Mean-field Interacting Particle Systems: Limit Laws and Large Deviations

Rajesh Sundaresan and Sarath Yasodharan

Indian Institute of Science and Brown University

SIGMETRICS/PERFORMANCE 2022 10 June 2022

Outline

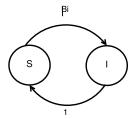
- 1 Model description and the mean-field limit (Rajesh)
- 2 Large deviation from the mean field limit: finite durations and the stationary regime (Sarath)
- 3 Two time-scale systems (Sarath)
- 4 Some interesting phenomena in infinite state space systems (Rajesh)

Section 1

Model description and the mean-field limit

A mean-field SIS epidemic model

- ► Interacting system with *N* individuals
- ▶ Each node's state space: $\mathcal{Z} = \{S, I\}$
- ► Transitions:



- ▶ Dynamics depends on the "mean field". Global interaction. $\mu_N(t) = i$ = fraction of nodes in infectious state
- ► Transition rate from S to I or I to S depends on the fraction of nodes in the infectious state. $\lambda_{S,I}(\mu_N(t)) = \beta i$ and $\lambda_{I,S}(\mu_N(t)) = 1$.

Reversible versus nonreversible dynamics

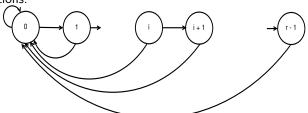
- ► (Reversible) Gibbsian system
 - Example: Heat bath dynamics
 - ▶ State space $\mathcal{Z} = \{0, 2, \dots, r-1\}$
 - Configuration of the N particles $x = (x_1, ..., x_N)$. μ_N : empirical measure
 - ▶ $E(\mu_N)$: Energy of a configuration $x = (x_1, ..., x_N)$ with mean μ_N
 - ▶ An i to j transition takes μ_N to $\mu_N \frac{1}{N}\delta_i + \frac{1}{N}\delta_j$

$$\lambda_{ij}(\mu_N) = \frac{e^{-NE(\mu_N)}}{e^{-NE(\mu_N - \frac{1}{N}\delta_i + \frac{1}{N}\delta_j)} + e^{-NE(\mu_N)}}$$

- ▶ In general, $\lambda_{ij}(\cdot)$ may result in nonreversible dynamics
- Weak interaction

Wireless Local Area Network (WLAN) interactions DCF 802.11 countdown and its CTMC caricature

- N particles accessing the common medium in a wireless LAN
- ▶ Each particle's state space: $\mathcal{Z} = \{0, 1, \dots, r-1\}$



- ► State = # of transmission attempts for head-of-line packet
- r: Maximum number of transmission attempts before discard
- ► Coupled dynamics: Transition rate for success or failure depends on empirical distribution $\mu_N(t)$ of particles across states

Example transition rates

- ► Matrix of rates: $\Lambda(\cdot) = [\lambda_{i,j}(\xi)]_{i,j\in\mathcal{Z}}$.
- Assume three states, $\mathcal{Z} = \{0, 1, 2\}$ or r = 3.
- ▶ Aggressiveness of the transmission $c = (c_0, c_1, c_2)$.
- Conventional wisdom, double the waiting time after every failure, $c_i = c_{i-1}/2$.
- ightharpoonup For μ , the empirical measure of a configuration, the rate matrix is

$$\Lambda(\mu) = \left[\begin{array}{ccc} -(\cdot) & c_0(1-e^{-\langle\mu,c\rangle}) & 0 \\ c_1e^{-\langle\mu,c\rangle} & -(\cdot) & c_1(1-e^{-\langle\mu,c\rangle}) \\ c_2e^{-\langle\mu,c\rangle} & 0 & -(\cdot) \end{array} \right].$$

• "Activity" coefficient $a = \langle \mu, c \rangle$. Probability of no activity $= e^{-a}$.

Mean-field interaction and dynamics

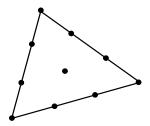
- ► Configuration $X^N(t) = (x_1(t), \dots x_N(t))$.
- **E**mpirical measure $\mu_N(t)$: Fraction of particles in each state
- A particle transits from state i to state j at time t with rate $\lambda_{i,j}(\mu_N(t))$

Studying the time-evolutions

- ▶ Tag a particle, say n_1 . Study $X_{n_1}^{(N)}(\cdot)$. Marginal at n_1 .
- ▶ Tag two particles, say n_1, n_2 . Study $(X_{n_1}^{(N)}(\cdot), X_{n_2}^{(N)}(\cdot))$, marginals at n_1, n_2 .
- ▶ Study $\mu_N(\cdot)$.

The Markov processes, big and small

- $(X_n^{(N)}(\cdot), 1 \le n \le N)$, the trajectory of all the *n* nodes, is Markov
- Study $\mu_N(\cdot)$ instead, also a Markov process Its state space size is the set of empirical probability measures on N particles with state space \mathcal{Z} .



▶ Then try to draw conclusions on the original process.

The smaller Markov process $\mu_N(\cdot)$

- ► A Markov process with state space being the set of empirical measures of *N* nodes.
- ▶ This is a measure-valued flow across time.
- ▶ The transition $\xi \leadsto \xi + \frac{1}{N}e_j \frac{1}{N}e_i$ occurs at rate $N\xi(i)\lambda_{i,j}(\xi)$.
- ▶ For large N, changes are small, O(1/N), at higher rates, O(N). Individuals are collectively just about strong enough to influence the evolution of the measure-valued flow.
- ▶ Fluid limit : μ_N converges to a deterministic limit given by an ODE.

The conditional expected drift in μ_N

▶ Recall $\Lambda(\cdot) = [\lambda_{i,i}(\cdot)]$ without diagonal entries. Then

$$\lim_{h\downarrow 0} \frac{1}{h} \mathbb{E} \left[\mu_N(t+h) - \mu_N(t) \mid \mu_N(t) = \xi \right] = \Lambda(\xi)^T \xi$$

with suitably defined diagonal entries.

An interpretation

▶ The rate of change in the *k*th component is made up of increase

$$\sum_{i:i\neq k} (N\xi_i) \cdot \lambda_{i,k}(\xi) \cdot (+1/N)$$

and decrease

$$(N\xi_k)\sum_{i:i\neq k}\lambda_{k,i}(\xi)(-1/N).$$

▶ Put these together:

$$\sum_{i:i\neq k} \xi_i \lambda_{i,k}(\xi) - \xi_k \sum_{i:i\neq k} \lambda_{k,i}(\xi) = \sum_i \xi_i \lambda_{i,k}(\xi) = (\Lambda(\xi)^T \xi)_k.$$

The conditional expected drift in μ_N

▶ Recall $\Lambda(\cdot) = [\lambda_{i,j}(\cdot)]$ without diagonal entries. Then

$$\lim_{h\downarrow 0} \frac{1}{h} \mathbb{E} \left[\mu_N(t+h) - \mu_N(t) \mid \mu_N(t) = \xi \right] = \Lambda(\xi)^T \xi$$

with suitably defined diagonal entries.

▶ Anticipate that $\mu_N(\cdot)$ will solve (in the large N limit)

$$\dot{\mu}(t) = \Lambda(\mu(t))^T \mu(t), \quad t \ge 0$$
 [McKean-Vlasov equation] $\mu(0) = \nu$

Nonlinear ODE.

ODE preliminaries

$$\dot{\mu}(t) = F(\mu(t)), \quad t \ge 0$$
 $\mu(0) = \nu$

- $ightharpoonup C([0,T],\mathbb{R}^r)$: space of continuous functions from [0,T] to \mathbb{R}^r .
- ► Can define a norm and a distance on this space:

$$\|\mu\| = \sup_{t \in [0,T]} \|\mu(t)\|$$

 $d_T(\mu,\xi) = \|\mu - \xi\|.$

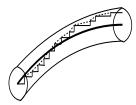
- $C([0,\infty),\mathbb{R}^r)$ with metric $d(\mu,\xi) = \sum_{T=1}^{\infty} 2^{-T} (d_T(\mu|_T,\xi|_T) \wedge 1)$.
- An ODE is well-posed if
 - For each $\nu \in \mathbb{R}^r$, the ODE has a unique solution $\mu(\cdot)$ on $[0,\infty)$
 - ▶ The mapping $\nu \mapsto \mu(\cdot) \in C([0,\infty),\mathbb{R}^r)$ is continuous.

Theorem

If F is Lipschitz, then the ODE is well-posed, and the solution can be written as $\mu(t) = \nu + \int_0^t F(\mu(s)) ds$ for $t \in \mathbb{R}_+$.

Convergence in probability

- ho $\mu_N(\cdot)$ a sample path (random) while $\mu(\cdot)$ some deterministic or random path
- ▶ Fix T. View $\mu_N(\cdot)$ (interpolated) and $\mu(\cdot)$ as elements of $C([0,T],\mathcal{M}_1(\mathcal{Z}))$.
- We say $\mu_N(\cdot) \to \mu(\cdot)$ if for every $\varepsilon > 0$, we have $\Pr\{d_T(\mu_N(\cdot), \mu(\cdot)) > \varepsilon\} \to 0 \text{ as } N \to \infty$
- ▶ This is the same as asking that the path $\mu_N(\cdot)$ remains within any ε-tube of $\mu(\cdot)$ with probability approaching 1 as $N \to \infty$.



A limit theorem

Theorem

Suppose that the initial empirical measure $\mu_N(0) \stackrel{P}{\to} \nu$, where ν is deterministic.

Assume each $\lambda_{i,j}(\cdot)$ is Lipschitz in its argument. Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics with initial condition $\mu(0) = \nu$.

Then $\mu_N(\cdot) \stackrel{p}{\to} \mu(\cdot)$.

