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ABSTRACT

The problem of guessing a random string is revisited. The relation-
ship between guessing without distortion and compression is extended
to the case when source alphabet size is countably infinite. Further,
similar relationship is established for the case when distortion allowed
by establishing a tight relationship between rate distortion codes and
guessing strategies.
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1 Introduction

Let Xn = (X1, · · · , Xn) denote n letters of a random process where each
letter is drawn from a discrete set X. The joint probability mass function
(PMF) is given by (Pn(xn) : xn ∈ Xn). Consider a ordered list of guesses
denoted by Gn := {yn(1), yn(2), · · · }. Our interest is in guessing the realisa-
tion of a random string by stepping through the elements of Gn. For a given
D ≥ 0, we say Gn is a D-admissible guessing strategy if for each xn ∈ Xn

there is a yn(j) ∈ Gn such that d(xn, yn(j)) ≤ nD, where d(·, ·) denotes a
given distortion measure. The ordered list Gn induces a guessing function
from Xn onto the set of natural numbers denoted by N, i.e., Gn : Xn → N,
and defined by

Gn(xn) = min {j : d(xn, yn(j)) ≤ nD}, ∀ xn ∈ Xn.

The above model is applicable in search problems such as approximate
pattern matching and database searches where one possesses only partial
information about a target [1] while executing a query. The performance
criterion is the rate of growth of the expected number of guesses as the
length of string being searched grows. Specifically, we wish to evaluate the
optimal exponential growth rate of guessing moments, i.e.,

E(D, ρ) = lim
n→∞ inf

Gn

1
n

logE[Gn(Xn)ρ]
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where ρ is a arbitrary positive real number and infimum is taken over all
D-admissible guessing strategies. The limit above may or may not exist
and an identification of classes of sources for which the limit exists is also of
interest.

Arikan [2] considered the above problem for the case when D = 0, i.e.,
lossless guessing. The optimal guessing strategy in this case is the one which
proceeds in the decreasing order of message probabilities [3], a strategy that
is denoted G∗

n. Arikan [2] showed that the guessing exponent exists for
independent and identically distributed (iid) sources taking values on a finite
alphabet set. The limiting exponent is the Rényi entropy of order 1/(1+ρ).

Sundaresan [4] showed that for any finite alphabet source, the problem
of finding the guessing exponent is the same as that of finding the expo-
nential growth rate for moment generating function for compressed lengths,
a problem proposed by Campbell [5]. This equivalence was established by
associating a length function to each guessing function and vice-versa. One
purpose of this report is to extend these arguments to the case when the
alphabet is countably infinite.

Merhav and Arikan [1] studied the problem of guessing a random string
with D ≥ 0. They showed that the guessing exponent E(D, ρ) exists for
an iid source, among other sources, and commented that a similar method
can be used to solve the compression variant as well (exponents of moment
generating function for compressed lengths). The second purpose of this
report is to make this connection rigorous.

This report is organised as follows. Section 2 considers the lossless case
(D = 0) and X countably infinite. Section 3 addresses D ≥ 0.

2 Guessing without distortion

This section considers the case when X is countably infinite and establishes
equality of exponents of guessing and moment generating functions for com-
pressed lengths. The approach will be nearly the same as that of [4, Sec. 2]
but for a minor technical point which we will resolve.

We shall denote the source by (Xn : n ∈ N) with Xi ∈ X, a countably
infinite set. A length function is a mapping Ln : Xn → N such that the Kraft
inequality ∑

xn∈Xn

2−Ln(xn) ≤ 1

holds. The engineering interpretation is that Ln(xn) is the compression
length of the string xn. We first associate a guessing function to each length
function.

Definition 1 Given a length function Ln, the associated guessing function
GLn is the one that guesses strings in the increasing order of Ln-lengths.
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Strings with the same Ln-lengths are ordered using an arbitrary fixed rule,
say the lexicographical order on X. We also define the associated probability
mass function (PMF) QLn on X to be

QLn(xn) =
2−Ln(xn)

∑
yn∈Xn 2−Ln(yn)

.

