DRDO-IISc Programme on
Advanced Research in Mathematical
Engineering

Randomised attacks on passwords

(TR-PME-2010-11)
by
Manjesh Kumar Hanawal and Rajesh Sundaresan
Department of Electrical Communication Engineering, Indian Institute of Science,

Bangalore

12 February 2010

Indian Institute of Science
Bangalore 560 012

Randomised attacks on passwords

Manjesh Kumar Hanawal and Rajesh Sundaresan

12 February 2010

ABSTRACT

A Dbrief survey of authentication methods in password-protected sys-
tems is first provided. Subsequently, features of a freely available soft-
ware for cracking passwords is then discussed. A randomised procedure
for attacking passwords, based on a tilted version of the password dis-
tribution, is then proposed. This tilt is a mechanism suggested by
large deviations theory. After showing the asymptotic optimality of
the proposed randomised scheme, an algorithm for generating these
randomised attacks, based on the Metropolis algorithm, is then finally
described.

Keywords: password, attacks, guessing, Markov chain Monte
Carlo (MCMC)

1 Introduction

Passwords are still the preferred means to provide authentication in com-
puter systems because of their simplicity. In all computer systems with
password based authentication, user passwords are first enciphered using
one-way functions like LanMan, DES, MD5, Blowfish, SHA, and then stored
in a specific location. We refer to this enciphered password as hash. When
a user claims access to the system through his password, it is enciphered
using the same one-way function that generated the stored hash, and then
matched with the stored hash. Authentication is granted if the hash matches
the stored one. Usually, the one-way hash functions are publicly known. The
encryption is strong if it is difficult to get access without entering the correct
password. The password also should not be easily guessable. Below we will
briefly discuss the password authentication schemes and attacks on them in
Windows and Linux systems.

Windows based systems use the LanMan(LM), NTLM algorithms to
generate the hash. The LM hashing algorithm first converts all ASCII char-
acters to lower case and pads it with some fixed characters to make it 14
bytes in length. This padded password is split into two parts of 7 bytes each

and enciphered separately using the DES algorithm. In principle, break-
ing this hash, which is the same as recovering the password, is the same
as attacking passwords of character size 7. There are efficient probabilistic
algorithms that exploit this weakness of LM hashing algorithm, an algo-
rithm supported in all Windows operating systems for backward compati-
bility. Rainbow tables [1] introduced by Oechslin [1] based on Hellman’s [2]
time-memory tradeoff can efficiently attack the LM hashed passwords given
the stored hash. Software based on rainbow table can be downloaded from
http://ophcrack.sourceforge.net /.

Linux systems use the crypt() functions [3] to generate the hashes of
the users’ passwords. Before generating the hash, the Linux system adds a
random string of fixed length (12-32 bits), called salt, to passwords. The
salt can vary from user to user. Hash and its associated salts are stored
along with other user related information in the path /etc/shadow. When
a user enters a password, the corresponding salt is read from this location
and appended to the input password before computation of hash. The ben-
efits of precomputations are nulled by the salting technique because one
precomputed table is required for every possible salt. For example, if the
random string is of length 12 bits it requires 4096 precomputed tables to
crack the password using above mentioned technique that was effective on
the Windows system. Many Linux system use random string of length 32
bits or more, thereby making precomputation attacks infeasible. Unlike
the windows system, there are no known weakness in the enciphering al-
gorithms used in Linux system (except that some Linux machines use the
traditional DES algorithm that restricts password length to the first 8 char-
acters, or the MD5 algorithm [4]). Most of the well-known algorithms that
attack Linux system passwords exploit poor choice of passwords by employ-
ing intelligent guessing attacks. One example is John the Ripper [5]; see
section 2. To know more about other password cracking applications, visit
http://sectools.org/crackers.html.

In this report we propose a randomised password attack based on some
information theoretic ideas on guessing [6], [7], [8]. The candidate passwords
are generated based on a tilted version of the original distribution. We
prove asymptotic optimality of this technique and explain how password
candidates can be generated using a Markov chain Monte Carlo method
(see Diaconis [9] for a recent survey or Hastings [10]).

This report is organised as following. In Section 2 we explain the func-
tionalities of John the Ripper software and explain its different modes in
attacking a password. In section 3 we propose a guessing strategy that is
asymptotically optimal. In section 4 we explain how strings with a tilted
distribution can be generated using the Metropolis algorithm.

2 John the Ripper

John the Ripper (JtR) aims to help system administrators detect weak pass-
words. It works on both Windows and Linux systems. It supports many
crypt(3) hash types commonly used in various versions of Linux systems. It
has custom built functions to implement encryption algorithms that are op-
timized to particular system architectures. The latest version of JtR can be
downloaded from Openwall project page http://www.openwall.com/. Let
the directory in which JtR is installed be called John. To install JtR refer
to instructions in file John/docs/INSTALL. JtR has the following modes:
single crack, wordlist, external, and incremental.