Technicalities:

▶ Fix T > 0 and $\varepsilon > 0$. We will argue

$$\Pr\{d_T(\mu_N, \mu) > \varepsilon\} \leq \Pr\{\|\mu_N(0) - \mu(0)\| > \varepsilon/(2e^{MT})\} + C_1 \exp\{-NT\overline{\lambda}h(\varepsilon/(C_2Te^{MT}))\}$$

where M is the Lipschitz constant of the driving function, $\overline{\lambda}$ is the max of the transition rates, and $h(t) = (1+t)\ln(1+t) - t$, t > -1.

Back to the individual nodes

- Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics
- Choose a node uniformly at random, and tag it.
 - \blacktriangleright $\mu_N(\cdot)$ is the distribution for the state of the tagged node at time t.
 - ▶ As $N \to \infty$, the limiting distribution is then $\mu(t)$

Joint evolution of tagged nodes

Theorem

Fix t, k. Tag k nodes at random.

Let $(X_n^{(N)}(0), 1 \le n \le N)$ be exchangeable and let $\mu_N(0) \stackrel{d}{\to} \nu$, a fixed limiting initial condition. Assume all transition rates are Lipschitz functions. Then

$$(X_{n_1}^{(N)}(t),\ldots,X_{n_k}^{(N)}(t)) \stackrel{d}{\to} (U_1,\ldots,U_k)$$

where U_1, \ldots, U_k are iid with distribution $\mu(t)$.

- ▶ If the interaction is only through $\mu_N(t)$, and this converges to a deterministic $\mu(t)$, the transition rates are just $\lambda_{i,j}(\mu(t))$.
- Each of the k nodes is then executing a time-dependent Markov process with transition rate matrix $\Lambda(\mu(t))$.
- Asymptotically, no interaction (decoupling). The node trajectories are (asymptotically) iid (i.e., $\mu(t) \otimes \cdots \otimes \mu(t)$).

Stationary regime

Interest in large time behaviour for a finite N system: $\lim_{t\to\infty} \mu_N(t)$. If N is large, we really want:

$$\lim_{N\to\infty}\left[\lim_{t\to\infty}\mu_N(t)\right].$$

▶ Idea: Try to predict where the system will settle from the following:

$$\lim_{t\to\infty}\left[\lim_{N\to\infty}\mu_N(t)
ight]=\lim_{t\to\infty}\mu(t).$$

A fixed-point analysis

Solve for the rest point of the dynamical system: $\dot{\mu}(t) = \Lambda(\mu(t))^T \mu(t)$, i.e., solve for ξ in

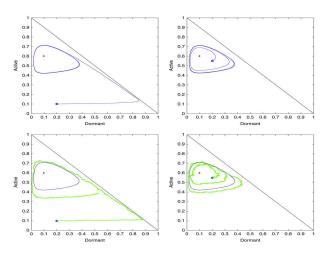
$$\Lambda(\xi)^T \xi = 0.$$

- If the solution is unique, say ξ^* , predict that the system will settle down at $\xi^* \otimes \xi^* \otimes \ldots \otimes \xi^*$.
- Works very well for the exponential backoff.
- Another example in the next slide

SIS system and "herd immunity"

- Normalise time so that recovery rate is 1. Assume that the contact rate is β .
- ▶ In this normalisation, $\beta = R_0$ of the infection.
- ▶ The model is $\dot{\mu}_1(t) = \beta \mu_1(t)(1 \mu_1(t)) \mu_1(t)$, with $\mu(0) = \nu$.
- ▶ Rest points ξ^* solve $\beta \xi^* (1 \xi^*) \xi^* = 0$
- $\xi^* = 0$ or $\xi^* = 1 1/\beta$ (not every one in infected state).

Issues: A malware propagation example from Benaim and Le Boudec 2008



- ▶ The fixed point is unique, but unstable.
- ► All trajectories starting from outside the fixed point, and all trajectories in the finite *N* system, converge to the stable limit cycle.

A sufficient condition when the method works

Theorem

Assume that the transition graph forms one communicating class and assume Lipschitz rates.

Let $\mu_N(0) \rightarrow \nu$ in probability.

Let the ODE have a (unique) globally asymptotically stable equilibrium ξ^* with every path tending to ξ^* .

Then $\mu_N(\infty) \stackrel{d}{\to} \xi^*$.

It is not enough to have a unique fixed point ξ^* . But if that ξ^* is globally asymptotically stable, that suffices.

A sufficient condition

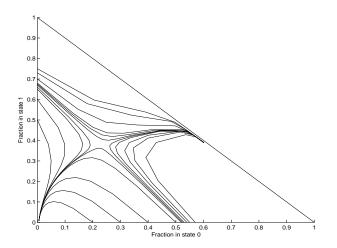
A lot of effort has gone into identifying when we can ensure a globally asymptotic stable equilibrium.

Theorem

If c is such that $\langle \xi, c \rangle < 1$ for all ξ , then the rest point ξ^* of the dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with $c_0 < 1$.

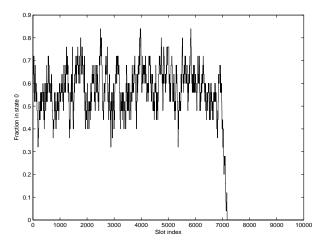
The case of multiple stable equilibria for the ODE



- ▶ Different parameters: c = (0.5, 0.3, 8.0).
- There are two stable equilibria.

 One near (0.6, 0.4, 0.0) and another near (0, 0, 1).

The case of multiple stable equilibria: metastability



Fraction of nodes in state 0 is near 0.6 for a long time, but then moves to 0, and in a sequence of rapid steps.

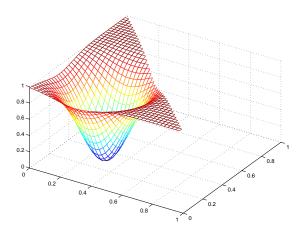
The reverse move is a lot less frequent.

A selection principle: Preview to the second hour

- If unique globally asymptotically stable equilibrium ξ^* , then $\mu_N(\infty) \stackrel{d}{\to} \xi^*$. (Limit law).
- ▶ If we encounter multiple stable limit sets, look at probability of a large deviation.
- ► Characterise the exponent in

$$\Pr\{\mu_N(\infty) \in \text{ neighbourhood of } \xi\} \sim \exp\{-NV(\xi)\}.$$

- ▶ The locations $\{\xi: V(\xi) = 0\}$ should "select" the correct limit set.
- $V(\xi)$ is called a quasipotential (Freidlin-Wentzell).

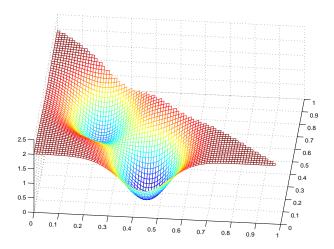


The case of a (unique) globally asymptotically stable equilibrium for the McKean-Vlasov dynamics: $V(\xi^*)=0$.



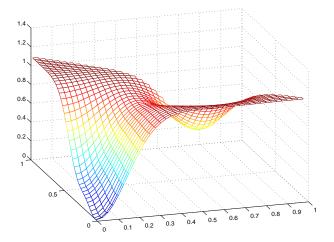
The case of a unique but unstable rest point. $V(\xi^*) > 0$.

All trajectories converge to the stable limit cycle.



The case of two stable equilibria.

The selection is the one that has the deepest shade of blue $(V(\xi_1^*) = 0)$.



A qualitative picture for the case c = (0.5, 0.3, 8.0).

The two stable points are (0.6, 0.4, 0.0) and (0.0, 0.0, 1.0). The latter is a truer representative of the large time behaviour.

Proofs: First Kurtz's theorem

Theorem

Suppose that the initial empirical measure $\mu_N(0) \stackrel{p}{\to} \nu$, where ν is deterministic.

Assume each $\lambda_{i,j}(\cdot)$ is Lipschitz in its argument. Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics with initial condition $\mu(0) = \nu$.

Then
$$\mu_N(\cdot) \stackrel{p}{\to} \mu(\cdot)$$
.

Technicalities:

Fix T > 0 and $\varepsilon > 0$. We will argue

$$\Pr\{d_{\mathcal{T}}(\mu_{N}, \mu) > \varepsilon\} \leq \Pr\{\|\mu_{N}(0) - \mu(0)\| > \varepsilon/(2e^{MT})\} + C_{1} \exp\{-NT\overline{\lambda}h(\varepsilon/(C_{2}Te^{MT}))\}$$

where M is the Lipschitz constant of the driving function, $\overline{\lambda}$ is the max of the transition rates, and $h(t) = (1+t)\ln(1+t) - t$, t > -1.

Proofs: Proof of Kurtz's theorem

- ▶ Time change. Let $M(\cdot)$ be a unit rate Poisson point process (PPP). Then $M(\int_0^s \lambda(s)ds)$ is a time-inhomogeneous PPP with instantaneous rate $\lambda(\cdot)$.
- ▶ Let $(M_{i,j}(\cdot))_{i,j}$ be independent unit-rate PPP.

$$\mu_{N}(t) = \mu_{N}(0) + \sum_{i,j} \left(\frac{\delta_{j} - \delta_{i}}{N} \right) M_{i,j} \left(\int_{0}^{t} N \mu_{N}(s)(i) \lambda_{i,j}(\mu_{N}(s)) ds \right)$$
$$= \mu_{N}(0) + \int_{0}^{t} F(\mu_{N}(s)) ds + \sum_{i,j} \left(\frac{\delta_{j} - \delta_{i}}{N} \right) \overline{M}_{i,j} (\cdot)$$

- Martingale noise $\overline{M}_{i,j}(t)$ is of the form $M_{i,j}(t) t$
- By triangle inequality and Lipschitz,

$$\|\mu_N(t) - \mu(t)\| \le \|\mu_N(0) - \mu(0)\| + \int_0^t \|F(\mu_N(s)) - F(\mu(s))\| ds + \|\text{noise}\|$$

$$\le \|\mu_N(0) - \mu(0)\| + M \int_0^t \|\mu_N(s)) - \mu(s)\| ds + \|\text{noise}\|$$

Then Poisson concentration and Gronwall.

