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Outline

◮ Basics of BP and BP for optimisation.

◮ BP for the assignment problem.

◮ Steps involved in making it rigorous.

◮ Other problems. Edge cover, traveling salesman problem,
many-to-one matchings, etc.



Belief Propagation (BP)

◮ An iterative and local algorithm for computing the marginal
probabilities of a graphical probability model

◮ Our interest is in probability models on n variables, denoted
x = (x1, . . . , xn), with a certain dependence structure.

p(x1, . . . , xn) = Z−1
∏

a∈F

Qa(xa).

◮ Qa(xa) is a factor indexed by a subset a ⊆ {1, . . . , n} and involves
the variables xa := (xi , i ∈ a).

◮ F is the index set of factors, Z is a normalisation.

◮ Factors specify the dependence structure. Assumed known.

◮ Also called a graphical model or a Markov random field.



Markov chain

p(x1, . . . , xn) = Q1(x1)

n
∏

i=2

Qi ,i−1(xi , xi−1).

◮ Factor indices: {1}, {i , i − 1}i≥2.

◮ Q1(x1) is the initial distribution.

◮ Qi ,i−1(xi , xi−1) is the transition probability matrix for the ith
transition, more commonly written as Qi |i−1(xi |xi−1).

◮ Z = 1.



Graphical model and marginal probabilities
◮ Example. Take n = 3. Each xi is binary. Suppose:

p(x1, x2, x3) ∝

initial beliefs
︷ ︸︸ ︷

Q1(x1) ·Q2(x2) ·Q3(x3) ·

a
︷ ︸︸ ︷

1{x1 = x2} ·

b
︷ ︸︸ ︷

1{x2 = x3}

Variable
nodes

Factor
nodes

x1

x2

x3

a

b

◮ This is a “factor graph” representation of the model, with variable
and factor nodes.

◮ Goal: compute the marginal probability p(x1).



Introducing BP

ax i

◮ If there were no variable nodes but xi , by a suitable renormalisation,
we can think of Qa as probability distributions. Factor a’s “opinion”
on xi ’s distribution.

◮ Then each factor imposes an “external field” on xi , and we get the
marginal as a “compromise”:

p(xi ) = Z−1
∏

a∈F

Qa(xi )

◮ When there are other variable nodes, each factor node should convey
the “effective” external field it will impose on xi .



Introduce a cavity in the system

ax i ax i

◮ Removing factor a and its associated edges breaks this graph into
three components.

◮ Compute the associated variable node distributions, separately, on
each component and pass them to the removed factor node along
the corresponding removed edge.

◮ Then make the factor node pass, to xi , its belief about xi based on
what’s imposed by the other components.

◮ Do this repeatedly, and we have the BP algorithm.



BP : sum-product algorithm

ax i ax i

m
(t)
i→a(xi ) m̂

(t+1)
a→i (xi )

The messages are distributions or beliefs. ya = ((yi ′ , i
′ ∈ a, i ′ 6= i), yi ).

Factor node : m̂
(t+1)
a→i (xi ) = Z−1 ·

∑

ya:yi=xi

Qa(ya)
∏

i ′∼a,i ′ 6=i

m
(t)
i ′→a(yi ′).

Variable node : m
(t)
i→a(xi ) = Z−1 ·

∏

a′∼i ,a′ 6=a

m̂
(t)
a′→i (xi ).

Marginal : p(t)(xi ) = Z−1 ·
∏

a∼i

m̂
(t)
a→i(xi ).



Three natural questions

◮ Does the algorithm converge?

◮ Does it produce the correct answer?

◮ How many iterations?



BP works on trees

Theorem
On a tree of diameter d, BP converges after at most d steps to yield the
correct marginals.

For our initial example ...

x1

x2

x3

a

b

0.9

0.9

0.1 0.1

0.5

81/82

0.9

Converged marginal: p(x1 = 1) = 0.9.



Problems

◮ Loops.

x1

x2

x3

Must agree

Must agree

Must disagree

Locally consistent marginals, a belief of 0.5 for each,
but these cannot be the marginals of any global probability
distribution.

◮ Infinite trees. Nodes very far off, at infinity, may affect the marginal
at a given node.



BP for optimisation

◮ Suppose we want to find the maximum-likelihood configuration:

x∗ = argmax
x

p(x).

◮ Suppose we are able to compute max-marginals:

Mi (xi ) = max
y :yi=xi

p(y).

◮ Procedure to find ML configuration:
◮ Find M1(·). Find x∗

1 .
◮ New graphical model with x1 = x∗

1 . Compute max-marginals M2(·).
Find x∗

2 .
◮ . . .

