# Mean-field Interacting Particle Systems: Limit Laws and Large Deviations

Rajesh Sundaresan and Sarath Yasodharan

Indian Institute of Science and Brown University

SIGMETRICS/PERFORMANCE 2022 10 June 2022

#### Outline

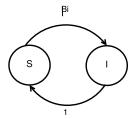
- 1 Model description and the mean-field limit (Rajesh)
- 2 Large deviation from the mean field limit: finite durations and the stationary regime (Sarath)
- 3 Two time-scale systems (Sarath)
- 4 Some interesting phenomena in infinite state space systems (Rajesh)

#### Section 1

Model description and the mean-field limit

### A mean-field SIS epidemic model

- ► Interacting system with *N* individuals
- ▶ Each node's state space:  $\mathcal{Z} = \{S, I\}$
- ► Transitions:



- ▶ Dynamics depends on the "mean field". Global interaction.  $\mu_N(t) = i$  = fraction of nodes in infectious state
- ► Transition rate from S to I or I to S depends on the fraction of nodes in the infectious state.  $\lambda_{S,I}(\mu_N(t)) = \beta i$  and  $\lambda_{I,S}(\mu_N(t)) = 1$ .

### Reversible versus nonreversible dynamics

- ► (Reversible) Gibbsian system
  - Example: Heat bath dynamics
  - ▶ State space  $\mathcal{Z} = \{0, 2, \dots, r-1\}$
  - Configuration of the N particles  $x = (x_1, ..., x_N)$ .  $\mu_N$ : empirical measure
  - ▶  $E(\mu_N)$ : Energy of a configuration  $x = (x_1, ..., x_N)$  with mean  $\mu_N$
  - ▶ An i to j transition takes  $\mu_N$  to  $\mu_N \frac{1}{N}\delta_i + \frac{1}{N}\delta_j$

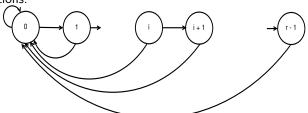
$$\lambda_{ij}(\mu_N) = \frac{e^{-NE(\mu_N)}}{e^{-NE(\mu_N - \frac{1}{N}\delta_i + \frac{1}{N}\delta_j)} + e^{-NE(\mu_N)}}$$

- ▶ In general,  $\lambda_{ij}(\cdot)$  may result in nonreversible dynamics
- Weak interaction

# Wireless Local Area Network (WLAN) interactions DCF 802.11 countdown and its CTMC caricature

- N particles accessing the common medium in a wireless LAN
- ▶ Each particle's state space:  $\mathcal{Z} = \{0, 1, \dots, r-1\}$





- ► State = # of transmission attempts for head-of-line packet
- r: Maximum number of transmission attempts before discard
- ► Coupled dynamics: Transition rate for success or failure depends on empirical distribution  $\mu_N(t)$  of particles across states

#### Example transition rates

- ► Matrix of rates:  $\Lambda(\cdot) = [\lambda_{i,j}(\xi)]_{i,j\in\mathcal{Z}}$ .
- Assume three states,  $\mathcal{Z} = \{0, 1, 2\}$  or r = 3.
- ▶ Aggressiveness of the transmission  $c = (c_0, c_1, c_2)$ .
- Conventional wisdom, double the waiting time after every failure,  $c_i = c_{i-1}/2$ .
- ightharpoonup For  $\mu$ , the empirical measure of a configuration, the rate matrix is

$$\Lambda(\mu) = \left[ \begin{array}{ccc} -(\cdot) & c_0(1-e^{-\langle\mu,c\rangle}) & 0 \\ c_1e^{-\langle\mu,c\rangle} & -(\cdot) & c_1(1-e^{-\langle\mu,c\rangle}) \\ c_2e^{-\langle\mu,c\rangle} & 0 & -(\cdot) \end{array} \right].$$

• "Activity" coefficient  $a = \langle \mu, c \rangle$ . Probability of no activity  $= e^{-a}$ .