Proofs: Marginal

 $X_{n_1}^{(N)}(t) \stackrel{d}{\to} U_1$ where U_1 is a random variable with distribution $\mu(t)$.

- ▶ Take any bounded test function ϕ on \mathcal{Z} .
- ▶ Suffices to show $\mathbb{E}[\phi(X_{n_1}^{(N)}(t))] \to \mathbb{E}[\phi(U_1)]$

$$\mathbb{E}[\phi(X_{n_1}^{(N)}(t))] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}\phi(X_n^{(N)}(t))\right]$$
$$= \mathbb{E}\left[\langle\mu_N(t),\phi\rangle\right]$$
$$\to \langle\mu(t),\phi\rangle$$
$$= \mathbb{E}[\phi(U_1)]$$

Proofs: Double marginal

 $(X_{n_1}^{(N)}(t), X_{n_2}^{(N)}(t)) \stackrel{d}{\to} (U_1, U_2)$, where U_1 and U_2 are iid $\sim \mu(t)$.

- ▶ Take any two bounded test functions ϕ_1 and ϕ_2 on \mathcal{Z} .
- ▶ Suffices to show $\mathbb{E}[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t)] \to \mathbb{E}[\phi_1(U_1)] \ \mathbb{E}[\phi_2(U_2)]$

$$egin{aligned} \mathbb{E}[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))] &- \mathbb{E}[\phi_1(U_1)] \ \mathbb{E}[\phi_2(U_2)] \ &= \ \mathbb{E}\left[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))
ight] - \mathbb{E}\left[\prod_{l=1}^2 \langle \mu_N(t), \phi_l
angle
ight] \end{aligned}$$

$$+\mathbb{E}\left[\prod_{l=1}^2\langle\mu_N(t),\phi_l
angle
ight]-\mathbb{E}\left[\phi_1(\mathit{U}_1)
ight]~\mathbb{E}\left[\phi_2(\mathit{U}_2)
ight]$$

$$= \mathbb{E}\left[\frac{1}{N(N-1)}\sum_{n_1\neq n_2}\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))\right] \\ -\mathbb{E}\left[\left(\frac{1}{N}\sum_{l}\phi_1(X_{n_1}^{(N)}(t))\right)\left(\frac{1}{N}\sum_{l}\phi_2(X_{n_2}^{(N)}(t))\right)\right]$$

$$+\mathbb{E}\left[\prod_{l=1}^2\langle\mu_{N}(t),\phi_{l}
angle
ight]-\prod_{l=1}^2\langle\mu(t),\phi_{l}
angle$$

Proofs: Globally asymptotically stable equilibrium and stationary regime

Globally asymptotically stable equilibrium $\Rightarrow \mu_N(\infty) \stackrel{d}{\to} \xi^*$.

- $ightharpoonup \pi_N := Law(\mu_N(0))$, invariant measure. Then $\pi_N = Law(\mu_N(t))$ also.
- ▶ Compactness implies subsequential limits $\pi_{N_t} \to \pi$.
- $\blacktriangleright \ \pi = \pi \circ \Phi_t^{-1}$, under the McKean-Vlasov flow Φ_t
- ▶ Compactness of the space, Liapunov stability, Gronwall implies that for every $\varepsilon > 0$, there is a T such that $\forall t > T$, we have support of $(\pi \circ \Phi_t^{-1}) \subset B_{\varepsilon}(\xi^*)$ for all t > T.
- ▶ So support of π is within a ball of ε around ξ^* .
- $\varepsilon > 0$ is arbitrary. So support of π is $\{\xi^*\}$ and $\pi = \delta_{\xi^*}$, unique.

Section 2

Large deviations of mean-field models

Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 2: Large Deviations of Mean-Field Models

SIGMETRICS/PERFORMANCE 2022

Recall the mean-field model

▶ *N* particles. The state of the *n*th particle is $X_n^N(t) \in \mathcal{Z}$. The empirical measure at time *t* is

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)}.$$

- ▶ An $i \rightarrow j$ transition occurs at rate $\lambda_{i,j}(\mu_N(t))$.
- ► The McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \ge 0.$$

• We will now quantify various rare events associated with $\{\mu_N\}$.

Outline of Section 2

- An introduction to large deviations.
 - Basic definitions, some examples.
- ▶ Process-level large deviations of the family $\{\mu_N\}$.
 - ► A change of measure argument.
- ▶ Large deviations of the invariant measure of μ_N .

A primer on large deviations

Large deviation principle (LDP)

- Let S be a complete and separable metric space. Let $\{X_N, N \ge 1\}$ be a sequence of S-valued random variables.
- ▶ Roughly, $P(X_N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.
- ▶ Here, $I: S \to [0, \infty]$ is called the rate function.

Large deviation principle (LDP)

Definition

 $\{X_N, N \geq 1\}$ is said to satisfy the LDP on S with rate function I if

- (Compactness of level sets). For any $s \ge 0$, $\Phi(s) := \{x \in S : I(x) \le s\}$ is a compact subset of S;
- (LDP lower bound). For any $\gamma > 0$, $\delta > 0$, and $x \in S$, there exists $N_0 \ge 1$ such that

$$P(d(X_N, x) < \delta) \ge \exp\{-N(I(x) + \gamma)\}$$

for any $N \geq N_0$;

• (LDP upper bound). For any $\gamma > 0$, $\delta > 0$, and s > 0, there exists $N_0 \ge 1$ such that

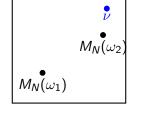
$$P(d(X_N, \Phi(s)) \ge \delta) \le \exp\{-N(s-\gamma)\}$$

for any $N \geq N_0$.

Example: Sanov's theorem

- Let S be a Polish space. Let μ be a probability measure on S.
- Let X_1, X_2, \ldots, X_N be i.i.d. μ .
- ▶ Define the empirical measure

$$\mu_N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$



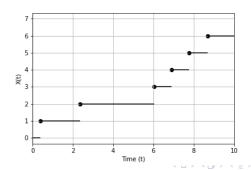
- ► This is an $\mathcal{M}_1(S)$ -valued random variable.
- ▶ By the weak law of large numbers, $\mu_N \to \mu$ in $\mathcal{M}_1(S)$ as $N \to \infty$, in probability.
- ▶ But there is a positive probability for μ_N to be close to $\nu \neq \mu$.

Theorem (Sanov)

 $\{\mu_N, N \geq 1\}$ satisfies the LDP on $\mathcal{M}_1(S)$ with rate function $I(\cdot||\mu)$.

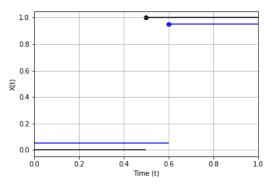
The *D*-space

- ▶ Let *S* be a complete and seperable metric space.
- Fix T > 0. Let D([0, T], S) denote the space of S-valued functions on [0, T] that are
 - ▶ Right continuous at each $t \in [0, T)$, and
 - ▶ Possesses left limits at each $t \in (0, T]$.
- **Examples**:
 - All continuous functions on [0, T].
 - Trajectories of a Poisson point process.



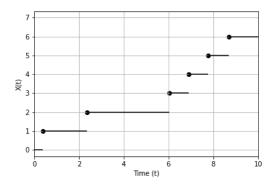
The *D*-space

► We can define a distance function on *D* that takes into account small time perturbations.



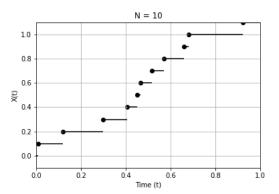
▶ Under this metric, *D* is a complete and seperable metric space.

Consider the unit rate Poisson point process X(t) for $t \in [0, T]$.

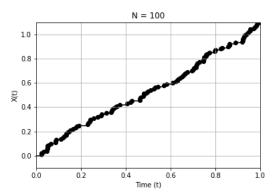


▶ X is a $D([0, T], \mathbb{R})$ -valued random variable.

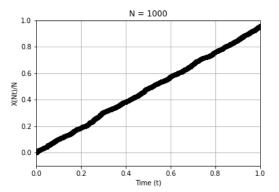
Consider the time-scaled and amplitude-scaled process: $\frac{1}{N}X(Nt)$.



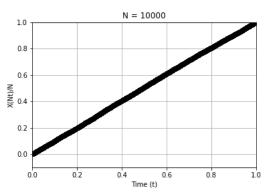
Consider the time-scaled and amplitude-scaled process: $\frac{1}{N}X(Nt)$.



Consider the time-scaled and amplitude-scaled process: $\frac{1}{N}X(Nt)$.



Consider the time-scaled and amplitude-scaled process: $\frac{1}{N}X(Nt)$.



► The process $\frac{1}{N}X(Nt)$ is a small random perturbation of the ODE

$$\dot{x}(t) = 1, x(0) = 0, t \in [0, 1].$$

• Question: probability that $\frac{1}{N}X(Nt)$ tracks a given function φ ?

▶ One can show that $\{\frac{1}{N}X(Nt), N \ge 1\}$ satisfies the LDP on $D([0, T], \mathbb{R})$ with rate function

$$S(\varphi) = \int_{[0,T]} \tau^*(\dot{\varphi}(t) - 1) dt,$$

if $t \mapsto \varphi(t)$ is absolutely continuous, increasing, and $\varphi(0) = 0$; $S(\varphi) = \infty$ otherwise.