In single crack mode JtR uses information on user name, home direc-
tory name, phone number, etc. that are stored in the file containing the
hash in order to generate candidate passwords. Other candidate passwords
are also generated using word mangling rules. New mangling rules can
be specified, as given in John/docs/RULES. Wordlist mode uses the file
John/run/password.lst that contains frequently used dictionary word pass-
words. Again, mangling rules will generate new candidate passwords from
every word in this file. In external cracking mode, one can specify customised
rules to generate candidate passwords. It is the incremental mode that we
are interested in, and will be described shortly. See file John/docs/MODES
to know more about these modes.

When JtR is executed on a hash file in its default mode, it first tries the
single crack mode and then the wordlist mode. When both fail, it switches to
the incremental mode. In this mode, JtR assumes no information about the
hash, i.e., it assumes perfect secrecy [11, Sec. 2|, and candidate passwords
are generated based on the trigram statistics of ASCII characters. JtR
has a precomputed table (John/run/all.chr) of ASCII characters arranged
in a particular fashion for different passwords lengths. To understand the
structure of this table let us fix length of passwords to say L and number of
different possible characters to CSIZE. The following different matrices (refer
to the function “inc_new_length” in file John/src/inc.c) are precomputed
tables in JtR.

e A row vector of size CSIZE, containing all CSIZE characters of interest,
and arranged in decreasing order of their frequencies of occurrence.
Denote this row vector by A.

e A 2-dimensional character matrix of size CSIZE x CSIZE. Each row
is indexed by a character. In each row characters are arranged in the
decreasing order of their frequencies of occurrence, when the previous
character is the index for that row. Denote this matrix by B.

e L — 2 number of 3-dimensional matrices for positions 3,4, --- , L; each
matrix is of size CSIZE x CSIZE x CSIZE. Here each row is indexed

by character pair (a,b), and characters in that row are arranged in the
decreasing order of their frequencies of occurrence, when the previous
character pair is (a,b). Denote these matrixes by C[3],C[4],--- ,C[L],
respectively, for positions 3,4, --- , L.

Based on this precomputed table, the candidate passwords are generated
as follows. Refer to function “inc_key_loop” in file John/src/inc.c file. To
generate the password of length L, the first character is chosen from row
vector A. Let this character be denoted z1. The second character is chosen
from row with index x7 in the 2-dimensional matrix B. Let this character be
denoted x3. The third character is chosen from the row with index (x1,x2)
in the 3-dimensional matrix C[3]. The Ith character is chosen similarly from
the matrix C[l] with history appropriately updated. JtR generates these
strings in the decreasing order of their preference and tests each full string
as a candidate password.

The increment mode can run indefinitely depending on the length of the
actual password and its character composition. This concludes our descrip-
tion of JtR.

In the following section we describe a method to generate strings using
a “tilted distribution” and prove its asymptotic optimality.

3 Guessing with a tilt

First some notation. Let (X7, X9, --) be a sequence of random variables
taking values in a finite set X, and denote X" = (X, Xy, -, X,,) for all
n > 1. The bijective function

Gn: X" —={1,2,---,[X|"}

is such that G, (z™) = i means that the ith guess is the string ™. The
expected number of guesses is minimized when the guessing proceeds in
the decreasing order of probabilities of strings [6]. In other words, for any
2", y™ € X", if 2™ has a higher probability of occurrence, P,(z") > P,(y"),
then x™ is guessed before y", i.e., Gp(2") < G,(y"). Here P, denotes
the probability mass function of strings on X". We denote this optimal
guessing function by G}. Arikan [7] showed that expectation of G} grows
exponentially in n, and for an independently and identically distributed
sequence of random variables he obtained the exponential growth rate to be

2log Y v/Pi(x),
zeX
i.e., the Rényi entropy of order 2. The Rényi entropy of order @ > 0 of
distribution P, is given by
1
l-«

Ho(Py) = ——log 3 P(a").

rneXn

The above result of Arikan [7] was extended to Markov sources by Malone
and Sullivan [12], to unifilar sources by Sundaresan [11], to a class of sta-
tionary sources by Pfister and Sullivan [13]. Our works [14]-[15] provide a
unifying large deviations framework to all these results. The optimal lim-
iting guessing exponent for a general source is given by the limiting Rényi
entropy rate, if it exists, as follows:

lim n 1logIEp[G* (X™)] = lim n™ Hl/g()

n—oo n—oo
For a proof of this statement, see [15].