## Mean-field interaction and dynamics

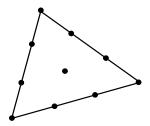
- ► Configuration  $X^N(t) = (x_1(t), \dots x_N(t))$ .
- **E**mpirical measure  $\mu_N(t)$ : Fraction of particles in each state
- A particle transits from state i to state j at time t with rate  $\lambda_{i,j}(\mu_N(t))$

## Studying the time-evolutions

- ▶ Tag a particle, say  $n_1$ . Study  $X_{n_1}^{(N)}(\cdot)$ . Marginal at  $n_1$ .
- ▶ Tag two particles, say  $n_1, n_2$ . Study  $(X_{n_1}^{(N)}(\cdot), X_{n_2}^{(N)}(\cdot))$ , marginals at  $n_1, n_2$ .
- ▶ Study  $\mu_N(\cdot)$ .

### The Markov processes, big and small

- $(X_n^{(N)}(\cdot), 1 \le n \le N)$ , the trajectory of all the *n* nodes, is Markov
- Study  $\mu_N(\cdot)$  instead, also a Markov process Its state space size is the set of empirical probability measures on N particles with state space  $\mathcal{Z}$ .



▶ Then try to draw conclusions on the original process.

## The smaller Markov process $\mu_N(\cdot)$

- ► A Markov process with state space being the set of empirical measures of *N* nodes.
- ▶ This is a measure-valued flow across time.
- ▶ The transition  $\xi \leadsto \xi + \frac{1}{N}e_j \frac{1}{N}e_i$  occurs at rate  $N\xi(i)\lambda_{i,j}(\xi)$ .
- ▶ For large N, changes are small, O(1/N), at higher rates, O(N). Individuals are collectively just about strong enough to influence the evolution of the measure-valued flow.
- ▶ Fluid limit :  $\mu_N$  converges to a deterministic limit given by an ODE.

## The conditional expected drift in $\mu_N$

▶ Recall  $\Lambda(\cdot) = [\lambda_{i,i}(\cdot)]$  without diagonal entries. Then

$$\lim_{h\downarrow 0} \frac{1}{h} \mathbb{E} \left[ \mu_N(t+h) - \mu_N(t) \mid \mu_N(t) = \xi \right] = \Lambda(\xi)^T \xi$$

with suitably defined diagonal entries.

#### An interpretation

▶ The rate of change in the *k*th component is made up of increase

$$\sum_{i:i\neq k} (N\xi_i) \cdot \lambda_{i,k}(\xi) \cdot (+1/N)$$

and decrease

$$(N\xi_k)\sum_{i:i\neq k}\lambda_{k,i}(\xi)(-1/N).$$

▶ Put these together:

$$\sum_{i:i\neq k} \xi_i \lambda_{i,k}(\xi) - \xi_k \sum_{i:i\neq k} \lambda_{k,i}(\xi) = \sum_i \xi_i \lambda_{i,k}(\xi) = (\Lambda(\xi)^T \xi)_k.$$

## The conditional expected drift in $\mu_N$

▶ Recall  $\Lambda(\cdot) = [\lambda_{i,j}(\cdot)]$  without diagonal entries. Then

$$\lim_{h\downarrow 0} \frac{1}{h} \mathbb{E} \left[ \mu_N(t+h) - \mu_N(t) \mid \mu_N(t) = \xi \right] = \Lambda(\xi)^T \xi$$

with suitably defined diagonal entries.

▶ Anticipate that  $\mu_N(\cdot)$  will solve (in the large N limit)

$$\dot{\mu}(t) = \Lambda(\mu(t))^T \mu(t), \quad t \ge 0$$
 [McKean-Vlasov equation]  $\mu(0) = \nu$ 

Nonlinear ODE.

#### **ODE** preliminaries

$$\dot{\mu}(t) = F(\mu(t)), \quad t \ge 0$$
 $\mu(0) = \nu$ 

- $ightharpoonup C([0,T],\mathbb{R}^r)$ : space of continuous functions from [0,T] to  $\mathbb{R}^r$ .
- ► Can define a norm and a distance on this space:

$$\|\mu\| = \sup_{t \in [0,T]} \|\mu(t)\|$$
  
 $d_T(\mu,\xi) = \|\mu - \xi\|.$ 

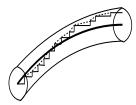
- $C([0,\infty),\mathbb{R}^r)$  with metric  $d(\mu,\xi) = \sum_{T=1}^{\infty} 2^{-T} (d_T(\mu|_T,\xi|_T) \wedge 1)$ .
- An ODE is well-posed if
  - For each  $\nu \in \mathbb{R}^r$ , the ODE has a unique solution  $\mu(\cdot)$  on  $[0,\infty)$
  - ▶ The mapping  $\nu \mapsto \mu(\cdot) \in C([0,\infty),\mathbb{R}^r)$  is continuous.