◮ So it suffices to compute max-marginals.
How can BP be modified to do this?



Max-product algorithm

ax i ax i

m
(t)
i→a(xi ) m̂

(t+1)
a→i (xi )

Factor node : m̂
(t+1)
a→i (xi ) = Z−1 · max

ya :yi=xi



Qa(ya)
∏

i ′∼a,i ′ 6=i

m
(t)
i ′→a(yi ′)



 .

Variable node : m
(t)
i→a(xi ) = Z−1 ·

∏

a′∼i ,a′ 6=a

m̂
(t)
a′→i (xi ).

Max-marginal : M (t)(xi ) = Z−1 ·
∏

a∼i

m̂
(t)
a→i(xi ).



BP works on trees, again

Theorem
On a tree of diameter d, the max-product updates converge after at most
d steps to yield the correct max-marginals (upto a scale factor).

But same issues as before - cycles, infinite trees.



The min-sum algorithm and the energy cavity equations

◮ The log transformation: Ea(xa) := − 1
β
logQa(xa).

◮ By writing the factors Qa(xa) = e−βEa(xa), we see that

p(x) = e−β
∑

a∈F
Ea(xa)

◮ Maximum likelihood configuration is the one that minimises the
“cost” or “energy” function:

E (x) :=
∑

a∈F

Ea(xa)

Ground state.

◮ Replace beliefs by negative log-beliefs in the BP equations, and one
gets what is known as the min-sum algorithm. The associated BP
updates are called energy cavity equations.



Thus far ...

◮ Graphical models and factor graphs

◮ BP for marginals. The sum-product algorithm (via cavity)

◮ Works on trees. Questions when there are loops or the graph is
infinite.

◮ BP for ML. The max-product algorithm

◮ BP for ML. The min-sum algorithm and energy cavity equations.



BP for optimisation : optimal assignment

n jobs n machines

◮ Cij is cost of running job i on machine j .

◮ Goal: Each machine can take at most one job. Assign each job to a
machine so that total cost is minimized.

◮ Minimum weight perfect matching on the weighted Kn,n.
Solvable in (worst-case) O(n3) steps.

◮ On random instances, BP finds a near optimal solution with high
probability in O(n2) steps. Each node executes only O(n) steps.



The history of the assignment problem

◮ Active since the 1930s. König (1931). Randomised setting since the
1960s. Kurtzberg (1962), Walkup (1979), Karp (1987), Goemans
and Kodialam (1989).

◮ 1987. Mezard and Parisi showed via a nonrigorous method that the
expected cost of minimum matching is ζ(2).

◮ 1992. Aldous showed that a limit exists.

◮ 2001. Aldous gave a rigorous proof that limit is ζ(2).

◮ 2005. Aldous and Bandopadhyay on “recursive distributional
equations”.

◮ 2009. Salez and Shah on BP.



Relaxed assignment: the factor graph

◮ Variable aij : 1 if job i assigned to machine j , 0 otherwise

p({aij}) ∝
∏

i,j

e
−βaij (Cij−2γ) ·

∏

i

1







∑

j′

aij′ ≤ 1






·
∏

j

1

{
∑

i′

ai′j ≤ 1

}

◮ As γ → ∞, mass concentrates on perfect matchings
As β → ∞, mass further concentrates on minimum cost perfect
matchings.

n jobs n machines

◮ Variable nodes indexed by ij . Factor nodes indexed by i , j , and ij .

◮ Goal: Sample from the distribution, or find mode (for large γ and β).



BP equations (sum-product)

n jobs n machines

◮ Message from right to left:

Variable node:

mij→i (aij) = Z−1 · m̂j→ij(aij) · e
−βaij(Cij−2γ).

Machine factor node:

m̂j→ij (aij) = Z−1 ·
∑

{ai′ j}i′ :i′ 6=i

1







aij +
∑

i ′:i ′ 6=i

ai ′j ≤ 1







·
∏

i ′:i ′ 6=i

mi ′j→j (ai ′j).

◮ Similarly for message from left to right.

◮ Some simplification is possible.
◮ Variable node updates involve only one nontrivial factor node.
◮ Work with log-likelihoods.



BP equations after simplification

Define: φj→i as below, and φi→j similarly.

φj→i := γ +
1

β
log

(

m̂j→ij (aij = 1)

m̂j→ij (aij = 0)

)

.

The BP equations simplify to the following.

