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ABSTRACT

The problem of guessing a random string is revisited. The relation-
ship between guessing without distortion and compression is extended
to the case when source alphabet size is countably infinite. Further,
similar relationship is established for the case when distortion allowed
by establishing a tight relationship between rate distortion codes and
guessing strategies.
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1 Introduction

Let X" = (Xy,---,X,) denote n letters of a random process where each
letter is drawn from a discrete set X. The joint probability mass function
(PMF) is given by (P, (z") : " € X"). Consider a ordered list of guesses
denoted by G, := {y"(1),y"(2),--- }. Our interest is in guessing the realisa-
tion of a random string by stepping through the elements of G,,. For a given
D > 0, we say G, is a D-admissible guessing strategy if for each x™ € X"
there is a y™(j) € G, such that d(z™,y"(j)) < nD, where d(-,-) denotes a
given distortion measure. The ordered list G,, induces a guessing function
from X" onto the set of natural numbers denoted by N, i.e., G, : X" — N,
and defined by

Gn(z")=min {j : d(z",y"(j)) <nD}, V2" eX".

The above model is applicable in search problems such as approximate
pattern matching and database searches where one possesses only partial
information about a target [1] while executing a query. The performance
criterion is the rate of growth of the expected number of guesses as the
length of string being searched grows. Specifically, we wish to evaluate the
optimal exponential growth rate of guessing moments, i.e.,

E(D,p) = lim inf L iog ElG (X))
n—00 n



where p is a arbitrary positive real number and infimum is taken over all
D-admissible guessing strategies. The limit above may or may not exist
and an identification of classes of sources for which the limit exists is also of
interest.

Arikan [2] considered the above problem for the case when D = 0, i.e.,
lossless guessing. The optimal guessing strategy in this case is the one which
proceeds in the decreasing order of message probabilities [3], a strategy that
is denoted G}. Arikan [2] showed that the guessing exponent exists for
independent and identically distributed (iid) sources taking values on a finite
alphabet set. The limiting exponent is the Rényi entropy of order 1/(1+ p).

Sundaresan [4] showed that for any finite alphabet source, the problem
of finding the guessing exponent is the same as that of finding the expo-
nential growth rate for moment generating function for compressed lengths,
a problem proposed by Campbell [5]. This equivalence was established by
associating a length function to each guessing function and vice-versa. One
purpose of this report is to extend these arguments to the case when the
alphabet is countably infinite.

Merhav and Arikan [1] studied the problem of guessing a random string
with D > 0. They showed that the guessing exponent £(D, p) exists for
an iid source, among other sources, and commented that a similar method
can be used to solve the compression variant as well (exponents of moment
generating function for compressed lengths). The second purpose of this
report is to make this connection rigorous.

This report is organised as follows. Section 2 considers the lossless case
(D =0) and X countably infinite. Section 3 addresses D > 0.

2  Guessing without distortion

This section considers the case when X is countably infinite and establishes
equality of exponents of guessing and moment generating functions for com-
pressed lengths. The approach will be nearly the same as that of [4, Sec. 2]
but for a minor technical point which we will resolve.

We shall denote the source by (X" : n € N) with X; € X, a countably
infinite set. A length function is a mapping L,, : X" — N such that the Kraft

inequality
> <
xneXn
holds. The engineering interpretation is that L,(x™) is the compression

length of the string x™. We first associate a guessing function to each length
function.

Definition 1 Given a length function L,, the associated guessing function
G, is the one that guesses strings in the increasing order of Ly-lengths.



Strings with the same Ly,-lengths are ordered using an arbitrary fized rule,
say the lexicographical order on X. We also define the associated probability
mass function (PMF) Qr, on X to be

9—Ln(a™)
> e 2L

Qr,(z") =

O

The following proposition is a restatement of [4, Prop. 5]. It holds
verbatim even when the source alphabet size is countably infinite, and is
restated here for completeness.

Proposition 1 For a length function L, and B > 1, the associated guessing
function G, satisfies the following:

log G, (z") < Qp, (z™) "' < L, ("), (1)
{a": Gy, (") > 2P} C {a": L(z") > B}. (2)
O

We next associate a length function to every guessing function as follows.

Definition 2 Given any guessing function G, and § > 0, we say Qg,
defined by
Qa, (z™) = cu(8) 71 Gp(a™) 7170, Va e X» (3)

is the PMF associated with Gy,. The quantity c,(0) is the normalisation
constant. We say Lg, defined by

Lg,(z") = [-log Qg (z")], Va" € X"

1s the length function associated with G,. O
Observe that for any § > 0, we have
=1
i=1

and hence the PMF Q¢, is well defined. Similar to Proposition 2 in [4] we
state the relation between associated quantities in the following proposition.



