , the rest being
specified by PX|S(xi | si−1) and ϕ. Example 2 is a unifilar source with S = X,
ϕ(si−1, xi) = xi, and PS,X = q × π where q is the stationary distribution of
the Markov chain.

14



Let Ms(S×X) denote the set of joint measures on the indicated space so
that the resulting process (Sn : n ≥ 0) is a stationary and irreducible Markov
chain. Let a Q ∈ Ms(S× X) be written as Q = q × η. For any t in R, let

θ(t) :=

Q ∈ Ms(S× X) :
∑
(s,x)

Q(s, x) ln
1

π(x | s)
= t

 .

Then the sequence of distributions of information spectrum −n−1 lnPn(X
n)

satisfies the LDP ([9, eqn. (1.9.30)]) with rate function given (once again
via contraction principle) by

I(t) = inf{D(η ∥ π | q) : Q ∈ θ(t)}.

The limiting exponent therefore exists. Following the same procedure that
led to (25) in the iid case and (26) for a Markov source, we get

E(ρ) = sup
Q∈Ms(S×X)

{
ρH(η | q)−D(η ∥ π | q)

}
, (27)

where H(η | q) and D(η ∥ π | q) are analogously defined, and the result of
Sundaresan [6] is recovered.

Example 4 (A class of stationary sources) Pfister & Sullivan [5] con-
sidered a class of stationary sources with distribution P ∈ M

(
XN) that

satisfies two hypotheses H1 and H2 of [5, Sec. II-B], which we will now
describe.

Let MP (XN) denote the set of sources that satisfy Qn ≪ Pn for all
n ∈ N, where Pn and Qn are restrictions of P and Q to n letters. Note that
it may be possible that a Q ∈ MP (XN) is not absolutely continuous with
respect to P . Also, let MP

s (XN) ⊂ MP (XN) denote the subset of stationary
sources with respect to the shift operator τ : XN → XN defined by

(τ(x))i = xi+1,∀i ∈ N.

Hypothesis H1 of Pfister & Sullivan [5] assumes that for any neighborhood
of a stationary source Q ∈ MP

s (XN) and any ε > 0, there exists an ergodic
Q′ ∈ MP

s (XN) in that neighborhood such that H(Q′) ≥ H(Q) − ε, where
H(Q) is the Shannon entropy rate of source Q. Their hypothesis H2 is
given by (30) below.

Under these hypotheses, Pfister & Sullivan [5] proved that E(ρ) exists,
and provided a variational characterization analogous to (27), i.e.,

E(ρ) = sup
Q∈MP

s (XN)

{
ρH(Q)−D(Q ∥ P )

}
, (28)

where

D(Q ∥ P ) = lim
n→∞

n−1
∑
xn

Qn(x
n) ln

Qn(x
n)

Pn(xn)
.
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En route to this result, Pfister & Sullivan [5] showed that the sequence
of distributions of the empirical process satisfies the level-3 LDP for sample
paths. We first state this precisely, and then use this as the starting point
to show the sufficient condition that the information spectrum satisfies the
LDP.

For an x ∈ XN given by x = (x1, x2, · · · ), we define xn = (x1, · · · , xn)
as the first n components of x in the usual way. Consider a stationary
source P whose letters are X = (X1, X2, · · · ). Define the empirical process
of measures

Tn(X, ·) = n−1
n−1∑
i=0

δτ i(X)(·).

This is a measure on XN that puts mass 1/n on the following strings:
x, τ(x), τ2(x), · · · , τn−1(x). Pfister & Sullivan showed that the distributions
of the M(XN)-valued process Tn(X, ·) satisfies the level-3 LDP with rate

function I
(3)
P (·) = D(· ∥ P ) under hypotheses H1 and H2 of their paper ([5,

Prop. 2.2-2.3]). Furthermore,

D(Q ∥ P ) = +∞, Q /∈ MP
s (XN), (29)

so that we may restrict D(· ∥ P ) to MP
s (XN). We next use this to show that

the information spectrum satisfies the LDP.
Hypothesis H2 of Pfister & Sullivan assumes the existence of a continu-