► Here,

$$\tau^*(x) = \begin{cases} (x+1)\log(x+1) - x, & \text{if } x \ge -1, \\ \infty, & \text{if } x < -1. \end{cases}$$

A closer look at the rate function

$$S(\varphi) = \int_{[0,T]} \tau^*(\dot{\varphi}(t) - 1) dt.$$

 $ightharpoonup au^*$ is the convex dual of $au(u)=e^u-u-1,\ u\in\mathbb{R};$

$$\tau^*(t) = \sup_{u} (ut - \tau(u)), \ t \in \mathbb{R}.$$

So,

$$S(\varphi) = \int_{[0,T]} \sup_{u} (u(\dot{\varphi}(t)-1) - \tau(u)) dt.$$

Such variational forms will appear later.

Contraction principle

- ▶ S, T are metric spaces. $f: S \to T$ is continuous.
- ▶ $\{X_N\}$ s are S-valued random variables. Define $Y_N = f(X_N)$.

Theorem (Contraction Principle)

If $\{X_N\}$ satisfies the LDP with rate function I, then $\{Y_N\}$ satisfies the LDP with rate function

$$J(y) = \inf_{x \in S: y = f(x)} I(x).$$

A new LDP from change of measure

- ▶ Let $\{P_N\}$ satisy the LDP with rate function I.
- ightharpoonup Let Q_N be such that

$$\frac{dQ_N}{dP_N}(x) = \exp\{Nf(x)\},\,$$

for some $f: S \to \mathbb{R}$, bounded and continuous.

- Additionally, suppose that $\{Q_N\}$ is exponentially tight: Given M>0, there exists a compact set K_M such that $Q_N(K_M^c) \leq \exp\{-NM\}$ for all N.
- ▶ Then, $\{Q_N\}$ satisfies the LDP with rate function I(x) f(x).

A new LDP from change of measure

▶ Lower bound: For $x \in S$ and $\delta > 0$,

$$Q_{N}(d(X_{N},x) < \delta) = E^{Q_{N}}(\mathbf{1}_{\{X_{N} \in B(x,\delta)\}})$$

$$= E^{P_{N}}(\exp\{Nf(X_{N})\}\mathbf{1}_{\{X_{N} \in B(x,\delta)\}})$$

$$\geq \exp\{N(f(x) - \varepsilon)\}P_{N}(X_{N} \in B(x,\delta))$$

$$\geq \exp\{-N(I(x) - f(x) + 2\varepsilon)\}.$$

Upper bound: For a closet set F,

$$Q_N(F) \le Q_N(K_M^c) + Q_N(F \cap K_M)$$

$$\le \exp\{-NM\} + Q_N(F \cap K_M).$$

Since $F \cap K_M$ is compact, we can cover it using a finite number of balls. For the *i*th ball,

$$Q_N(\overline{B}(x_i,\delta)) \le \exp\{-N(I(x)-f(x)-\varepsilon)\}.$$



Varadhan's lemma

Theorem

Let $f: S \to \mathbb{R}$ be bounded and continuous. Suppose that $\{X_N\}$ satisfies the LDP with rate function 1. Then

$$\lim_{N\to\infty}\frac{1}{N}\log E(\exp\{Nf(X_N)\})=\sup_{x\in S}(f(x)-I(x)).$$

- ▶ By the LDP, $E(\exp\{Nf(X_N)\}\mathbf{1}_{\{X_N\sim x\}}) \sim \exp\{Nf(x)\}\exp\{-NI(x)\}.$
- ▶ The leading terms in the expectation are those $x \in S$ for which f(x) I(x) is the largest.

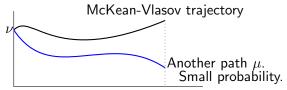
Large deviations of the empirical measure process

Recall the empirical measure process

- $ightharpoonup \mu_N(t)
 ightarrow \mu_N(t) + rac{\delta_j}{N} rac{\delta_i}{N}$ at rate $N\mu_N(t)(i)\lambda_{i,j}(\mu_N(t))$.
- Recall the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \geq 0.$$

- From Section 1, if $\mu_N(0) \to \nu$ in $\mathcal{M}_1(\mathcal{Z})$, then $\mu_N(\cdot) \to \mu(\cdot)$ in $D([0,T],\mathcal{M}_1(\mathcal{Z}))$, in probability.
- ▶ We now present the large deviations of μ_N .



Large deviations of μ_N

Theorem

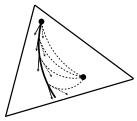
Let $\mu_N(0) \to \nu$ in $\mathcal{M}_1(\mathcal{Z})$. Then μ_N satisfies the LDP on $D([0,T],\mathcal{M}_1(\mathcal{Z}))$ with rate function $S_{[0,T]}(\cdot|\nu)$ defined as follows. If $\mu_0 = \nu$ and $[0,T] \ni t \mapsto \mu_t \in \mathcal{M}_1(\mathcal{Z})$ is absolutely continuous,

$$S_{[0,T]}(\mu|\nu) = \int_{[0,T]} \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left\{ \langle \alpha, \dot{\mu}_t - \Lambda(\mu_t)^T \mu_t \rangle - \sum_{(i,j) \in \mathcal{E}} \tau(\alpha(j) - \alpha(i)) \lambda_{i,j}(\mu_t) \mu_t(i) \right\} dt,$$

else
$$S_{[0,T]}(\mu|\nu)=\infty$$
. Here, $\tau(u)=e^u-u-1$.

An interpretation of the rate function

• Consider a path $\dot{\mu}_t = G(t)^T \mu_t$.



- ▶ In a small time around t, for an $i \rightarrow j$ transition,
 - ▶ The usual rate is Bernoulli($p = \lambda_{i,j}(\mu(t))dt$).
 - ▶ The new rate is Bernoulli($q = G_{i,j}(t)dt$).
- By Sanov's theorem, the infinitesimal cost of this change is

$$I(\mathsf{Bernoulli}(q) || \mathsf{Bernoulli}(p)) = \left(q \log \frac{q}{p} - q + p \right).$$

Accumulate these costs over [0, T] to get the rate function.

LDP for $\{\mu_N\}$ – proof sketch

- ► Consider a system of non-interacting particles.
 - $ightharpoonup \lambda_{i,j}(\xi) = 1$ for all $\xi \in \mathcal{M}_1(\mathcal{Z})$ and $(i,j) \in \mathcal{E}$.
- Define the empirical measure on paths

$$\overline{\mu}_{N} = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}}.$$

- ▶ This is a $\mathcal{M}_1(D([0,T],\mathcal{Z}))$ valued random variable.
 - $ightharpoonup \overline{\mu}_{N}(t) = \overline{\mu} \circ \pi_{t}^{-1}$, where π_{t} is the projection mapping

$$D([0,T],\mathcal{Z})\ni \varphi\mapsto \varphi(t)\in \mathcal{M}_1(\mathcal{Z}).$$

- Let \bar{P}_z denote the law of a particle starting at z.
- ▶ If $X_n^N(0) = z$ for all n, then by Sanov's theorem, $\{\overline{\mu}_N\}$ satisfies the LDP with rate function $Q \mapsto I(Q || \overline{P}_z)$.

LDP for $\{\mu_N\}$ – proof sketch

▶ When $\overline{\mu}_N(0) \to \nu$, then a generalisation of Sanov's theorem gives the LDP for $\{\overline{\mu}_N\}$ with rate function

$$J(Q) = \sup_{f \in C_b(D)} \left[\int_D f dQ - \sum_{z \in \mathcal{Z}} \nu(z) \log \int_D e^f d\overline{P}_z \right]$$

(Dawson and Gärtner, 1987).

- ▶ In particular, when $\nu = \delta_z$, $J(Q) = I(Q \| \bar{P}_z)$.
- ▶ By Jensen's inequality, $J(Q) \ge I(Q \| \sum_{z} \nu(z) \bar{P}_{z})$.

A change of measure

- ▶ Consider two probability measures: $P \sim \text{Poisson}(\lambda_1)$, and $Q \sim \text{Poisson}(\lambda_2)$.
- We have

$$P(k) = \frac{\lambda_1^k \exp\left\{-\lambda_1\right\}}{k!}, \ k \ge 0,$$

and similarly Q(k).

► So,

$$\frac{Q(k)}{P(k)} = \left(\frac{\lambda_2}{\lambda_1}\right)^k \exp\{-(\lambda_2 - \lambda_1)\}$$
$$= \exp\left\{k \log\left(\frac{\lambda_2}{\lambda_2}\right) - (\lambda_2 - \lambda_1)\right\}.$$

A change of measure

- More generally, let P (resp. Q) be the law of the Poisson point process with rate λ_1 (resp. λ_2).
- ▶ Both P and Q are probability measures on $D([0, T], \mathbb{Z}_+)$.
- By Girsanov's theorem,

$$\frac{dQ}{dP}(x) = \exp\left\{\sum_{0 \le t \le T} \mathbf{1}_{\{x_t \ne x_{t-}\}} \log\left(\frac{\lambda_2}{\lambda_1}\right) - \int_{[0,T]} (\lambda_2 - \lambda_1) dt\right\},\,$$

for
$$x \in D([0, T], \mathbb{Z}_+)$$
.

LDP for $\{\mu_N\}$ – proof sketch

- Let \mathbb{P}_N (resp. $\overline{\mathbb{P}}_N$) be the law of the interacting (resp. non-interacting) system.
- ▶ By Girsanov's theorem,

$$rac{d\mathbb{P}_{N}}{d\overline{\mathbb{P}}_{N}}(Q)=\exp\{\mathit{Nh}(Q)\},\,Q\in\mathcal{M}_{1}(D),$$

where,

$$h(Q) = \int_D h_1(x, Q) Q(dx),$$

$$egin{aligned} h_1(x,Q) &= \sum_{0 \leq t \leq T} \mathbf{1}_{\{x_t
eq x_{t-}\}} \log \lambda_{x_{t-},x_t}(Q(t-)) \ &- \int \sum_{j:(x_{t-},j) \in \mathcal{E}} (\lambda_{x_{t-},j}(Q(t-))-1) dt. \end{aligned}$$

LDP for $\{\mu_N\}$ – proof sketch

- ▶ However, *h* is neither bounded nor continuous.
- ▶ Consider a subspace of $\mathcal{M}_1(D)$:

$$M_{1,\varphi}(D) = \left\{Q \in \mathcal{M}_1(D) : \int_D \varphi dQ < \infty\right\},$$

where, $\varphi: D \to \mathbb{R}_+$ is the function $\varphi(x) = \sum_{0 \le t \le T} \mathbf{1}_{\{x_t \ne x_{t-}\}}$.