#### Theorem

If F is Lipschitz, then the ODE is well-posed, and the solution can be written as  $\mu(t) = \nu + \int_0^t F(\mu(s)) ds$  for  $t \in \mathbb{R}_+$ .

### Convergence in probability

- ho  $\mu_N(\cdot)$  a sample path (random) while  $\mu(\cdot)$  some deterministic or random path
- ▶ Fix T. View  $\mu_N(\cdot)$  (interpolated) and  $\mu(\cdot)$  as elements of  $C([0,T],\mathcal{M}_1(\mathcal{Z}))$ .
- We say  $\mu_N(\cdot) \to \mu(\cdot)$  if for every  $\varepsilon > 0$ , we have  $\Pr\{d_T(\mu_N(\cdot), \mu(\cdot)) > \varepsilon\} \to 0 \text{ as } N \to \infty$
- ▶ This is the same as asking that the path  $\mu_N(\cdot)$  remains within any ε-tube of  $\mu(\cdot)$  with probability approaching 1 as  $N \to \infty$ .



#### A limit theorem

#### **Theorem**

Suppose that the initial empirical measure  $\mu_N(0) \stackrel{P}{\to} \nu$ , where  $\nu$  is deterministic.

Assume each  $\lambda_{i,j}(\cdot)$  is Lipschitz in its argument. Let  $\mu(\cdot)$  be the solution to the McKean-Vlasov dynamics with initial condition  $\mu(0) = \nu$ .

Then  $\mu_N(\cdot) \stackrel{p}{\to} \mu(\cdot)$ .

#### Technicalities:

▶ Fix T > 0 and  $\varepsilon > 0$ . We will argue

$$\Pr\{d_T(\mu_N, \mu) > \varepsilon\} \leq \Pr\{\|\mu_N(0) - \mu(0)\| > \varepsilon/(2e^{MT})\} + C_1 \exp\{-NT\overline{\lambda}h(\varepsilon/(C_2Te^{MT}))\}$$

where M is the Lipschitz constant of the driving function,  $\overline{\lambda}$  is the max of the transition rates, and  $h(t) = (1+t)\ln(1+t) - t$ , t > -1.

#### Back to the individual nodes

- Let  $\mu(\cdot)$  be the solution to the McKean-Vlasov dynamics
- Choose a node uniformly at random, and tag it.
  - $\blacktriangleright$   $\mu_N(\cdot)$  is the distribution for the state of the tagged node at time t.
  - ▶ As  $N \to \infty$ , the limiting distribution is then  $\mu(t)$

#### Joint evolution of tagged nodes

#### Theorem

Fix t, k. Tag k nodes at random.

Let  $(X_n^{(N)}(0), 1 \le n \le N)$  be exchangeable and let  $\mu_N(0) \stackrel{d}{\to} \nu$ , a fixed limiting initial condition. Assume all transition rates are Lipschitz functions. Then

$$(X_{n_1}^{(N)}(t),\ldots,X_{n_k}^{(N)}(t)) \stackrel{d}{\to} (U_1,\ldots,U_k)$$

where  $U_1, \ldots, U_k$  are iid with distribution  $\mu(t)$ .

- ▶ If the interaction is only through  $\mu_N(t)$ , and this converges to a deterministic  $\mu(t)$ , the transition rates are just  $\lambda_{i,j}(\mu(t))$ .
- Each of the k nodes is then executing a time-dependent Markov process with transition rate matrix  $\Lambda(\mu(t))$ .
- Asymptotically, no interaction (decoupling). The node trajectories are (asymptotically) iid (i.e.,  $\mu(t) \otimes \cdots \otimes \mu(t)$ ).