ous mapping eP : XN → R satisfying

lim
n→∞

sup
x∈ΣP

n

∣∣∣∣n−1 lnPn(x
n) +

∫
XN

eP dTn(x, ·)
∣∣∣∣ = 0, (30)

where ΣP
n = {x ∈ XN : Pn(x

n) > 0}.
By the compactness of XN, eP is uniformly continuous. Under the weak

topology on the complete separable metric space M(XN), the mapping

ϕ : M(XN) → R

defined by Q 7→
∫
XN eP dQ is a continuous mapping. Hence by the contrac-

tion principle, by setting X = M(XN) we get that the sequence of distribu-
tions of (ϕ(Tn(X, ·) : n ∈ N) satisfies the LDP with rate function I given
by

I(t) = inf
{
D(Q ∥ P ) : Q ∈ MP

s (XN), ϕ(Q) = t
}
,

where the restriction of the infimum to MP
s (XN) follows from (29). Fur-

thermore, given hypothesis H2 and (30), an application of the exponential
approximation principle (Proposition 9) indicates that the sequence of dis-
tributions of the information spectrum too satisfies the LDP with the same
rate function I, and we have verified that the sufficient condition holds.
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What remains is to calculate this rate function. For this, we return to
Pfister & Sullivan’s work and use D(Q ∥ P ) = ϕ(Q)−H(Q) [5, Prop. 2.1]
to write

I(t) = inf
Q∈MP

s

{
D(Q ∥ P ) : H(Q) +D(Q ∥ P ) = t

}
.

Finally, the Legendre-Fenchel dual of the rate function is computed as in
the steps leading to (25)-(27), yielding (28).

Example 5 (Mixed source) Consider a mixture of two iid sources with
letters from X. We may write

Pn(x
n) = λ

n∏
i=1

R(xi) + (1− λ)
n∏

i=1

S(xi)

where λ ∈ (0, 1) with R,S ∈ M(X) the two marginal pmfs that define the
iid components of the mixture. It is easy to see that the guessing exponent
is the maximum of the guessing exponents for the two component sources.
We next verify this using Proposition 7.

The sequence of distributions of the information spectrum satisfies the
LDP with rate function given as follows (see Han [9, eqn. (1.9.41)]). Define

θ1 =
{
Q ∈ M(X) : D(Q ∥ S)−D(Q ∥ R) ≥ 0

}
,

θ2 =
{
Q ∈ M(X) : D(Q ∥ S)−D(Q ∥ R) ≤ 0

}
,

and for t ∈ R

At = θ1 ∩
{
Q ∈ M(X) : H(Q) +D(Q ∥ R) = t

}
Bt = θ2 ∩

{
Q ∈ M(X) : H(Q) +D(Q ∥ S) = t

}
.

The rate function (via the contraction principle) is given by

I(t) = min

{
inf

Q∈At

D(Q ∥ R), inf
Q∈Bt

D(Q ∥ S)

}
.

From Proposition 7 we conclude that the limiting guessing exponent exists.
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I∗(β) is then

sup
t∈R

{
βt−min

{
inf

Q∈At

D(Q ∥ R), inf
Q∈Bt

D(Q ∥ S)
}}

= max

{
sup
t∈R

sup
Q∈At

{
βt−D(Q ∥ R)

}
,

sup
t∈R

sup
Q∈Bt

{
βt−D(Q ∥ S)

}}
= max

{
sup
Q∈θ1

{
βH(Q)− (1− β)D(Q ∥ R)

}
,

sup
Q∈θ2

{
βH(Q)− (1− β)D(Q ∥ S)

}}
= (1 + ρ)−1max

{
sup
Q

{
ρH(Q)−D(Q ∥ R)

}
,

sup
Q

{
ρH(Q)−D(Q ∥ S)

}}
= (1 + ρ)−1max

{
ρHα(R), ρHα(S)

}
,

yielding

E(ρ) = max
{
ρHα(R), ρHα(S)

}
.

4.2 Other approaches

Thus far, we considered examples where we could verify the sufficient con-
dition that the information spectrum satisfies the LDP. In the next two
examples, we directly address the existence of the Rényi entropy rate.