- ▶ Show that h is continuous at all points in $M_{1,\varphi}(D)$.
- ► Then show that $\{\gamma_N\}$ satisfies the LDP with rate function $Q \mapsto J(Q) h(Q)$.
- ▶ By the contraction principle, $\{\mu_N(t)\}$ satisfies the LDP with rate function $S_{[0,T]}(\cdot|\nu)$.

Large deviations in the stationary regime

The unique attractor case

- ▶ Recall the empirical measure process μ_N . Let \wp_N be its unique invariant probability measure.
- $\triangleright \wp_N$ is the law of $\mu_N(\infty)$. It is a probability measure on $\mathcal{M}_1(\mathcal{Z})$.
- Recall the McKean-Vlasov equation

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \ge 0.$$

- Suppose that ξ^* is the unique globally asymptotically stable equilibrium of the McKean-Vlasov equation.
- ► From Section 1, $\mu_N(\infty)$ converges to ξ^* in distribution as $N \to \infty$.
- ▶ We now study the large deviations of $\{\wp_N\}$.

LDP for the terminal time

- ▶ Consider the random variable $\mu_N(T)$.
- The mapping

$$D([0,T],\mathcal{M}_1(\mathcal{Z}))\ni \varphi\mapsto \varphi(T)\in \mathcal{M}_1(\mathcal{Z})$$

is continuous.

▶ Let $\mu_N(0) \rightarrow \nu$. By the contraction principle, $\{\mu_N(T)\}$ satisfies the LDP with rate function

$$S_T(\xi|\nu) = \inf\{S_{[0,T]}(\mu|\nu) : \mu(0) = \nu, \mu(T) = \xi\}.$$

LDP for the joint law $(\mu_N(0), \mu_N(T))$

- ▶ So far, we assumed $\mu_N(0) \rightarrow \nu$.
- Suppose we start at stationarity, i.e., the law of $\mu_N(0)$ is \wp_N . Then the law of $\mu_N(T)$ is also \wp_N .
- ► Consider $(\mu_N(0), \mu_N(T))$.
- Suppose that \wp_N satisfies the LDP with rate function V. Then, under some conditions, the joint law $(\mu_N(0), \mu_N(T))$ satisfies the LDP with rate function

$$(\nu,\xi)\mapsto V(\nu)+S_T(\xi|\nu)$$

A recursion for the rate function

- ▶ Suppose that \wp_N satisfies the LDP with rate function V.
- ▶ We have that $(\mu_N(0), \mu_N(T))$ satisfies the LDP with rate function

$$(\nu,\xi)\mapsto V(\nu)+S_T(\xi|\nu)$$

▶ On one hand, by the contraction principle, $\{\mu_N(T)\}$ satisfies the LDP with rate function

$$\xi \mapsto \inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$

▶ On the other hand, since the law of $\mu_N(T)$ is \wp_N , we have

$$V(\xi) = \inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$
 for all $T > 0$.

▶ Is there a unique *V* that satisfies this?

Large deviations of \wp_N

Theorem

The family $\{\wp_N\}$ satisfies the LDP on $\mathcal{M}_1(\mathcal{Z})$ with rate function

$$V(\xi) = \inf_{T>0} S_T(\xi|\xi^*).$$

Further, there exists a trajectory $\hat{\mu}$ such that $\hat{\mu}(t) \to \xi^*$ as $t \to -\infty$, $\hat{\mu}(0) = \xi$, and

$$V(\xi) = S_{(-\infty,0]}(\hat{\mu}|\xi^*).$$

Large deviations of \wp_N – proof sketch

- ▶ Show that $V(\xi^*) = 0$.
- ► Then,

$$V(\xi) \leq V(\xi^*) + S_T(\xi|\xi^*)$$
 for all $T > 0$.

► So,

$$V(\xi) \leq \inf_{T>0} S_T(\xi|\xi^*).$$

Large deviations of \wp_N – proof sketch

For T > 0, show that the infimum in

$$\inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$

is attained.

- For each ν , ξ and T > 0, there is an optimal path $\hat{\mu}$ from ν to ξ , i.e., $S_T(\xi|\nu) = S_{[0,T]}(\hat{\mu}|\nu)$.
- ► So,

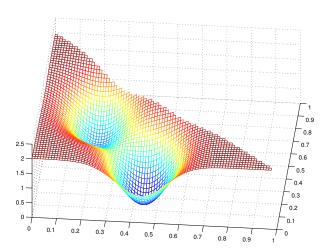
$$V(\xi) = V(\hat{\mu}(-mT)) + S_{mT}(\xi|\hat{\mu}(-mT)).$$

- Argue that $\hat{\mu}(-mT) \to \xi^*$ as $m \to \infty$.
- ▶ By the lower semicontinuity of V, and $V(\xi^*) = 0$, we have

$$V(\xi) \geq S_{(-\infty,0]}(\hat{\mu}|\xi^*).$$

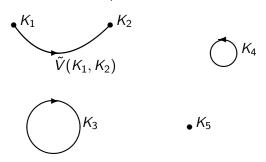
The general case – multiple equilibria

- ▶ The Freidlin-Wentzell quasipotential V on $\mathcal{M}_1(\mathcal{Z})$.
- ▶ $P(\mu_N(\infty) \sim \xi) \sim \exp\{-NV(\xi)\}$.



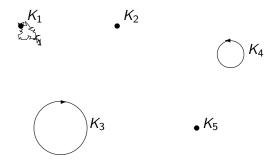
The general case – some notation

- Assumptions on the McKean-Vlasov equation: There exists a finite number of compact sets K_1, K_2, \ldots, K_l such that
 - Every equilibrium of the McKean-Vlasov equation lies completely in one of the compact sets K_i .
 - No cost of movement within K_i. Positive cost to go out of (or come into) K_i.

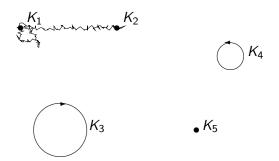


 $\tilde{V}(K_i, K_j) = \inf\{S_{[0,T]}(\varphi|\varphi_0) : \varphi_0 \in K_i, \varphi_T \in K_j, \varphi_t \notin \bigcup_{i' \neq i,j} K_{i'}, T > 0\} \text{ (communication cost from } K_i \text{ to } K_j).$

Approximation of μ_N using a discrete chain



Approximation of μ_N using a discrete chain



- $ightharpoonup au_n$: hitting time of μ_N in a given neighbourhood of K_i 's.
- ▶ Hitting time chain: $Z_n^N = \mu_N(\tau_n), n \ge 1.$
- ▶ To quantify the transitions between K_i 's, we need large deviation estimates of μ_N uniformly with respect to the initial condition.

Uniform large deviations

 $\blacktriangleright \mu_N^{\nu}$: process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_N^{\nu}\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset\mathcal{M}_1(\mathcal{Z})$ if

- ▶ for each $K \subset \mathcal{M}_1(\mathcal{Z})$ compact and s > 0, $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], \mathcal{M}_1(\mathcal{Z}))$;
- for any $\gamma > 0, \delta > 0, s > 0$ and $A \in A$, there exists $N_0 \ge 1$ such that

$$P_{\nu}(\rho(\mu_{N}^{\nu},\varphi)<\delta)\geq \exp\{-N(S_{[0,T]}(\varphi|\nu)+\gamma)\},$$

for all $\nu \in A$, $\varphi \in \Phi_{\nu}(s)$ and $N \geq N_0$;

▶ for any $\gamma > 0, \delta > 0, s_0 > 0$ and $A \in \mathcal{A}$, there exists $N_0 \ge 1$ such that

$$P_{\nu}(\rho(\mu_N^{\nu}, \Phi_{\nu}(s)) \geq \delta) \leq \exp\{-N(s-\gamma)\},$$

for all $\nu \in A$, $s \leq s_0$ and $N \geq N_0$.

▶ Theorem: $\{\mu_N^{\nu}\}$ satisfies the uniform LDP over $\mathcal{M}_1(\mathcal{Z})$.

One step transition probability of Z^N

Lemma

Given $\varepsilon > 0$, there exists $\delta > 0$ such that the one-step transition probability of the chain Z^N satisfies

$$\exp\{-N(\tilde{V}(K_i, K_j) + \varepsilon)\} \le P(B(K_i, \delta), B(K_j, \delta))$$

$$\le \exp\{-N(\tilde{V}(K_i, K_j) - \varepsilon)\}$$

for all large enough N.

▶ Upon exit from K_i , μ_N is most likely to visit K_j that attains $\min_{j'} \tilde{V}(K_i, K_{j'})$ (= $\tilde{V}(K_i)$).