◮ Left to right:

φi→j = −
1

β
log



e−βγ +
∑

j′:j′ 6=j

eβ(−Cij′+φj′→i )





◮ Right to left:

φj→i = −
1

β
log



e−βγ +
∑

i ′:i ′ 6=i

eβ(−Ci′j+φi′→j )







The zero temperature limit

◮ Let γ → ∞ first and then β → ∞, we get:

φi→j = min
j′:j′ 6=j

[Cij′ − φj′→i ]

φj→i = min
i ′:i ′ 6=i

[Ci ′j − φi ′→j ]

◮ Proposal:
◮ Run the BP iterations as above until convergence.
◮ Interpret the converged values to put out the matching.

Each job i is matched to the minimising machine, i.e.,

π(i) = argmin
j

[Cij − φj→i ]

◮ The factor graph is full of loops, and our proposal is full of holes.



Hope in an ensemble viewpoint

◮ Random costs: {Cij} are independent with identical distribution,
e.g., Uniform[0,1]

◮ Beliefs, cavity variables, etc., are now random variables; they depend
on the realisation {Cij}

◮ What is the expected cost of the minimum weight matching?

◮ Further, let network size n → ∞

◮ What is the limiting expected cost of the minimum weight
matching?

◮ We have thrown in more complications. But there is hope in this
random infinite setting.



Loops disappear in an appropriate topology

n jobs n machines

◮ Cij independent and Uniform[0,1]

◮ From a typical job i ’s perspective, typical costs are O(1);
but

E

[

min
j

Cij

]

=
1

n + 1
= O

(

1

n

)

◮ Only links with cost O(1/n) matter



Locally tree-like

◮ Erase all links that cost more than, say, 10000/n

◮ The picture from a typical node, after re-scaling of surviving links

j

◮ Loops disappear in the scale of interest



Locally tree-like on the scaled graph

◮ Alternatively, scale all link costs by n. E.g., Uniform [0, n]

◮ Erase all links that cost more than, this time, ρ = 10000 = O(1)

◮ The picture from a typical node

j

◮ Loops disappear when graph distances of only O(1) are considered

◮ More precisely, Pr{there is no cycle of length ≤ ρ} = 1− O(1/n)



What about number of neighbours of the root?

j

◮ Number of one-hop neighbours within distance ρ:

n
∑

i=1

1{nCji ≤ ρ} = Bin(n, ρ/n) → Poi(ρ)



Local weak limit that describes the local neighbourhood

Theorem
The local neighbourhood from a typical node, on Kn,n with weights
scaled by n, has a limiting distribution identical to local neighbourhood
of root on the Poisson Weighted Infinite Tree (PWIT).

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

The weights x1, x2, · · · are points of a unit rate PPP. Similarly,
independent unit rate PPP at each descendent node.

This notion of convergence is called local weak convergence.



Thus far ...

◮ BP for optimisation.
Want ground states or minimum energy configurations.
Relaxation is to study configuration distribution at positive
temperature.

◮ Assignment problem, BP iterates, and the cavity equations.

◮ Cavity equations at zero temperature.

◮ There are issues related to correctness. Our hope is in an ensemble
view point.

◮ Loops disappear from a local perspective in the O(1) scale. A locally
tree-like structure emerges.

◮ Local weak limit is a Poisson Weighted Infinite Tree (PWIT).



Look for symmetries

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Each of the subtrees T1,T2, . . . are identically distributed, with
distribution identical to that of T .

◮ The distributions of T1,T2, . . . are independent.



The message going downward

root

x 1 x 2 x 3 x j

1 2 3 j

T
1 T

2 T
3 T

j

root

x 1 x 2

x’

x j

1 2 j

T
1 T

2

T’

T
j

Conditioned on a point at x’, the two messages
going downward are statistically identical

root

x 1 x 2 x 3 x j

1 2 3 j

T
1 T

2 T
3 T

j



Solve the problem on the PWIT by exploiting symmetry

◮ The cavity equations on the PWIT are:

φroot = min
j

(xj − φj ) .

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Symmetry: φj are iid, and equal in distribution to φroot .

◮ A recursive distributional equation (RDE).



Recursive distributional equation (RDE)

◮ Let φ1, φ2, . . . be iid ∼ F .

◮ Let x1, x2, . . . be points of a unit rate PPP.

◮ The distribution of φroot = minj{xj − φj} is also F .

◮ RDE : φ
D
= minj{xj − φj}.

Theorem
The unique solution to the above RDE is the logistic distribution
F (t) = 1/(1 + e−t).