¤

The following proposition is a restatement of [4, Prop. 5]. It holds
verbatim even when the source alphabet size is countably infinite, and is
restated here for completeness.

Proposition 1 For a length function Ln and B ≥ 1, the associated guessing
function GLn satisfies the following:

log GLn(xn) ≤ QLn(xn)−1 ≤ Ln(xn), (1)
{xn : GLn(xn) ≥ 2B} ⊆ {xn : L(xn) ≥ B}. (2)

¤

We next associate a length function to every guessing function as follows.

Definition 2 Given any guessing function Gn and δ > 0, we say QGn

defined by
QGn(xn) = cn(δ)−1 ·Gn(xn)−1−δ, ∀xn ∈ Xn (3)

is the PMF associated with Gn. The quantity cn(δ) is the normalisation
constant. We say LGn defined by

LGn(xn) = d− log QGn(xn)e, ∀xn ∈ Xn

is the length function associated with Gn. ¤

Observe that for any δ > 0, we have

cn(δ) =
∞∑

i=1

1
i1+δ

< ∞,

and hence the PMF QGn is well defined. Similar to Proposition 2 in [4] we
state the relation between associated quantities in the following proposition.
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Proposition 2 To each guessing function Gn, there exists a length function
LGn such that ∀ xn ∈ Xn and δ > 0

LGn(xn)− 1− log cn(δ)
1 + δ

≤ log Gn(xn) ≤ LGn(xn)
1 + δ

.

¤

Proof: From the definition of LGn we have

LGn(xn) = d− log QGn(xn)e ≤ 1 + log(cn(δ) ·Gn(xn)1+δ).

Rearranging the above we get

LGn(xn)− 1− log cn(δ)
1 + δ

≤ log Gn(xn).

Furthermore, because of (3) and the fact that cn(δ) > 1

log Gn(xn)1+δ ≤ − log QGn(xn) ≤ d− log QGn(xn)e = LGn(xn),

which concludes the proof.

The following corollary to the above proposition follows immediately.

Corollary 3 For any given δ > 0 and B ≥ 1, a guessing function Gn and
its associated length function LGn satisfy

{LGn(xn)− 1− log cn(δ) ≥ B} ⊆ {(1 + δ) log Gn(xn) ≥ B}
⊆ {LGn(xn) ≥ B}.

¤

Let G∗
n denote the optimal guessing strategy. The optimal exponential

growth rate of guessing moments is defined as

E(ρ) := lim
n→∞

1
n

logE [G∗
n(Xn)ρ] (4)

when the limit exists. Define the growth rate of moment generating function
for compression lengths to be

F (ρ) := lim
n→∞ inf

Ln

1
nρ

logE
[
2ρLn(Xn)

]
(5)

whenever the limit exists [5].
The following proposition establishes that the two limits above are the

same and hence it suffices to study one of them, say the limiting exponential
rate of growth of the moment generating function for compression lengths.
Sufficient conditions in the finite alphabet case for the existence of this
limiting exponent can be found in our prior work [6].
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Proposition 4 Let ρ > 0. Suppose that the F (ρ) exists and the function
F is continuous at ρ; then E(ρ) exists and equals to F (ρ). Conversely,
suppose E(ρ) exists and the function E is continuous at ρ; then F (ρ) exists
and equals to E(ρ).