Proposition 2 To each guessing function G, there exists a length function
Lg, such thatV x" € X" and 6 > 0

Lg, (") — 1 — log . (6)
1+6

< La. (96”)_

<log Gp(z") < 155

Proof: From the definition of L¢g, we have

La, (#") = [—log Qa, (#™)] < 1 +1og(cn(8) - Gp(2™)1+0).
Rearranging the above we get
Lg, (z") — 1 —logcy(9)
1+6
Furthermore, because of (3) and the fact that ¢,(d) > 1
log G (2™)'0 < —log Qg (z") < [—log Qa, (z™)] = La, (™),

which concludes the proof. [ |

< log Gn(2").

The following corollary to the above proposition follows immediately.

Corollary 3 For any given § > 0 and B > 1, a guessing function G, and
its associated length function Lg, satisfy

{La,(a") —1—logea(6) = B} € {(1+0)logGy(a") > B}
C {Lg, (") > BY.

O

Let G}, denote the optimal guessing strategy. The optimal exponential
growth rate of guessing moments is defined as

E(p) = lim ~logE [G,(X")7] (4)

n—oo N

when the limit exists. Define the growth rate of moment generating function
for compression lengths to be

e e L Ln (X"
F(p) := nlgr;o ?E%IOgE [2” ( )} (5)
whenever the limit exists [5].

The following proposition establishes that the two limits above are the
same and hence it suffices to study one of them, say the limiting exponential
rate of growth of the moment generating function for compression lengths.
Sufficient conditions in the finite alphabet case for the existence of this
limiting exponent can be found in our prior work [6].



Proposition 4 Let p > 0. Suppose that the F(p) exists and the function
F is continuous at p; then E(p) exists and equals to F(p). Conversely,
suppose E(p) exists and the function E is continuous at p; then F(p) exists
and equals to E(p).

Proof: First assume that F(p) exists and let p’ = p/(1+ §). For each
€ > 0 there then exists a length function L; such that the following sequence
of inequalities holds:

1£1nf logE [2an(a;")] +e¢ > logE :2”L;(’”n)]
> logE |Gy (+")] (6)
> logE[G}(2")”] (7)
> logE_2”lLG2($n)]— P +1logen(8))  (8)
> %151ogE[2P’Ln<w">}— P(1+logea(8)) (9)

In inequality (6), G,/ is the guessing function associated with L., and ob-
tained by applying P;oposition 1. Inequality (7) is obtained by noting that
G, is the optimal guessing function. In (8), Lg: is the length function asso-
ciated with G and we applied Proposition 2. Finally, inequality (9) follows
after taking infimum.

After normalising both sides of (7) by n, taking limit superior on both
sides, and observing that ¢, () is finite, we have

F(p) = limsupinf 1 logE {2’)]“"(”””)} > lim sup 1 logE G} (2™)?].  (10)
n

n—oo Ln M n—00
Similarly, normalising both sides of (9) by n and taking limit inferior on
both sides yields

1 1 / n
liminf —log E [G},(2"™)?] > liminfinf — log E [2’) Ln(x )} =F(). (11)

n—oo n, n—oo L, N

Inequalities (10) and (11) and the assumption that

lim F(p") = F(p)

show that E(p) exists and equals F(p).

To prove the converse, assume that E(p) exists. Consider the following



chain of inequalities:

log E[G%(z™)?] > logE 'QP’LGW")} — P/(1 +log cn(6)) (12)
> innf log_E [2”%”(”:”)} —p (1 +logey,(d)) (13)
> logE 'zﬂ’LZ(w")} e~ (1 +logea(d))  (14)
> logE :GL/n(a:”)pl] —e—p(1+logen(d)  (15)
> 10gE[G(a") | e~ p(1+1ogen(s))  (16)

In inequality (12), Lg:x is the length function associated with G}, and we
used Proposition 2. In (14), € is arbitrary positive number and L, is some
length function depending on this €; its existence is assured by the definition
of the infimum. In (15), G/ is the guessing function associated with L, and
we used Proposition 1. Finglly, (16) is obvious from the use of the optimal
guessing strategy.