One step transition probability of Z^N – proof sketch

- Lower bound:
 - ▶ By the definition of $\tilde{V}(K_i, K_j)$, given $\varepsilon > 0$, there exists a trajectory φ from K_i to K_j such that $S_{[0,T]}(\varphi|K_i) \leq \tilde{V}(K_i, K_i) + \varepsilon$.
 - ▶ Then, using the uniform LDP for $\{\mu_N\}$,

$$P(B(K_i, \delta), B(K_j, \delta)) \ge P_{K_i}(\mu_N \in \mathsf{nbhd}(\varphi))$$

 $\ge \exp\{-N(\tilde{V}(K_i, K_j) + \varepsilon)\}.$

- Upper bound:
 - Let τ_1 be the hitting time of $\cup K_I$.
 - Given M > 0, we can find $T_1 > 0$ such that $P_{K_i}(\tau_1 > T_1) \le \exp\{-NM\}$.
 - Let $A = \{ \varphi : \varphi_0 \in K_i, \varphi_{T_1} \in K_j, S_{[0,T]}(\varphi|K_i) \leq \tilde{V}(K_i, K_j) \varepsilon \}.$
 - ► Then using the uniform LDP for $\{\mu_N\}$,

$$P(B(K_i, \delta), B(K_j, \delta)) \le P_{K_i}(\tau_1 \ge T_1) + P_{K_i}(\operatorname{dist}(\mu_N, A) \ge \delta)$$

$$\le \exp\{-NM\} + \exp\{-N(\tilde{V}(K_i, K_j) - \varepsilon)\}.$$

The Markov chain tree theorem

- Consider an irreducible Markov chain on $L = \{1, 2, ..., I\}$ with transition probability matrix P.
- ▶ An *i*-graph G(i) is a directed graph on L such that
 - ▶ There is exactly one outgoing arrow from every $j \in L$.
 - There are no closed cycles.
- ▶ For an *i*-graph *g*, let $\pi(g) = \prod_{(i,j) \in g} P(i,j)$.
- ▶ Let $W(i) = \sum_{g \in G(i)} \pi(g)$.
- ► Then,

$$\frac{W(i)}{\sum_{j}W(j)}, j \in L,$$

is the stationary distribution of the Markov chain.

The invariant measure of Z^N

Recall the one-step transition probabilities of Z^N:

$$P(K_i, K_j) \sim \exp\{-N\tilde{V}(K_i, K_j)\}.$$

- ▶ Let $W(K_i) = min_{g \in G(i)} \sum_{(m,n) \in g} \tilde{V}(K_m, K_n)$.
- ▶ By the Markov chain tree theorem, the the invariant measure of Z^N satisfies

$$\gamma_N(K_i) \sim \exp\{-N(W(i) - \min_j W(j))\}.$$

lacktriangle Reconstruct \wp_N from γ_N and show that

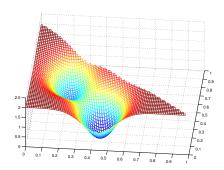
$$\wp_N(K_i) \sim \exp\{-N(W(i) - \min_j W(j))\}.$$

Large deviations of the invariant measure

Theorem

In the case of multiple equilibria, $\{\wp_N\}$ satisfies the LDP with rate function

$$V(\xi) = \min_{1 \leq i \leq l} [W(K_i) + \tilde{V}(K_i, \xi)] - \min_{1 \leq i \leq l} W(K_i)$$



Some applications of the LDP

- Exit times:
 - The mean exit time from K_i is of the order $\exp\{N\tilde{V}(K_i)\}$, where $\tilde{V}(K_i) = \min_j \tilde{V}(K_i, K_j)$.
- ▶ Mixing time of μ_N :
 - There is a constant $\Lambda > 0$ such that μ_N mixes well when the time is of the order $\exp\{N\Lambda\}$.
 - ▶ Proof via the exploration of equilibria. Mean passage times are of the order $\exp\{N\tilde{V}\}$, and has probability at least $\exp\{-N\varepsilon\}$.

Summary of Section 2

- A primer on large deviations.
- ► The process-level large deviations of the empirical measure process $\{\mu_N\}$.
 - Get the LDP for a non-interacting system using Sanov's theorem.
 - Use Varadhan's lemma to transfer it to $\{\mu_N\}$.
- Large deviations of the family of invariant measures {ρ_N}.
 - The unique attractor case: Identify the rate function from a recursion.
 - ► The multiple attractor case: Identify the values on the attractors.

Section 3

Variations - Two time-scales

Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 3: Variations and Phenomena

SIGMETRICS/PERFORMANCE 2022

Outline of Section 3

- Variations:
 - A two time scale mean-field model.
 - Process-level large deviations of the empirical measure process.
- Phenomena:
 - A countable state mean-field model.
 - Large deviations of the family of invariant measures.
- Summary and some open questions.

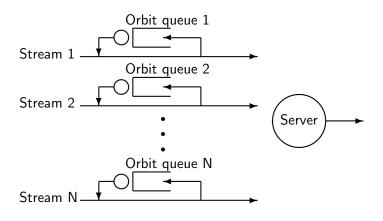
A two time scale mean-field model

- N particles and an environment.
- \triangleright At time t,
 - ▶ The state of the *n*th particle is $X_n^N(t) \in \mathcal{Z}$;
 - ▶ The state of the environment is $Y_N(t) \in \mathcal{Y}$.
- Certain allowed transitions.
 - ▶ Particles: a directed graph $(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}})$;
 - ▶ Environment: a directed graph $(\mathcal{Y}, \mathcal{E}_{\mathcal{V}})$.
- Empirical measure of the system of particles at time t:

$$\mu_N(t) := \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in \mathcal{M}_1(\mathcal{Z}).$$

- ▶ We are given functions $\lambda_{i,j}(\cdot,y)$, $(i,j) \in \mathcal{E}_{\mathcal{Z}}$, $y \in \mathcal{Y}$ and $\gamma_{v,v'}(\cdot)$, $(y,y') \in \mathcal{E}_{\mathcal{Y}}$ on $\mathcal{M}_1(\mathcal{Z})$.
- ► Markovian evolution at time t:
 - ▶ Particles: $i \rightarrow j$ at rate $\lambda_{i,j}(\mu_N(t), Y_N(t))$;
 - ► Environment: $y \to y'$ at rate $N\gamma_{y,y'}(\mu_N(t))$.

An example: Constant rate retrial systems



- N queues (particles), and a single server (environment).
- ▶ The server becomes busy at rate $N(\lambda + \alpha(1 \mu_N(t)(0)))$.

A two time scale mean-field model

 \blacktriangleright (μ_N, Y_N) is a Markov process with the transition rates

$$(\xi,y)
ightarrow \left\{ egin{array}{ll} (\xi,y') & ext{ at rate } N\gamma_{y,y'}(\xi) \ \left(\xi+rac{\delta_j}{N}-rac{\delta_i}{N}
ight) & ext{ at rate } N\xi(i)\lambda_{i,j}(\xi,y). \end{array}
ight.$$

- A "fully coupled" two time scale process.
- Assumptions:
 - ▶ The graphs $(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}})$ and $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$ are irreducible.
 - The functions $\lambda_{i,j}(\cdot,y)$ are Lipschitz continuous and $\inf_{\xi} \lambda_{i,j}(\xi,y) > 0$ for all $(i,j) \in \mathcal{E}_{\mathcal{Z}}$ and $y \in \mathcal{Y}$.
 - The functions $\gamma_{y,y'}(\cdot)$ are continuous and $\inf_{\xi} \gamma_{y,y'}(\xi) > 0$ for all $(y,y') \in \mathcal{E}_{\mathcal{Y}}$.

The occupation measure process

- Fix a time duration T > 0.
- ▶ View μ_N as a random element of $D([0, T], \mathcal{M}_1(\mathcal{Z}))$.
- ▶ Consider the occupation measure of the fast environment:

$$\theta_N(t)(\cdot) := \int_0^t 1_{\{Y_N(s) \in \cdot\}} ds, \ 0 \le t \le T.$$

- ▶ θ_N is a random element of $D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$, the set of θ such that $\theta_t \theta_s \in \mathcal{M}(\mathcal{Y})$ and $\theta_t(\mathcal{Y}) = t$ for $0 \le s \le t \le T$.
- We can write θ as $\theta(dydt) = m_t(dy)dt$ where $m_t \in M_1(\mathcal{Y})$.
- We consider the process (μ_N, θ_N) with sample paths in $D([0, T], \mathcal{M}_1(\mathcal{Z})) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$.

The averaging principle

- ▶ Suppose we freeze $\mu_N(t)$ to be ξ . Then for large N,
 - ► The Y_N process would quickly equilibrate to π_ξ , the unique invariant probability measure of

$$L_{\xi}g(y):=\sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}}(g(y')-g(y))\gamma_{y,y'}(\xi),y\in\mathcal{Y}.$$

For a particle, an (i,j) transition occurs at rate $\sum_{y \in \mathcal{Y}} \lambda_{i,j}(\xi,y) \pi_{\xi}(y) =: \bar{\lambda}_{i,j}(\xi,\pi_{\xi}).$

Theorem (Bordenave et al. 2009)

Suppose that $\mu_N(0) \to \nu$ in $\mathcal{M}_1(\mathcal{Z})$. Then μ_N converges in probability, in $D([0,T],\mathcal{M}_1(\mathcal{Z}))$, to the solution to the ODE

$$\dot{\mu}_t = \bar{\Lambda}_{\mu_t, \pi_{\mu_t}}^T \mu_t, \ 0 \le t \le T, \ \mu_0 = \nu.$$

where
$$\bar{\Lambda}_{\mu_t,\pi_{\mu_t}}(i,j) = \bar{\lambda}_{i,j}(\mu_t,\pi_{\mu_t})$$
.

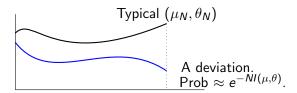
 \blacktriangleright μ_N is a small random perturbation of the above ODE. We study the large deviations of (μ_N, θ_N) .