Example 6 (Sources with a certain mixing property) Arikan & Mer-
hav [7] considered a stationary source with memory satisfying the following
property: there is a finite and positive B such that for all m, n, um ∈ Xm

and vn ∈ Xn, the following condition holds:∣∣∣∣ln Pm+n((u
m, vn))

Pm(um)
− lnPn(v

n)

∣∣∣∣ ≤ B,

where (um, vn) is a concatenation of the two strings. This condition is equiv-
alent to

−B ≤ lnPm+n((u
m, vn))− lnPm(um)Pn(v

n) ≤ B. (31)

They considered a more general setting of guessing subject to distortion.
Under the assumption in (31), and when specialized to the guessing without
distortion setting, they show that the limiting exponent exists and equals

lim
n

n−1 max
Qn∈M(Xn)

[ρH(Qn)−D(Qn ∥ Pn)] .
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We re-derive this result using subadditivity, and further explore the relation-
ship between the sufficient condition (31) and the rather stringent sufficient
condition of an LDP for information spectrum.

It is a simple matter to verify, on account of only the upper bound in-
equality in (31) and stationarity, that

ln

(∑
xm+n

Pm+n(x
m+n)α

)

≤ ln

(∑
xm

Pm(xm)α

)
+ ln

(∑
xn

Pn(x
n)α

)
+ αB

when α ∈ (0, 1), so that the Rényi entropy of order α (see (2)) plus a
constant is subadditive for α ∈ (0, 1), i.e.,

Hα(Pm+n) +
αB

1− α

≤
(
Hα(Pm) +

αB

1− α

)
+

(
Hα(Pn) +

αB

1− α

)
.

This subadditivity, the fact that Hα(Pn) ≤ ln |X|n < ∞, and the fact that

lim
n

n−1 αB

1− α
= 0

imply that the Rényi entropy rate of order α exists [19, Lem. 6.1.11], and

lim
n→∞

n−1Hα(Pn)

= inf
n≥1

n−1Hα(Pn)

= inf
n≥1

n−1 sup
Qn

{ρH(Qn)−D(Qn ∥ Pn)} ,

where the last equality comes from the well-known variational characteriza-
tion of Rényi entropy with α = 1/(1 + ρ) (see also (44) that comes later).
As we have used only the upper bound inequality in (31), this is a modest
sharpening of Arikan & Merhav’s result.

To understand the more demanding sufficient condition that an LDP
for information spectrum exists, we begin with normalized cumulant of the
information spectrum:

cn(β) := n−1 lnE [exp {−β lnPn(X
n)}]

= n−1 ln

 ∑
xn∈ Support(Pn)

Pn(x
n)1−β

 .

Clearly, cn(β) is a finite sum over the support set of Pn and is therefore
finite for all β ∈ R. Moreover, on account of both the upper bound and the
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lower bound inequalities in (31), ncn(β) + |1 − β|B is subadditive for each
β ∈ R, and therefore the following limit exists:

c(β) := lim
n→∞

cn(β) = inf
n≥1

cn(β) < ∞.

The natural candidate for the rate function for information spectrum is then
the Legendre-Fenchel transform

I(t) := sup
β∈R

{βt− c(β)} .

An application of [11, Th. II.6.1] shows that I is convex, lower semicontin-
uous on R, nonnegative, has compact level sets, and satisfies inft∈R I(t) = 0.
It also satisfies the upper large deviation bound (see Definition 3). However,
for the lower large deviation bound to hold, and therefore for the information
spectrum to have an LDP, a sufficient condition is that c(β) be differentiable
for all β ∈ R, which may not hold.

Even the considerably weaker condition that I(t) attains its infimum at
the unique point H, the Shannon entropy rate, may not hold. This weaker
condition is equivalent to c(β) being differentiable at β = 0 with derivative
H. While limn→∞ c′n(0) equals H for the stationary source, a sufficient
condition for the validity of the interchange of differentiation at β = 0 and
the limit over n is uniform convergence of the sequence of functions

c′n(β) = −n−1

∑
xn∈ Support(Pn)

Pn(x
n)1−β lnPn(x

n)∑
an∈ Support(Pn)

Pn(an)1−β

over a closed interval of β that contains 0; even this may not hold. Under
the assumptions of this section, differentiability of c(β) at β = 0 is also
equivalent to exponentially fast convergence of n−1 lnPn(X

n) to H, which
is further equivalent to strict convexity of c(β); see [11, Th. II.6.3 and Th.
VII.2.1]. While we do not yet have explicit counterexamples, we anticipate
that these need not hold in general.