Proof: First assume that F (ρ) exists and let ρ′ = ρ/(1 + δ). For each
ε > 0 there then exists a length function L

′
n such that the following sequence

of inequalities holds:

inf
Ln

logE
[
2ρLn(xn)

]
+ ε ≥ logE

[
2ρL

′
n(xn)

]

≥ logE
[
GL

′
n
(xn)ρ

]
(6)

≥ logE [G∗
n(xn)ρ] (7)

≥ logE
[
2ρ′LG∗n (xn)

]
− ρ′(1 + log cn(δ)) (8)

≥ inf
Ln

logE
[
2ρ′Ln(xn)

]
− ρ′(1 + log cn(δ)) (9)

In inequality (6), GL
′
n

is the guessing function associated with L
′
n and ob-

tained by applying Proposition 1. Inequality (7) is obtained by noting that
G∗

n is the optimal guessing function. In (8), LG∗n is the length function asso-
ciated with G∗

n and we applied Proposition 2. Finally, inequality (9) follows
after taking infimum.

After normalising both sides of (7) by n, taking limit superior on both
sides, and observing that cn(δ) is finite, we have

F (ρ) = lim sup
n→∞

inf
Ln

1
n

logE
[
2ρLn(xn)

]
≥ lim sup

n→∞
1
n

logE [G∗
n(xn)ρ] . (10)

Similarly, normalising both sides of (9) by n and taking limit inferior on
both sides yields

lim inf
n→∞

1
n

logE [G∗
n(xn)ρ] ≥ lim inf

n→∞ inf
Ln

1
n

logE
[
2ρ′Ln(xn)

]
= F (ρ′). (11)

Inequalities (10) and (11) and the assumption that

lim
δ→0

F (ρ′) = F (ρ)

show that E(ρ) exists and equals F (ρ).

To prove the converse, assume that E(ρ) exists. Consider the following
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chain of inequalities:

logE [G∗
n(xn)ρ] ≥ logE

[
2ρ′LG∗n(xn)

]
− ρ′(1 + log cn(δ)) (12)

≥ inf
Ln

logE
[
2ρ′Ln(xn)

]
− ρ′(1 + log cn(δ)) (13)

≥ logE
[
2ρ′L

′
n(xn)

]
− ε− ρ′(1 + log cn(δ)) (14)

≥ logE
[
GL′n

(xn)ρ′
]
− ε− ρ′(1 + log cn(δ)) (15)

≥ logE
[
G∗

n(xn)ρ
′]
− ε− ρ

′
(1 + log cn(δ)) (16)

In inequality (12), LG∗n is the length function associated with G∗
n and we

used Proposition 2. In (14), ε is arbitrary positive number and L
′
n is some

length function depending on this ε; its existence is assured by the definition
of the infimum. In (15), GL′n

is the guessing function associated with L
′
n and

we used Proposition 1. Finally, (16) is obvious from the use of the optimal
guessing strategy.

Normalising both sides of (13) by n, taking limit superior on both sides,
we have

E(ρ) = lim sup
n→∞

1
n

logE [G∗
n(xn)ρ] ≥ lim sup

n→∞
inf
Ln

1
n

logE
[
2ρ′Ln(xn)

]
. (17)

Similarly, normalising both sides of (16) by n and taking limit inferior on
both sides, we get

lim inf
n→∞ inf

Ln

1
n

logE
[
2ρ′Ln(xn)

]
≥ lim inf

n→∞
1
n

logE
[
G∗

n(xn)ρ′
]

= E(ρ′). (18)

From inequalities (17) and (18) and the continuity assumption of E in ρ,
i.e.,

lim
δ→0

E(ρ′) = E(ρ),

we conclude that F (ρ) exists and equals E(ρ).

3 Guessing with distortion

We now consider the case when the goal is to guess within a distortion D of
the actual realisation. Let us fix a distortion metric d : X×X→ R+. Recall
that

Definition 3 For a given distortion D and distortion measure d(·, ·), an
ordered list Gn = {yn(1), yn(2), · · · } is a D-admissible guessing strategy if

Pr{d(Xn, yn(j)) ≤ nD, for some j} = 1.

¤
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Also recall that the D-admissible guessing list Gn induces a guessing
function

Gn : Xn → N.

(If Gn is not D-admissible, we set Gn(xn) = ∞ for all xn with d(xn, yn) > nD
for each yn ∈ Gn.