Main result

Theorem

Suppose that $\{\mu_N(0)\}_{N\geq 1}$ satisfies the LDP on $\mathcal{M}_1(\mathcal{Z})$ with rate function I_0 . Then the sequence $\{(\mu_N(t),\theta_N(t)),0\leq t\leq T\}_{N\geq 1}$ satisfies the LDP on $D([0,T],\mathcal{M}_1(\mathcal{Z}))\times D_{\uparrow}([0,T],\mathcal{M}(\mathcal{Y}))$ with rate function

$$I(\mu,\theta):=I_0(\mu(0))+J(\mu,\theta).$$



The rate function *J*

$$\begin{split} J(\mu,\theta) &:= \int_{[0,T]} \left\{ \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left(\left\langle \alpha, (\dot{\mu}_t - \bar{\Lambda}_{\mu_t,m_t}^T \mu_t) \right\rangle \right. \\ & - \sum_{(i,j) \in \mathcal{E}_{\mathcal{Z}}} \tau(\alpha(j) - \alpha(i)) \bar{\lambda}_{i,j}(\mu_t, m_t) \mu_t(i) \right) \\ & + \sup_{g \in \mathbb{R}^{|\mathcal{Y}|}} \sum_{y \in \mathcal{Y}} \left(-L_{\mu_t} g(y) \right. \\ & \left. - \sum_{y': (y,y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g(y') - g(y)) \gamma_{y,y'}(\mu_t) \right) m_t(y) \right\} dt \end{split}$$

whenever the mapping $[0, T] \ni t \mapsto \mu_t \in \mathcal{M}_1(\mathcal{Z})$ is absolutely continuous, where $\theta(dtdy) = m_t(dy)dt$, and $J(\mu, \theta) = +\infty$ otherwise.

$$ightharpoonup au(u) = e^u - u - 1, u \in \mathbb{R}.$$

Some remarks about the rate function

- ▶ $J(\mu, \theta) \ge 0$ with equality iff (μ, θ) satisfies the mean-field limit.
- ➤ Two parts. The mean-field part (slow component) and occupation measure part (fast component).
 - For the slow component, the average of the fast variable appears.
 - For the fast component, the slow variable is frozen.
- For occupation measure of Markov processes, the canonical form of the rate function is $\int_{[0,T]} \sup_{h>0} \sum_{\mathcal{Y}} -\frac{L_{\mu_t}h(y)}{h(y)} m_t(y) dt$ (Donsker and Varadhan, 1973). This can be obtained by taking $h=e^g$.

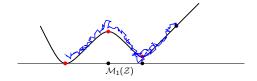
Large deviations of μ_N

Corollary

 $\{\mu_N\}$ satisfies the LDP on $D([0,T],\mathcal{M}_1(\mathcal{Z}))$ with rate function

$$\mu \mapsto I_0(\mu_0) + \inf_{\theta} J(\mu, \theta).$$

- ► Follows from contraction principle since the mapping $(\mu, \theta) \mapsto \mu$ is continuous.
- Can quantify rare transitions.



Outline of the proof

- ▶ We use the method of stochastic exponentials (Pulahskii 2016, 1994).
- Show exponential tightness. This gives a subsequential LDP.
- ► Get a condition for any subsequential rate function (in terms of an exponential martingale).
- Identify the subsequential rate function on "nice" elements of the space.
- Extend to the whole space using suitable approximations.
- Unique identification any subsequential rate function (regardless of the subsequence) implies the LDP.

An exponential martingale

- ▶ If N_t is the unit rate Poisson point process, then $N_t t$ is a martingale.
- Recall that

$$\tau(\alpha) = \log E(\exp{\{\alpha(N_1 - 1)\}}).$$

One can verify that

$$\exp\{\alpha(N_t-t)-\tau(\alpha)t\}$$

is a martingale for all α .

We get a necessary condition for the subsequential rate function in terms of such exponential martingales.

Exponential tightness

Theorem

The sequence $\{(\mu_N(t), \theta_N(t)), t \in [0, T]\}_{N \ge 1}$ is exponentially tight in $D([0, T], M_1(\mathcal{Z})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, i.e., given any M > 0, there exists a compact set K_M such that

$$\limsup_{N\to\infty}\frac{1}{N}\log P\left(\{(\mu_N(t),\theta_N(t)),0\leq t\leq T\}\notin K_M\right)\leq -M.$$

For
$$\beta > 0$$
 and $\alpha \in \mathbb{R}^{|\mathcal{Z}|}$, with $X_{N,t} = \langle \alpha, \mu_N(t) \rangle$,

$$\begin{split} \exp&\bigg\{N\bigg(\beta X_{N,t}-\beta X_{N,0}-\beta\int_0^t\Phi_{Y_{N,s}}f(\mu_{N,s})ds\\ &-\int_0^t\sum_{(i,i)}\tau(\beta(\alpha(j)-\alpha(i)))\lambda_{i,j}(\mu_{N,s},Y_{N,s})\mu_{N,s}(i)ds\bigg)\bigg\},t\geq 0, \end{split}$$

is an exponential martingale. Use Doob's inequality and a condition for exponential tightness in $D([0,T],\mathbb{R})$ (Puhalskii, 1994).

An equation for the subsequential rate function

- ▶ Let $\{(\mu_{N_k}, \theta_{N_k})\}_{k \ge 1}$ be a subsequence that satisfies the LDP with rate function \tilde{I} .
- Let $\alpha: [0,T] \times \mathcal{M}_1(\mathcal{Z}) \to \mathbb{R}^{|\mathcal{Z}|}$ and $g: [0,T] \times \mathcal{M}_1(\mathcal{Z}) \times \mathcal{Y} \to \mathbb{R}$ be bounded measurable, and continuous on $\mathcal{M}_1(\mathcal{Z})$.
- ▶ Define $U_t^{\alpha,g}(\mu,\theta)$ by

$$\int_{[0,t]} \left\{ \langle \alpha_s(\mu_s), \dot{\mu}_s - \bar{\Lambda}_{\mu_s,m_s}^T \mu_s \rangle \right.$$

$$\left. - \sum_{(i,j)} \tau(\alpha_s(\mu_s)(j) - \alpha_s(\mu_s)(i)) \bar{\lambda}_{i,j}(\mu_s, m_s) \mu_s(i) \right.$$

$$\left. + \sum_{y} \left(-L_{\mu_s} g_s(\mu_s, \cdot)(y) \right.$$

$$\left. - \sum_{y:(y,y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g_s(\mu_s, y') - g_s(\mu_s, y)) \gamma_{y,y'}(\mu_s) \right) m_s(y) \right\} ds.$$

An equation for the subsequential rate function

• We can show that, for each α and g,

$$\sup_{(\mu,\theta)\in\Gamma} (U_T^{\alpha,g}(\mu,\theta) - \tilde{I}(\mu,\theta)) = 0, \tag{1}$$

where Γ is the set of (μ, θ) such that $t \mapsto \mu_t$ absolutely continuous.

ightharpoonup On one hand, for a smaller class of α and g,

$$\label{eq:exp} \textit{E} \exp\{\textit{NU}_{\textit{T}}^{\alpha,\textit{g}}(\mu_{\textit{N}},\theta_{\textit{N}}) + \textit{V}_{\textit{T}}^{\textit{g}}(\mu_{\textit{N}},\textit{Y}_{\textit{N}})\} = 1,$$

where V_T^g is O(1) a.s.

▶ On the other hand, Varadhan's lemma implies that

$$\lim_{k \to \infty} \frac{1}{N_k} \log E \exp\{N_k U_T^{\alpha, g}(\mu_{N_k}, \theta_{N_k}) + V_T^g(\mu_{N_k}, Y_{N_k})\}$$

$$= \sup_{(\mu, \theta)} (U_T^{\alpha, g}(\mu, \theta) - \tilde{I}(\mu, \theta))$$

This can be extended to (1).

▶ Moreover, the supremum in (1) is attained.

A candidate rate function

- ► Recall that $\sup_{(\mu,\theta)\in\Gamma}(U^{\alpha,g}_T(\mu,\theta)-\tilde{I}(\mu,\theta))=0.$
- ► A natural candidate for the rate function

$$I^*(\mu, \theta) = \sup_{\alpha, g} U_T^{\alpha, g}(\mu, \theta).$$

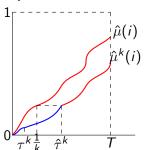
- lt can be shown that $I^* = J$.
- ▶ Note that $\tilde{I} \ge I^*$ on Γ. Outside Γ, I^* can be shown to be $+\infty$.
- ▶ Goal: show that $\tilde{I} \leq I^*$ whenever $I^* < +\infty$. Once this is established, the LDP follows.

Identification of \tilde{l} on "nice" elements

- ▶ Suppose $(\hat{\mu}, \hat{\theta})$ is such that $I^*(\hat{\mu}, \hat{\theta}) < +\infty$, and
 - $\qquad \inf\nolimits_{t \in [0,T]} \min\nolimits_{i \in \mathcal{Z}} \hat{\mu}_t(i) > 0,$
 - ▶ the mapping $[0, T] \ni t \mapsto \hat{\mu}_t \in \mathcal{M}_1(\mathcal{Z})$ is Lipschitz continuous,
 - $ightharpoonup \inf_{t\in[0,T]}\min_{y\in\mathcal{Y}}\hat{m}_t(y)>0 \text{ where } \hat{\theta}(dydt)=\hat{m}_t(dy)dt.$
- ▶ Then, there exists $(\hat{\alpha}, \hat{g})$ that attains $\sup_{\alpha, g} U_T^{\alpha, g}(\hat{\mu}, \hat{\theta})$.
 - ▶ To show that $\hat{\alpha}$ and \hat{g} are continuous on $\mathcal{M}_1(\mathcal{Z})$, we use the Berge's maximum theorem.
- With this $(\hat{\alpha}, \hat{g})$, get $(\tilde{\mu}, \tilde{\theta})$ that attains the supremum in $\sup_{(\mu, \theta) \in \Gamma} (U_T^{\hat{\alpha}, \hat{g}}(\mu, \theta) \tilde{I}(\mu, \theta)) = 0$.
- ▶ Hence, $I^*(\tilde{\mu}, \tilde{\theta}) \geq U_T^{\hat{\alpha}, \hat{g}}(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$.
- ▶ Since $I^* \leq \tilde{I}$, we get $I^*(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$.
- ▶ Show that $(\tilde{\mu}, \tilde{\theta}) = (\hat{\mu}, \hat{\theta})$.
- lt follows that $\tilde{I}(\hat{\mu}, \hat{\theta}) = I^*(\hat{\mu}, \hat{\theta})$.