Example 7 (Summable ferromagnetic interaction on Z) With X =
{−1, 1}, we now consider two-sided stationary sources on (XZ,B(XZ))3 that
are models for ferromagnetic interactions. The value 1 corresponds to spin
in a particular direction and −1 to spin in the opposite direction. As before,
we let M(XZ) and Ms(XZ) represent the set of probability measures and the
subset of stationary probability measures, respectively, on B(XZ). Let the
interaction strengths be specified by a symmetric function J : Z → R+ which

3The σ-algebra B(XZ) is the one generated by cylinder sets of XZ.
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satisfies J(i− j) = J(j − i) for each i and j in Z. We shall assume that J
is summable: ∑

k∈Z
J(k) < ∞.

Let
Λn = {−n,−n+ 1, · · · ,−1, 0, 1, · · · , n− 1, n}.

Fix a boundary configuration x̃ ∈ XΛc
n outside Λn. Two special boundary

conditions denoted 0̃ and 1̃ shall be made up of all zeros or all ones, respec-
tively, on XΛc

n. Let us define the Hamiltonian or interaction energy of a
configuration x ∈ Λn with boundary condition x̃ as

Hn,x̃(x) = −1

2

∑
i,j∈Λn

J(i− j)xixj

−
∑
i∈Λn

∑
j∈Λc

n

J(i− j)x̃j

xi.

Let us also define the interaction energy ignoring the boundary effect by

Hn(x) = −1

2

∑
i,j∈Λn

J(i− j)xixj .

Fix a temperature T > 0. Our focus shall be on infinite volume Gibbs states,
i.e., stationary probability measures P T on (XZ,B(XZ)) at temperature T .
These are such that the conditional probability of x ∈ XΛn given a boundary
condition x̃ ∈ XΛc

n satisfies

P T
{
X = x | X̃ = x̃ on Λc

n

}
=

exp{−(1/T )Hn,x̃(x)}
Z(n, T, x̃)

(32)

where Z(n, T, x̃) is the normalization constant or partition function:

Z(n, T, x̃) =
∑

x∈XΛn

exp {−(1/T )Hn,x̃(x)} . (33)

For the validity of (32) for a given P T , we refer the reader to Ellis [11, Ch.
IV] or Liggett [24, Ch. IV]. There may be several different P T having the
same conditional distribution given a boundary condition, i.e., the right-hand
side of (32). This phenomenon of multiplicity (first-order phase transition)
will not concern us because we shall work with a given P T . Let P T

Λn
be the

restriction of P T to the set Λn; this plays the role of Pn in earlier examples.
We shall use the notation

P T
Λn

(x | x̃) = P T
{
X = x | X̃ = x̃ on Λc

n

}

21



for the conditional measures given the boundary condition. Clearly, P T
Λn

(·)
is a convex combination of the conditional measures{

P T
{
X = · | X̃ = x̃ on Λc

n

}
: x̃ ∈ XΛc

n

}
.

We will also have occasion to use the probability measure on the finite set
Λn defined by

P
T
Λn

(x) =
exp{−(1/T )Hn(x)}

Z(n, T )
,

where Z(n, T ) is the corresponding normalization constant or partition func-
tion.

By stationarity, existence of the Rényi entropy rate for P T is equivalent
to existence of the limit

lim
n→∞

|Λn|−1 ln
∑

x∈XΛn

(
P T
Λn

(x)
)α

. (34)

Liggett [24, Cor. 1.30] shows that there is a certain stochastic ordering
among P T

Λn
(· | 0̃), P T

Λn
(·), and P T

Λn
(· | 1̃). In particular, we have

P T
Λn

(x | 0̃) ≤ P T
Λn

(x) ≤ P T
Λn

(x | 1̃) ∀n ≥ 0, ∀x ∈ XΛn ,

and therefore the existence of the limit in (34) follows from the claim that

lim
n→∞

|Λn|−1 ln
∑

x∈XΛn

(
P T
Λn

(x | x̃)
)α

(35)

exists and is independent of the choice of x̃.
To establish this last claim and provide a variational characterization of

the value in (35), observe that

lim
n→∞

|Λn|−1 ln
∑

x∈XΛn

(
P T
Λn

(x | x̃)
)α

= lim
n→∞

|Λn|−1 ln
∑

x∈XΛn

exp{−(α/T )Hn,x̃}
Z(n, T, x̃)α

(36)