Solving the RDE φ
D
= minj (xj − φj)

◮ Let F be the cdf of φ. Then 1− F (t) = Pr{minj(xj − φj) > t}

◮ (xj , φj) are points in R+ × R of a Poisson process P with intensity
dx × dF (ϕ).

◮ φroot > t ⇐⇒ no point in the set A := {(x , ϕ) : x − ϕ ≤ t}.

1− F (t) = Pr{no points in A} = exp

{

−

∫ ∞

0

∫

x−ϕ≤t

dxdF (ϕ)

}

= exp

{

−

∫ ∞

0

dx (1− F (x − t))

}

= exp

{

−

∫ ∞

−t

dx (1− F (x))

}

◮ Differentiate to get F ′(t) = (1− F (−t))(1 − F (t)).

◮ By symmetry of F ′(t) = F (t)(1 − F (t)).

Solution: F (t) = 1/(1 + e−t), logistic distribution



Recursive tree process

u

v

w

O
v -->u

O
w -->v

O
u -->v

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

◮ With an explicit solution to the RDE, we can construct a tree
process of the φ’s on the PWIT

◮ The following holds on every directed edge:

φv→u = min{xv,w − φw→v , w 6= v ,w ∼ v}



Finding a matching on the recursive tree process

u

v

w

O
v -->u

O
w -->v

O
u -->v

◮ Match v to u if

xu,v − φu→v = min{xw,v − φu→v , w ∼ v}

◮ This is equivalent to matching v to the u that satisfies

φu→v + φv→u > xuv

There is a unique such u.

◮ A pleasing symmetry: If u selects v , then v selects u.



This is indeed a consistent matching

u

v

w

O
v -->u

O
w -->v

O
u -->v

To see one way:

xu,v − φu→v = min{xw,v − φw→v , w ∼ v}

< min{xw,v − φw→v , w ∼ v ,w 6= u}

= φv→u .

To see the other way, if z ∼ v and z 6= u, then

xz,v − φz→v > min{xw,v − φw→v , w ∼ v}

= min{xw,v − φw→v , w ∼ v ,w 6= z}

= φv→z .



Two-crucial properties

u

v

w

O
v -->u

O
w -->v

O
u -->v

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ φu→v and φv→u are independent.

◮ Conditioned on the event that there is an edge of length x at u, say
{u, vx}, the quantities φu→vx and φvx→u are independent with the
logistic distribution.



The ζ(2) result

◮ Consider a matching M on Kn,n. New interpretation of total cost.

cost(M) =
∑

e∈M

Ce =
1

n

∑

e∈M

C̃e

=
1

2n

2n
∑

j=1

C̃j,M(j) = E[C̃root,M(root)]

◮ Next compute this expected cost on the optimal matching on the
PWIT tree process.

E[Xroot,M∗(root)] =

∫ ∞

0

x Pr{φ1 + φ2 > x}dx

=
1

2
E[(φ1 + φ2)

2
1{φ1 + φ2 > 0}]

=
1

4
E[(φ1 + φ2)

2] =
1

2
E[φ2

1] =
π2

6
= ζ(2).



Involution invariance

root

x 1 x 2 x 3 x j

1 2 3 j

PWIT T

T
1 T

2 T
3 T

j

◮ Any ordinary matching on T won’t do.

◮ Greedy has an expected cost of 1 < π2/6, but is not allowed.

◮ We must search among matchings M∗ that are limits of M∗
n .

◮ The statistics must be identical when we move to the neighbour on
the best matching, because it is so in the finite graph.

◮ “Involution invariance”.



Thus far ...

◮ 1/4: BP algorithm, BP for optimisation, positive temperature
relaxation, energy cavity equations at positive temperature.

◮ 2/4: The assignment problem, energy cavity equations,
zero-temperature cavity equations, loops but with hope in an
ensemble view, locally tree-like limit object, the PWIT.

◮ 3/4:
◮ Symmetries of the PWIT and the recursive distributional equation

(RDE).

◮ Solution to the RDE, the logistic distribution.

◮ The recursive tree process.

◮ A good matching on the infinite tree, its consistency, involution
invariance.

◮ The local view from ‘root’ and the ζ(2) calculation.



The BP iteration on the tree (and on Kn,n)

u

v

w

O
v -->u

O
w -->v

O
u -->v

◮ Belief propagation algorithm.

Initialization : φ0
u→v ∼ i.i.d. Logistic

Update rule : φ(k+1)
u→v = min

w 6=u

(

Xv,w − φ(k)
w→v

)

Decision rule : M (k)(v) = argmin
(

Xv,w − φ(k)
u→v

)

“Matching” M (k) = ∪v{(v ,M
(k)(v))}.