Let us return to password cracking. We think of X as the alphabet of
letters constituting the passwords. P, is then the distribution on passwords
of length n. JtR has simply precomputed the ordering under the assump-
tion of a nonhomogeneous Markov source of memory order 2 and stored
the ordering in the matrices described in the previous section. This will
achieve the optimal guessing exponent. Instead, we now provide a simple
randomised attack on the guessing exponent.

We first begin with the most natural attack and highlight its futility.
Suppose that the correct password is z”. If one generated passwords ran-
domly and independently of one another, and according to the true distri-
bution, then the number of guesses to hit x™ is a positive-integer valued
random variable with a geometric distribution

Pr{GP(z") =k} = (1 — P,(z")* 1P, (z"), k>1,
so that its mean is
Ep [GE(X™)|X" = 2"] = 1/Py(a™).

Taking expectation this time with respect to X", we get that the expected
number of guesses is

EIGEX] = 2 Paa™) x (1 Bala”) = I

which is not optimal.
Let us now generate guesses y™(1),4"(2),--- according to the tilted dis-
tribution @Q,, defined as

Qn(l'n) = Pin(xn) .
P, (a™)
a”eXn

The random number of guesses needed, when =™ is the realisation, is Gg(x”)
which is a positive integer valued random variable having the geometric

distribution with mean 1/Q,(z™). Performing the same computation as
above, we get

Ep[GR(X™)] = > Pu(a™) x (1/Qn(a™))
= an(l«n) (Za" \/P”(an))

P, (z")

2
= (Z \/Pn(:zn))
= eXP{Hl/Z(Pn)}-

Using this we get that the limiting exponent for the randomised and tilted
guessing strategy is
lim n ' logEp[GY(X™)] = lim n™'H, j»(Py), (1)
n—oo n—oo
the optimal guessing exponent, and asymptotic optimality of this guessing
strategy is proved.

There still remains the problem of generating sequences with distribution
Q. To do this one needs to compute the partition function which is the
normalising constant that makes @,, a probability distribution. In the next
section, we show how to avoid this computation, via Markov chain Monte
Carlo (MCMC) methods.

In employing the MCMC method, the sequence of randomised guesses
y™(1),y™(2),--- does not constitute an iid chain, but is a Markov chain. In
particular, G7 (") does not have the geometric distribution.

However, we exploit the following fact. Suppose that the process of
guesses y"(1),y"(2),--- is an ergodic Markov chain with stationary distri-
bution Q™. Then, it is a well-known fact due to Kac [16] that the expected
time for the first occurrence of a particular sequence z'™ is

E[G?(a")] = 1/Qn(«").

This is all that is needed to validate the computations leading to (1). The
next section identifies a procedure by which the sequence of guesses form a
Markov chain whose stationary distribution is @,,.

4 The Metropolis algorithm

We propose the use of the well-known Metropolis algorithm; we refer the
reader to the tutorial survey by Diaconis on the Markov chain Monte Carlo
revolution [9]. Our state space will be X”. We would like to generate
a ergodic Markov chain y™(1),y"(2),--- on this state space according to

some transition probability matrix K (a™,b") such that @, is its stationary
distribution. Note that

P,(z")

Qula™) = Y252,

where Z,, is the normalising constant that we would like to avoid calculating.
The function 4/ P, (z™) will be assumed specified and easily calculable. This
is indeed the case if our original source is by itself a Markov chain with
known parameters.

Let J(a™,b™) be any symmetric stochastic matrix with strictly positive
entries. Suppose y"(i) = a". The algorithm that tells how to generate the
next guess y" (i + 1) proceeds as follows:

The Metropolis algorithm
e Set a™ = y"(i).
e Sample b" according to J(a",).

e Compute the acceptance ratio A(a™,b") given by

Qn(")J (", a") _ Qn(b")

nopny _ = i
A = Q@I @57~ Qulan) ~ P

o If b" # a™ and A(a™,b™) > 1, then set y™(i 4+ 1) = b".

e Otherwise, if b # a™ and A(a™,b") < 1, then set y"(i + 1) = b"™ with
probability A(a™, b™).

e Otherwise, set y"(i 4+ 1) =

e Increment ¢, and repeat the procedure.

Note that these calculations do not need the normalising constant Z,
since it cancels out in (2). It is easily verified that the resulting transition
probability matrix is K (a",b") given by

(
J(a™ b") it o" #a", A(a™,0") > 1,
J(a™, ") A(a™, b"™) if b" #a”, A(a™b") <1,
)+ > J(a" M1 = A" "), i ="

c:A(a™,cm)<1

K(a™,b") = J(a" b +

The generated Markov chain thus has transition probability matrix K.
Moreover, the detailed balance equations

Qn(a™)K(a",b") = Qn(b")K(b",a")

are also satisfied so that the generated Markov chain is reversible with equi-
librium distribution Q".