= lim
n→∞

|Λn|−1 [lnZ(n, T/α, x̃)− α lnZ(n, T, x̃)] (37)

= lim
n→∞

|Λn|−1
[
lnZ(n, T/α)− α lnZ(n, T )

]
(38)

= sup
Q∈Ms(XZ)

{
α

2T

∑
k

J(k)EQ[X0Xk]−D(Q ∥ U)

}

− α sup
Q∈Ms(XZ)

{
1

2T

∑
k

J(k)EQ[X0Xk]−D(Q ∥ U)

}
,

(39)
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where (36) follows after substitution of (32) in (35), (37) follows from the
definition in (33), (38) follows from an application of [11, Lem. IV.6.2] to
each term in the expression thus yielding a limit that does not depend on
x̃, and finally, (39) follows from the variational characterizations [11, Th.
IV.7.3(a)] of limiting specific Gibbs free energy at two temperatures T/α and
T . The quantity D(· ∥ U) is the level-3 large deviation rate function for the
iid process U . Both suprema in (39) are attained at stationary Gibbs states
of the corresponding temperatures. The limiting guessing exponent is then
(1+ρ) times the right-hand side of (39). This proves the claim that the limit
in (35) exists, and thus the Rényi entropy rate exists.

To contrast the approach of this last example with those of earlier exam-
ples, we remark that we did not take the route of showing that the informa-
tion spectrum satisfies a large deviation property. But instead, we exploited
the fact that the iid process U satisfies a level-3 large deviation property and
that the information spectrum satisfies certain continuity conditions, a fact
that is exploited in the proof of [11, Th.IV.7.3(a)]. Varadhan’s [10, Th. 3.4]
provides a more general sufficient condition that can be applied to establish
existence of the Rényi entropy rate for other sources.

5 Proofs

We now prove Propositions 6 and 7.

5.1 Proof of Proposition 6

From Theorem 5 it is sufficient to show that the limit in (21) for Campbell’s
coding problem exists if and only if the Rényi entropy rate exists, with the
former ρ times the latter.

Fix n. In the rest of the proof, we use the notation EPn [·] for expectation
with respect to distribution Pn. The length function can be thought of as
a bounded (continuous) function from Xn to R and therefore our interest
is in the logarithm of its moment generating function of ρ, the cumulant.
The cumulant associated with a bounded continuous function (here Ln) has
a variational characterization [25, Prop. 1.4.2] as the following Legendre-
Fenchel dual of the Kullback-Leibler divergence, i.e.,

lnEPn

[
exp{(ρ ln 2)Ln(X

n)}
]

= sup
Qn∈M(Xn)

{
(ρ ln 2)EQn [Ln(X

n)]−D(Qn ∥ Pn)
}
. (40)

Taking infimum on both sides over all length functions, we arrive at the
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following chain of inequalities:

inf
Ln

lnEPn

[
exp{(ρ ln 2)Ln(X

n)}
]

(41)

= inf
Ln

sup
Qn∈M(Xn)

{
EQn [(ρ ln 2)Ln(X

n)]−D(Qn ∥ Pn)
}

= sup
Qn∈M(Xn)

inf
Ln

{
EQn [(ρ ln 2)Ln(X

n)]−D(Qn ∥ Pn)
}

+Θ(1) (42)

= sup
Qn∈M(Xn)

{
ρHn(Qn)−D(Qn ∥ Pn)

}
+Θ(1) (43)

= ρH 1
1+ρ

(Pn) + Θ(1). (44)

Equation (42) follows because (i) the mapping

(Ln, Qn) 7→ EQn [(ρ ln 2)Ln(X
n)]−D(Qn ∥ Pn)

is a concave function of Qn; (ii) for fixed Qn and for any two length functions

L
(1)
n and L

(2)
n , for any λ ∈ [0, 1], the function

Ln =
⌈
λL(1)

n + (1− λ)L(2)
n

⌉
is also a length function and

EQn [Ln] = λEQn [L
(1)
n ] + (1− λ)EQn [L

(2)
n ] + Θ(1);