### Stationary regime

Interest in large time behaviour for a finite N system:  $\lim_{t\to\infty} \mu_N(t)$ . If N is large, we really want:

$$\lim_{N\to\infty}\left[\lim_{t\to\infty}\mu_N(t)\right].$$

▶ Idea: Try to predict where the system will settle from the following:

$$\lim_{t\to\infty}\left[\lim_{N\to\infty}\mu_N(t)
ight]=\lim_{t\to\infty}\mu(t).$$

## A fixed-point analysis

Solve for the rest point of the dynamical system:  $\dot{\mu}(t) = \Lambda(\mu(t))^T \mu(t)$ , i.e., solve for  $\xi$  in

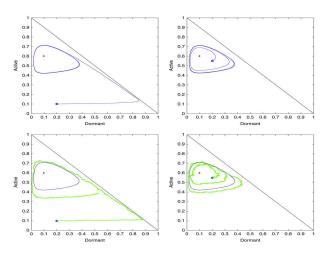
$$\Lambda(\xi)^T \xi = 0.$$

- If the solution is unique, say  $\xi^*$ , predict that the system will settle down at  $\xi^* \otimes \xi^* \otimes \ldots \otimes \xi^*$ .
- Works very well for the exponential backoff.
- Another example in the next slide

## SIS system and "herd immunity"

- Normalise time so that recovery rate is 1. Assume that the contact rate is  $\beta$ .
- ▶ In this normalisation,  $\beta = R_0$  of the infection.
- ▶ The model is  $\dot{\mu}_1(t) = \beta \mu_1(t)(1 \mu_1(t)) \mu_1(t)$ , with  $\mu(0) = \nu$ .
- ▶ Rest points  $\xi^*$  solve  $\beta \xi^* (1 \xi^*) \xi^* = 0$
- $\xi^* = 0$  or  $\xi^* = 1 1/\beta$  (not every one in infected state).

# Issues: A malware propagation example from Benaim and Le Boudec 2008



- ▶ The fixed point is unique, but unstable.
- ► All trajectories starting from outside the fixed point, and all trajectories in the finite *N* system, converge to the stable limit cycle.

#### A sufficient condition when the method works

#### **Theorem**

Assume that the transition graph forms one communicating class and assume Lipschitz rates.

Let  $\mu_N(0) \rightarrow \nu$  in probability.

Let the ODE have a (unique) globally asymptotically stable equilibrium  $\xi^*$  with every path tending to  $\xi^*$ .

Then  $\mu_N(\infty) \stackrel{d}{\to} \xi^*$ .

It is not enough to have a unique fixed point  $\xi^*$ . But if that  $\xi^*$  is globally asymptotically stable, that suffices.

#### A sufficient condition

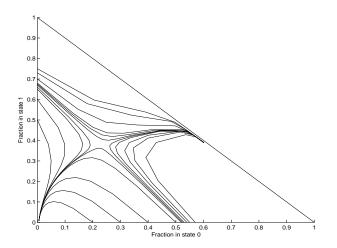
A lot of effort has gone into identifying when we can ensure a globally asymptotic stable equilibrium.

#### **Theorem**

If c is such that  $\langle \xi, c \rangle < 1$  for all  $\xi$ , then the rest point  $\xi^*$  of the dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with  $c_0 < 1$ .

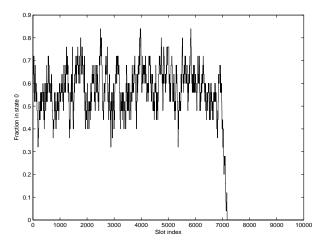
### The case of multiple stable equilibria for the ODE



- ▶ Different parameters: c = (0.5, 0.3, 8.0).
- There are two stable equilibria.

  One near (0.6, 0.4, 0.0) and another near (0, 0, 1).

## The case of multiple stable equilibria: metastability



Fraction of nodes in state 0 is near 0.6 for a long time, but then moves to 0, and in a sequence of rapid steps.

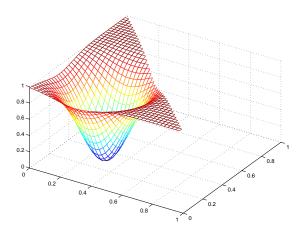
The reverse move is a lot less frequent.

## A selection principle: Preview to the second hour

- If unique globally asymptotically stable equilibrium  $\xi^*$ , then  $\mu_N(\infty) \stackrel{d}{\to} \xi^*$ . (Limit law).
- ▶ If we encounter multiple stable limit sets, look at probability of a large deviation.
- ► Characterise the exponent in

$$\Pr\{\mu_N(\infty) \in \text{ neighbourhood of } \xi\} \sim \exp\{-NV(\xi)\}.$$

- ▶ The locations  $\{\xi: V(\xi) = 0\}$  should "select" the correct limit set.
- $V(\xi)$  is called a quasipotential (Freidlin-Wentzell).