Correlation decay

Boundary effects

B

◮ The effect of happenings far away should be negligible: need
correlation decay

◮ Example: As distance between root i and the boundary ∂B → ∞,

lim
dist(i ,∂B)→∞

E

[

max
x∂B ,x

′
∂B

|p(aij = 1|x∂B)− p(aij = 1|x ′∂B)|

]

→ 0



Convergence of BP iterates on the PWIT

Theorem

◮ On the PWIT, φroot is a measurable function of the x’s on the tree.
(The RDE is endogenous.)

◮ Convergence of the BP iterates on the PWIT:

Mk
T (root) → M∗

T (root).



Proof via a version of “bivariate uniqueness”
◮ Let Xi be points of a PPP.

◮ For iid φi distributed F , let TF be the distribution of mini{Xi −φi}.

◮ T is a mapping from the space of distributions on R to itself. The
logistic distribution is a fixed point for the T map.

◮ Similarly T (2) map

F (2) ∈ P(R2) 7→ T (2)F (2) = distribution

(

mini{Xi − φ
(1)
i }

mini{Xi − φ
(2)
i }

)

,

where (φ
(1)
i , φ

(2)
i )i≥1 are iid F (2).

◮ Bivariate uniqueness if:

lim
k→∞

(T (2))k (Logistic × Logistic) has Pr{φ(1) = φ(2)} = 1.



Bivariate uniqueness: funnelling through

root root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j



Bivariate uniqueness: funnelling through

root

x 1 x 2 x 3 x j

1 2 3 j

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j



Bivariate uniqueness: funnelling through

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j



Bivariate uniqueness: funnelling through

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

root

x 1 x 2 x 3 x j

x 11 x 1j

1 2 3 j

lim
k→∞

(T (2))k(Logistic × Logistic) has Pr{φ(1) = φ(2)} = 1.



The route to proving correctness

n → ∞

k → ∞

M
(k)
Kn,n

99K99K 99K 99K99K M∗
Kn,n

↓ ↓
↓ ↓
↓ ↓
↓ ↓
↓ ↓

M
(k)
T 99K99K99K99K99K M∗

T

Convergence of BP iterates on the PWIT is the bottom convergence.



Local weak limit of graphs with messages

Theorem
1. Convergences of the kth iterate and the optimal matching:

(a) φ
(k)
u→v (Kn,n) → φ

(k)
u→v (T ) as n → ∞ in probability

(b) Pr
{

(u,M∗
Kn,n

(u)) 6= (u,M∗
T (u))

}

→ 0 as n → ∞.

2. The approximate matching can be turned into a perfect matching with
negligible additional cost.



The route to proving correctness

n → ∞

k → ∞

M
(k)
Kn,n

99K99K 99K 99K99K M∗
Kn,n

↓ ↓
↓ ↓
↓ ↓
↓ ↓
↓ ↓

M
(k)
T 99K99K99K99K99K M∗

T

The downward convergence on the left is of the kth iterate.

The downward convergence on the right is of the optimal matching.

Graphs with marks, and their convergence to respective limit objects.



Approximate to perfect matching

◮ It suffices to solve the continuous relaxation of the assignment
problem.

◮ The adjacency matrix is almost doubly stochastic.

◮ Use this to compute a partial matching over a (1 − ε) fraction of
nodes.

◮ Assign unassigned machines to a well-chosen small subset of already
assigned jobs, and then move the corresponding machines to handle
the unassigned jobs. This can be done at low additional cost.



Matching, Edge cover, TSP, etc.

Let x1, x2, . . . be points of a unit rate Poisson point process.

◮ Matching: φ is a random variable taking values on R with

φ
d
= min

j
(xj − φj) .

◮ Edge cover: φ is a random variable taking values on R+ with:

φ
d
= min

j
(xj − φj)+ .

◮ TSP: φ is a random variable taking values on R with

φ
d
= secondmin

j
(xj − φj ) .

◮ Many-to-one matching, load balancing, etc.



Summary
◮ BP for optimisation via positive temperature relaxation (graphical

model with objective mapping to energy, and an inverse temperature
parameter (or two)).

◮ Cavity equations at positive temperature, and at zero temperature.

◮ An ensemble perspective and passage to a local weak limit.

◮ Locally tree-like structure of the limiting object.

◮ A recursive distributional equation (RDE) and its solution exploiting
the symmetries of the limit object.

◮ Existence of a recursive tree process.

◮ Endogeny to ensure correlation decay.

◮ Convergence of BP iterates on the tree. Pull back to Kn,n.
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