Definition 4 A rate distortion code (RDC) is a triple (Cn, fn, Ln) defined
as follows. Cn is a subset of Xn. The function fn : Xn → Cn is such that
for each xn ∈ Xn there exists a yn ∈ Cn satisfying d(xn, yn) ≤ nD. The
dependence on D is implicit and understood. Ln : Cn → N is a length
function that satisfies Kraft’s inequality; Ln(xn) denotes the length of the
encoding for an element xn ∈ Cn.

We now associate a D-admissible guessing strategy and a guessing func-
tion to an RDC.

Definition 5 Given an RDC φ = (Cn, fn, Ln), let Gn order the elements of
Cn in the increasing order of the compression Ln lengths. This shall be the
associated D-admissible guessing strategy. The induced guessing function
is denoted by GLn. We also define the associated probability mass function
(PMF) QLn on Cn to be

QLn(yn) =
2−Ln(yn)

∑
cn∈Cn 2−Ln(cn)

, ∀yn ∈ Cn.

¤

The following proposition is similar to Proposition 1.

Proposition 5 For a given rate distortion code (Cn, fn, Ln) and B ≥ 1,
the associated guessing function GLn satisfies the following:

log GLn(xn) ≤ QLn(f(xn))−1 ≤ Ln(f(xn))
{xn : GLn(xn) ≥ 2B} ⊆ {xn : L(f(xn)) ≥ B}.

¤

The proof is obviously analogous to that of Proposition 1 and is therefore
omitted.

We now associate an RDC to any D-admissible guessing strategy.
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Definition 6 Given a guessing function Gn induced by a D-admissible guess-
ing strategy Gn, and given a δ > 0, let Cn = Gn, let fn be the function
that maps xn to the first element yn in the ordered list Gn that satisfies
d(xn, yn) ≤ nD. Further, define a length function Ln on Cn as in definition
2. We say (Cn, fn, Ln) is an RDC associated with the guessing function Gn.
¤

The following proposition establishes the relationship between the asso-
ciated quantities defined above. The proof is very similar to that of Propo-
sition 2 and is therefore skipped.

Proposition 6 Let Gn be a guessing function associated with a D-admissible
guessing strategy. There exists an RDC (Cn, fn, Ln) such that ∀ xn ∈ Xn

and δ > 0

LGn(fn(xn))− 1− log cn(δ)
1 + δ

≤ log Gn(xn) ≤ LGn(f(xn))
1 + δ

.

¤

We now establish a relationship between the guessing exponent and the
exponent of moment generating function for compression lengths, under the
distortion setting. For D ≥ 0 and ρ > 0, define the optimal exponential
growth rate of guessing moments to be

E(D, ρ) := lim
n→∞ inf

Gn

1
n

logE[Gn(Xn)ρ], (19)

whenever the limit exists, where the infimum is taken over all D-admissible
guessing strategies Gn with Gn the associated guessing function. Similar to
(5), define the exponent of the moment generating function for compression
lengths (with distortion) as

F(D, ρ) := lim
n→∞ inf

(cn,fn,Ln)

1
nρ

logE[2ρLn(Xn)], (20)

whenever the limit exists, where the infimum is taken over all RDC codes
with distortion within D.

Under the above definitions, we now have the following result analogous
to Proposition 4.

Proposition 7 Let D ≥ 0 and ρ > 0. Suppose that the F(D, ρ) exists and
is continuous in ρ, then E(D, ρ) exists and equals to F(D, ρ). Conversely,
suppose E(D, ρ) exists and is continuous in ρ, then F(D, ρ) exists and equals
to E(D, ρ). ¤
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The proof of the above proposition is easy following the proof of Propo-
sition 4.

We have thus established that the limiting guessing exponent, subject
to distortion, and the problem of identifying the exponent of the moment
generating function for compressed lengths, again subject to distortion, are
identical.
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