(iii) M(Xn) is compact and convex, and therefore the infimum and supre-
mum may be interchanged upon an application of a version of Ky Fan’s
minimax result [26]. This yields a compression problem, the infimum over
Ln of expected lengths with respect to a distribution Qn. The answer is the
well-known Shannon entropy H(Qn) to within ln 2 nats, and (43) follows.
Lastly, (44) is a well-known identity which may also be obtained directly by
writing the supremum term in (43) as

(1 + ρ) sup
Qn∈M(Xn)

{
EQn

[
−
(

ρ

1 + ρ

)
lnPn(X

n)

]
− D(Qn ∥ Pn)

}
and then applying (40) with−(ρ/(1+ρ) lnPn(X

n)) in place of (ρ ln 2)Ln(X
n)

to get the scaled Rényi entropy.
Normalize both (41) and (44) by n and let n → ∞ to deduce that (21)

exists if and only if the limiting normalized Rényi entropy rate exists. This
concludes the proof.
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5.2 Proof of Proposition 7

This is a straightforward application of Varadhan’s theorem [10] on asymp-
totics of integrals. Recall that νn is the distribution of the information
spectrum n−1 lnPn(X

n). Define F (t) = βt. Since the (νn : n ∈ N) sequence
satisfies the LDP with rate function I, Varadhan’s theorem (see Ellis [11,
Th. II.7.1.b]) states that if

lim
M→∞

lim sup
n→∞

1

n
ln

∫
t≥M

β

exp{nβt} dνn(t) = −∞ (45)

then the limit

lim
n→∞

1

n
ln

∫
R
exp{nβt} νn(dt) = sup

t∈R
{βt− I(t)} (46)

holds. The integral on the left side in (46) can be simplified by defining the
finite cardinality set

An = {−n−1 lnPn(x
n) : ∀xn ∈ Xn} ⊂ R

and by observing that∫
R
exp{nβt} νn(dt)

=
∑
t∈An

exp{nβt}
∑

xn:Pn(xn)=exp{−nt}

Pn(x
n)

=
∑
xn

Pn(x
n)1−β

=
∑
xn

Pn(x
n)

1
1+ρ = exp

{
βH1/(1+ρ)(Pn)

}
.

Take logarithms, normalize by n, take limits, and apply (46) to get the
desired result. It therefore remains to prove (45).

The event {t ≥ M
β } occurs if and only if{

Pn(x
n) ≤ exp

{
−nM

β

}}
.

The integral in (45) can therefore be written as∑
t∈An,t≥M

β

∑
xn:Pn(xn)=exp{−nt}

exp{nβt}Pn(x
n)

=
∑

xn:Pn(xn)≤exp{−nM
β

}

Pn(x
n)

1
1+ρ

≤ |X|n · exp
{ −nM

β(1 + ρ)

}
.
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The sequence in n on the left side of (45) is then

ln |X| − M

β(1 + ρ)
,

a constant sequence. Take the limit as M → ∞ to verify (45). This con-
cludes the proof.

6 Conclusion

We first showed that the problem of finding the limiting guessing exponent is
equal to that of finding the limiting compression exponent under exponential
costs (Campbell’s coding problem). We then saw that the latter limit exists
if the sequence of distributions of the information spectrum satisfies the LDP
(sufficient condition). The limiting exponent was the Legendre-Fenchel dual
of the rate function, scaled by an appropriate constant. It turned out to be
the limit of the normalized cumulant of the information spectrum random
variable. We also looked at other conditions on the information spectrum
to establish existence of the limiting exponent and applied it to a class of
sources modeling a general ferromagnet with summable interactions. While
some of these facts can be gleaned from the works of Pfister & Sullivan
[5] and Merhav & Arikan [7], our work sheds light on the key role played
by the information spectrum. It will be of interest to find a rich class of
sources beyond those listed in this report for which the information spectrum
satisfies the LDP.

Results on guessing with key-rate constraints for a general source are
provided using the above information spectrum approach in [27].
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