Normalising both sides of (13) by n, taking limit superior on both sides,
we have

1 1 / n
E(p) = limsup — logE [G} (2")”] > limsup inf — log E [2” Ln(@ )] . (17)
n—oo MN n—oo Ln M
Similarly, normalising both sides of (16) by n and taking limit inferior on
both sides, we get
1 / n 1 /

liminf inf = log E [2%’ Lu(® ﬂ > liminf — log E [GZ(m”)p} — E(). (18)

n—oo L, N n—oo n
From inequalities (17) and (18) and the continuity assumption of E in p,

ie.,

lim E(p)) = E
lim (r') (p),

we conclude that F(p) exists and equals E(p). ]

3 Guessing with distortion

We now consider the case when the goal is to guess within a distortion D of
the actual realisation. Let us fix a distortion metric d : X x X — Ry. Recall
that

Definition 3 For a given distortion D and distortion measure d(-,-), an
ordered list G, = {y"(1),y™(2), -} is a D-admissible guessing strategy if

Pr{d(X",y"(j)) < nD, for some j} =1.



Also recall that the D-admissible guessing list G, induces a guessing
function
G, : X" — N.

(If G, is not D-admissible, we set G, (z") = oo for all 2" with d(z",y") > nD
for each y™ € G,,.

Definition 4 A rate distortion code (RDC) is a triple (Cp, fn, Ly) defined
as follows. Cy, is a subset of X™. The function f, : X" — C), is such that
for each z™ € X" there exists a y" € C, satisfying d(z",y") < nD. The
dependence on D is implicit and understood. L, : C, — N is a length
function that satisfies Kraft’s inequality; L,(x™) denotes the length of the
encoding for an element x™ € C,.

We now associate a D-admissible guessing strategy and a guessing func-
tion to an RDC.

Definition 5 Given an RDC ¢ = (Cy, fn, Ly), let G, order the elements of
C., in the increasing order of the compression Ly lengths. This shall be the
associated D-admissible guessing strategy. The induced guessing function

is denoted by G, . We also define the associated probability mass function
(PMF) Qr,, on C, to be

9—Ln(y"™)

QLn (y ) = checn 2—Ln(cn)7

vy e Cp.

The following proposition is similar to Proposition 1.

Proposition 5 For a given rate distortion code (Cy, fn,Ly) and B > 1,
the associated guessing function G, satisfies the following:

log Gr, (") < Qr,(f(z")) ™" < La(f(2"))
{a": GL,(a") > 27} C {a" : L(f(=")) > B}.

O
The proof is obviously analogous to that of Proposition 1 and is therefore

omitted.
We now associate an RDC to any D-admissible guessing strategy.



Definition 6 Given a guessing function G, induced by a D-admissible guess-
ing strategy Gy, and given a & > 0, let C,, = G, let f, be the function

that maps x™ to the first element y™ in the ordered list G, that satisfies

d(z™,y™) < nD. Further, define a length function L, on Cy, as in definition

2. We say (Cy, fn, Ly) is an RDC associated with the guessing function G,.

O

The following proposition establishes the relationship between the asso-
ciated quantities defined above. The proof is very similar to that of Propo-
sition 2 and is therefore skipped.

Proposition 6 Let G,, be a guessing function associated with a D-admissible
guessing strategy. There exists an RDC (Cy, fn, Ly) such that ¥V z™ € X"
and § >0

La, (fn(2")) — 1 —log c,,(9)
146

_ La, (™)

<log Gp(2") < T+s

O

We now establish a relationship between the guessing exponent and the
exponent of moment generating function for compression lengths, under the
distortion setting. For D > 0 and p > 0, define the optimal exponential
growth rate of guessing moments to be

E(D,p) = lim inf % log E[Gh(X™)?], (19)

whenever the limit exists, where the infimum is taken over all D-admissible
guessing strategies G,, with G,, the associated guessing function. Similar to
(5), define the exponent of the moment generating function for compression
lengths (with distortion) as

1 n
F(D,p) = 1 inf — log B[2°Ln(X™)], 20
(Dp)i= lim | - inf o log Bl ] (20)
whenever the limit exists, where the infimum is taken over all RDC codes
with distortion within D.
Under the above definitions, we now have the following result analogous
to Proposition 4.

Proposition 7 Let D > 0 and p > 0. Suppose that the F(D, p) exists and
is continuous in p, then E(D,p) exists and equals to F(D,p). Conversely,
suppose E(D, p) exists and is continuous in p, then F (D, p) exists and equals

to (D, p). O



The proof of the above proposition is easy following the proof of Propo-
sition 4.

We have thus established that the limiting guessing exponent, subject
to distortion, and the problem of identifying the exponent of the moment
generating function for compressed lengths, again subject to distortion, are
identical.
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