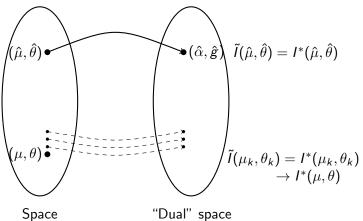
Approximation procedure

- ► For general elements $(\hat{\mu}, \hat{\theta})$, $(\hat{\alpha}, \hat{g})$ may not exist.
- lacktriangle Produce $(\hat{\mu}_k,\hat{ heta}_k)$ that are "nice", and satisfy
 - $ightharpoonup (\hat{\mu}_k,\hat{ heta}_k)
 ightarrow (\hat{\mu},\hat{ heta})$ as $k
 ightarrow \infty$,
 - $ightharpoonup ilde{I} = I^*$ on $(\hat{\mu}_k, \hat{ heta}_k)$ for all k,
 - $I^*(\hat{\mu}_k,\hat{\theta}_k) \to I^*(\hat{\mu},\hat{\theta}) \text{ as } k \to \infty.$
- lt then follows that $\tilde{I} = I^*$ on $(\hat{\mu}, \hat{\theta})$.
- ► Relaxation of $\inf_{t \in [0,T]} \min_{i \in \mathcal{Z}} \hat{\mu}_t(i) > 0$:



Other conditions are relaxed using suitable approximations. We finally get $\tilde{I} = I^*$ for all elements.

Summary of the proof

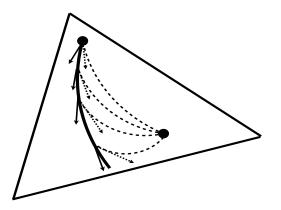


- For "nice" elements of $D([0, T], \mathcal{M}_1(\mathcal{Z})) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$, we show that $\tilde{I} = I^*$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

Section 4

Variations - Phenomena in the infinite state space case

The running cost of following a trajectory $\phi(\cdot)$



- At each time t, if the current state is $\phi(t)$, the natural tendency is to go along the tangent $\Lambda(\phi(t))^T \phi(t)$.
- To follow $\phi(t)$ however, the system needs to work against the McKean-Vlasov gradient and move along the tangent $\dot{\phi}(t)$.
- $\blacktriangleright L(\phi(t),\dot{\phi}(t)).$

Guessing the running cost

- $\blacktriangleright \text{ Write } \dot{\phi}(t) = G(t)^T \phi(t).$
- **b** By decoupling, each node's state is iid $\phi(t)$.
- Natural tendency for the $N\phi(t)(i)$ nodes in state i is to have $i \rightsquigarrow j$ at current (instantaneous) rate $\lambda_{i,j}(\phi(t))$.
- ▶ But to move along $\phi(t)$ they must have an instantaneous rate of $G_{i,j}(t)$.
- The $N\phi(t)(i)$ Bernoulli($p = \lambda_{i,j}(t) \ dt$) random variables must have a large deviation and must have an empirical measure close to $(q = G_{i,j}(t) \ dt)$. By Sanov's theorem, the negative exponent is:

$$N\phi(t)(i)D(q||p)\cong N\phi(t)(i)(q\log rac{q}{p}-q+p)$$

► Sum over *i* and *j* and integrate over [0, *T*] to get the action functional:

$$\int_0^T L(\phi(t),\dot{\phi}(t)) dt.$$

The case of a globally asymptotically stable equilibrium ξ^*

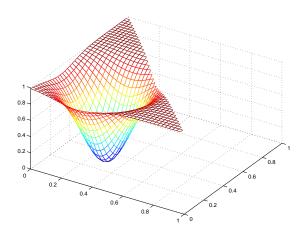
Theorem

 $V(\xi)$ is given by

$$V(\xi)=\inf\left\{\int_0^T L(\phi(t),\dot{\phi}(t))\;dt\;|\;\phi(0)=\xi^*,\phi(T)=\xi,\,T\in(0,\infty)
ight\}.$$

- Any deviation that puts the system at ξ must have started its effort from ξ^* .
- $V(\xi^*) = 0.$

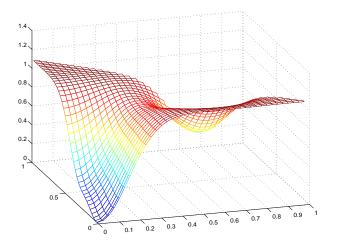
The path to ξ



Can specify not only exponent $V(\xi)$ of the probability, but also the path.

Any deviation that puts the system near q must have started from ξ^* , and must have taken the least cost path.

When there are multiple stable limit sets



The case of two stable equilibria is easy to describe.

- $ightharpoonup V_{12} = \text{cost of moving from } \xi_1^* \text{ to } \xi_2^*.$
- $ightharpoonup V_{21} = {\rm cost}$ of the reverse move.
- ▶ If $V_{12} > V_{21}$, then $v_1 = 0$ and $v_2 = V_{12} V_{21}$.

When there are multiple stable limit sets

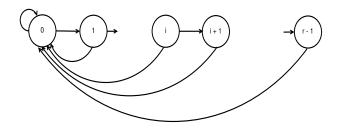
Theorem

 $V(\xi)$ is given by

$$V(\xi) = \inf_i \left\{ v_i + \int_0^T L(\phi(t), \dot{\phi}(t)) \ dt \mid \phi(0) = \xi_i^*, \phi(T) = \xi, T \in (0, \infty) \right\}.$$

- Start from the global minimum ξ_1^* and move to the attractor in the basin in which ξ lies along the least cost path.
- ▶ Then move to ξ along the least cost path.

Infinite state space



- Now $r = \infty$
- ▶ Forward rate λ_f , backward rate λ_b . Let ξ^* be the invariant measure.
- $ightharpoonup X_n^{(N)}(\infty) \sim \xi^*$
- $ightharpoonup \xi^*(i) = (1ho)
 ho^i, \quad i \geq 0$, where $ho = rac{\lambda_f}{\lambda_f + \lambda_b}$.

The "interacting particle system", LDP, and the rate function

- For explicit calculations, assume that the queues are noninteracting (i.e., each evolves independently).
- ▶ We are interested in invariant measure for the empirical measure.
- ► The invariant measure is just the law of $\mu_N(\infty) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^{(N)}(\infty)}$
- Sanov) The $\mu_N(\infty)$ sequence satisfies the LDP with rate function given by relative entropy $I(\cdot||\xi^*)$.

What are "reachable" points at stationarity?

- $\blacktriangleright \text{ Let } \iota(i) = i.$
- ▶ $I(\xi || \xi^*)$ is finite if and only if $\langle \xi, \iota \rangle < \infty$.
- Define $\vartheta(i) = i \log i$. There are points ξ for which $\langle \xi, \iota \rangle < \infty$, but $\langle \xi, \vartheta \rangle = \infty$. Mass is sufficiently spread out, since $I(\xi, \xi^*)$ is finite, they are still reachable at stationarity.

Quasipotential

Define the quasipotential as before.

$$V(\xi) = \inf \left\{ \int_0^T L(\phi(t), \dot{\phi}(t)) \ dt \mid \phi(0) = \xi^*, \phi(T) = \xi, T \in (0, \infty) \right\}$$

$$\geq \inf_T \sup_{f \in C_0^1([0, T] \times \mathcal{Z}} \left\{ \langle \phi_T, f_T \rangle - \langle \phi_0, f_0 \rangle - \int_0^T \langle \phi_u, \partial_u f_u \rangle du \right.$$

$$\left. - \int_0^T \langle \phi_u, \Lambda_{\phi_u} f_u \rangle du - \int_0^T \sum_{i,j} \tau(f_u(j) - f_u(i)) \lambda_{i,j}(\phi_u) \phi_u(i) du \right\}$$

- Last two terms simplify to $\int_0^T \sum_{i,j} \exp\{f_u(j) f_u(i)\} \lambda_{i,j}(\phi_u) \phi_u(i) du$
- Strategy
 - ► Choose $f_n = \vartheta(Hat(0, n, 2n))$. This is like $\vartheta(n)$ up to n.
 - ▶ Then $f_n(j) f_n(i) \le 1 + \log(i+1)$ for the edges in the graph.
 - Last two terms $\propto \langle \phi_u, \iota \rangle$ which integrates to a finite value.
 - ▶ Then let $f_n \to \vartheta$ as $n \to \infty$.
 - ▶ Then $\langle \xi, \vartheta \rangle = \infty \Rightarrow V(\xi) = \infty$.

Infinite state space

Theorem

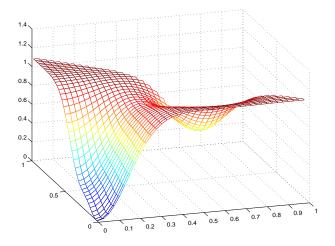
The rate function for the invariant measure is the relative entropy $I(\cdot||\xi^*)$, and this is not equal to the quasipotential V.

- ▶ Take a ξ whose mean is finite but the slightly larger $i \log i$ moment is infinite.
- ▶ *V* comes from a finite horizon perspective. There are barriers that are too difficult to cross in any finite time horizon, but in the stationary regime these can be crossed leading to a finite rate function at these points.
- A partial answer

Theorem

If $\lambda_{i,i+1}(\cdot) = \Theta(1/(i+1))$, then the rate function for the invariant measure is indeed governed by the quasipotential.

The take-away picture



$$V_{1\rightarrow 2} > V_{2\rightarrow 1}$$