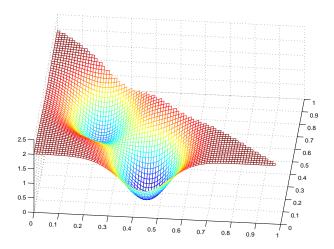


The case of a (unique) globally asymptotically stable equilibrium for the McKean-Vlasov dynamics:  $V(\xi^*)=0$ .



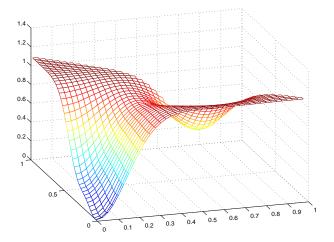
The case of a unique but unstable rest point.  $V(\xi^*) > 0$ .

All trajectories converge to the stable limit cycle.



The case of two stable equilibria.

The selection is the one that has the deepest shade of blue  $(V(\xi_1^*) = 0)$ .



A qualitative picture for the case c = (0.5, 0.3, 8.0).

The two stable points are (0.6, 0.4, 0.0) and (0.0, 0.0, 1.0). The latter is a truer representative of the large time behaviour.

#### Proofs: First Kurtz's theorem

#### **Theorem**

Suppose that the initial empirical measure  $\mu_N(0) \stackrel{p}{\to} \nu$ , where  $\nu$  is deterministic.

Assume each  $\lambda_{i,j}(\cdot)$  is Lipschitz in its argument. Let  $\mu(\cdot)$  be the solution to the McKean-Vlasov dynamics with initial condition  $\mu(0) = \nu$ .

Then 
$$\mu_N(\cdot) \stackrel{p}{\to} \mu(\cdot)$$
.

#### Technicalities:

Fix T > 0 and  $\varepsilon > 0$ . We will argue

$$\Pr\{d_{\mathcal{T}}(\mu_{N}, \mu) > \varepsilon\} \leq \Pr\{\|\mu_{N}(0) - \mu(0)\| > \varepsilon/(2e^{MT})\} + C_{1} \exp\{-NT\overline{\lambda}h(\varepsilon/(C_{2}Te^{MT}))\}$$

where M is the Lipschitz constant of the driving function,  $\overline{\lambda}$  is the max of the transition rates, and  $h(t) = (1+t)\ln(1+t) - t$ , t > -1.

#### Proofs: Proof of Kurtz's theorem

- ▶ Time change. Let  $M(\cdot)$  be a unit rate Poisson point process (PPP). Then  $M(\int_0^s \lambda(s)ds)$  is a time-inhomogeneous PPP with instantaneous rate  $\lambda(\cdot)$ .
- ▶ Let  $(M_{i,j}(\cdot))_{i,j}$  be independent unit-rate PPP.

$$\mu_{N}(t) = \mu_{N}(0) + \sum_{i,j} \left( \frac{\delta_{j} - \delta_{i}}{N} \right) M_{i,j} \left( \int_{0}^{t} N \mu_{N}(s)(i) \lambda_{i,j}(\mu_{N}(s)) ds \right)$$
$$= \mu_{N}(0) + \int_{0}^{t} F(\mu_{N}(s)) ds + \sum_{i,j} \left( \frac{\delta_{j} - \delta_{i}}{N} \right) \overline{M}_{i,j} (\cdot)$$

- Martingale noise  $\overline{M}_{i,j}(t)$  is of the form  $M_{i,j}(t) t$
- By triangle inequality and Lipschitz,

$$\|\mu_N(t) - \mu(t)\| \le \|\mu_N(0) - \mu(0)\| + \int_0^t \|F(\mu_N(s)) - F(\mu(s))\| ds + \|\text{noise}\|$$

$$\le \|\mu_N(0) - \mu(0)\| + M \int_0^t \|\mu_N(s)) - \mu(s)\| ds + \|\text{noise}\|$$

Then Poisson concentration and Gronwall.

#### Proofs: Marginal

 $X_{n_1}^{(N)}(t) \stackrel{d}{\to} U_1$  where  $U_1$  is a random variable with distribution  $\mu(t)$ .