Since the chain is an ergodic Markov chain, the distribution of Y (7) con-
verges to (Q,, as i — oco. After a sufficient number of guesses are generated,
which is something that depends on the convergence rate to equilibrium, the
distribution of the generated Y (i) will be close to Q™.

5 Concluding remarks

We end this report with some final remarks on the Metropolis algorithm.

e The fundamental assumption is that the application of the hash func-
tion on a candidate password is expensive. The generation of pass-
word candidates themselves, i.e., sampling according to J(a™,-) and
the computations leading to acceptance or rejection is not.

e When we reject a generated sample, y™(i + 1) is merely set to y" (1),
a password candidate that was already tried without success. This
generated sample for i+ 1 need not be tested, resulting in saved effort.

e When the new sample b" is such that A(a™,b") > 1, observe that
b" is more likely than a” according to the source distribution, i.e.,
P, (b") > P,(a™). This sample is then tested.

e Finally, when the new sample b" is such that A(a™,b") < 1, then
b is less likely than a™. It is then tested (accepted for test) only
with probability 1 — /P, (b")/P,(a™). It is this prudence with which
samples are chosen, exploration with caution, that helps save guessing
effort.

Acknowledgements This work was supported by the Defence Research

& Development Organisation (DRDO), Ministry of Defence, Government of

India, under the DRDO-IISc Programme on Advanced Research in Mathe-

matical Engineering. Fruitful discussions with Shri Rajesh Pillai and Shri
. of SAG, DRDO, are gratefully acknowledged.

References

[1] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in Advances in
Cryptology - CRYPTO 2003, ser. Lecture Notes in Computer Science, vol. 2729/2003.
Springer Berlin / Heidelberg, Oct. 2003, pp. 617-630.

[2] M. Hellman, “A cryptanalytic time-memory trade off,” IEEE Trans. Inf. Theory,
vol. 26, pp. 401-406, 1980.

[3] Linuz man page for crypt(3), http://linux.die.net/man/3/crypt.

[4]

X. Wang and H. Yu, “How to break MD5 and other hash functions,” in Advances
in Cryptology - EUROCRYPT 2005, ser. Lecture Notes in Computer Science, vol.
3494/2005. Springer Berlin / Heidelberg, May 2005, pp. 19-35.

John the Ripper password cracker, http://www.openwall.com/john/.

J. L. Massey, “Guessing and entropy,” in Proc. 1994 IEEE International Symposium
on Information Theory, Trondheim, Norway, Jun. 1994, p. 204.

E. Arikan, “An inequality on guessing and its application to sequential decoding,”
IEEE Trans. Inf. Theory, vol. 42, pp. 99-105, Jan. 1996.

N. Merhav and E. Arikan, “The Shannon cipher system with a guessing wiretapper,”
IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 1860-1866, Sep. 1999.

P. Diaconis, “The Markov chain Monte Carlo revolution,” Bulletin of the American
Mathematical Society, vol. 46, no. 2, pp. 179-205, Apr 2009.

W. K. Hastings, “Monte carlo sampling methods using markov chains and their
applications,” Biometrika, vol. 57, no. 1, pp. 97-109, Apr. 1970.

R. Sundaresan, “Guessing based on length functions,” in Proceedings of the Confer-
ence on Managing Complezity in a Distributed World, MCDES, Bangalore, India,
May 2008; also available as DRDO-IISc Programme in Mathematical Engineering
Technical Report No. TR-PME-2007-02, Feb. 2007.
http://pal.ece.iisc.ernet.in/PAM /tech_rep07/TR-PME-2007-02.pdf.

D. Malone and W. G. Sullivan, “Guesswork and entropy,” IEEE Trans. Inf. Theory,
vol. 50, no. 4, pp. 525-526, Mar. 2004.

E. Pfister and W. G. Sullivan, “Rényi entropy, guesswork moments, and large devi-
ations,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2794-2800, Nov. 2004.

M. K. Hanawal and R. Sundaresan, “Guessing revisited: A large deviations ap-
proach,” in Proc. National Conference on Communications, Guwahati, India, Jan
20009.

——, “Guessing revisited: A large deviations approach,” DRDO-IISc Programme
in Mathematical Engineering Technical Report No. TR-PME-2008-08, Dec., 2008,
available at http://pal.ece.iisc.ernet.in/PAM /tech_rep08/TR-PME-2008-08.pdf.

M. Kac, “On the notion of recurrence in discrete stochastic processes,” Bulletin of
the American Mathematical Society, pp. 1002—1010, Oct. 1947.