- ▶ Take any bounded test function  $\phi$  on  $\mathcal{Z}$ .
- ▶ Suffices to show  $\mathbb{E}[\phi(X_{n_1}^{(N)}(t))] \to \mathbb{E}[\phi(U_1)]$

$$\mathbb{E}[\phi(X_{n_1}^{(N)}(t))] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}\phi(X_n^{(N)}(t))\right]$$
$$= \mathbb{E}\left[\langle\mu_N(t),\phi\rangle\right]$$
$$\to \langle\mu(t),\phi\rangle$$
$$= \mathbb{E}[\phi(U_1)]$$

#### Proofs: Double marginal

 $(X_{n_1}^{(N)}(t), X_{n_2}^{(N)}(t)) \stackrel{d}{\to} (U_1, U_2)$ , where  $U_1$  and  $U_2$  are iid  $\sim \mu(t)$ .

- ▶ Take any two bounded test functions  $\phi_1$  and  $\phi_2$  on  $\mathcal{Z}$ .
- ▶ Suffices to show  $\mathbb{E}[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t)] \to \mathbb{E}[\phi_1(U_1)] \ \mathbb{E}[\phi_2(U_2)]$

$$egin{aligned} \mathbb{E}[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))] &- \mathbb{E}[\phi_1(U_1)] \ \mathbb{E}[\phi_2(U_2)] \ &= \ \mathbb{E}\left[\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))
ight] - \mathbb{E}\left[\prod_{l=1}^2 \langle \mu_N(t), \phi_l 
angle 
ight] \end{aligned}$$

$$+\mathbb{E}\left[\prod_{l=1}^2\langle\mu_N(t),\phi_l
angle
ight]-\mathbb{E}\left[\phi_1(\mathit{U}_1)
ight]~\mathbb{E}\left[\phi_2(\mathit{U}_2)
ight]$$

$$= \mathbb{E}\left[\frac{1}{N(N-1)}\sum_{n_1\neq n_2}\phi_1(X_{n_1}^{(N)}(t))\phi_2(X_{n_1}^{(N)}(t))\right] \\ -\mathbb{E}\left[\left(\frac{1}{N}\sum_{l}\phi_1(X_{n_1}^{(N)}(t))\right)\left(\frac{1}{N}\sum_{l}\phi_2(X_{n_2}^{(N)}(t))\right)\right]$$

$$+\mathbb{E}\left[\prod_{l=1}^2\langle\mu_{N}(t),\phi_{l}
angle
ight]-\prod_{l=1}^2\langle\mu(t),\phi_{l}
angle$$

# Proofs: Globally asymptotically stable equilibrium and stationary regime

Globally asymptotically stable equilibrium  $\Rightarrow \mu_N(\infty) \stackrel{d}{\to} \xi^*$ .

- $ightharpoonup \pi_N := Law(\mu_N(0))$ , invariant measure. Then  $\pi_N = Law(\mu_N(t))$  also.
- ▶ Compactness implies subsequential limits  $\pi_{N_t} \to \pi$ .
- $\blacktriangleright \ \pi = \pi \circ \Phi_t^{-1}$ , under the McKean-Vlasov flow  $\Phi_t$
- ▶ Compactness of the space, Liapunov stability, Gronwall implies that for every  $\varepsilon > 0$ , there is a T such that  $\forall t > T$ , we have support of  $(\pi \circ \Phi_t^{-1}) \subset B_{\varepsilon}(\xi^*)$  for all t > T.
- ▶ So support of  $\pi$  is within a ball of  $\varepsilon$  around  $\xi^*$ .
- $\varepsilon > 0$  is arbitrary. So support of  $\pi$  is  $\{\xi^*\}$  and  $\pi = \delta_{\xi^*}$ , unique.

#### Section 2

## Large deviations of mean-field models

# Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 2: Large Deviations of Mean-Field Models

SIGMETRICS/PERFORMANCE 2022

#### Recall the mean-field model

▶ *N* particles. The state of the *n*th particle is  $X_n^N(t) \in \mathcal{Z}$ . The empirical measure at time *t* is

$$\mu_N(t) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)}.$$

- ▶ An  $i \rightarrow j$  transition occurs at rate  $\lambda_{i,j}(\mu_N(t))$ .
- ► The McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \ge 0.$$

• We will now quantify various rare events associated with  $\{\mu_N\}$ .

#### Outline of Section 2

- An introduction to large deviations.
  - Basic definitions, some examples.
- ▶ Process-level large deviations of the family  $\{\mu_N\}$ .
  - ► A change of measure argument.
- ▶ Large deviations of the invariant measure of  $\mu_N$ .

# A primer on large deviations

## Large deviation principle (LDP)

- Let S be a complete and separable metric space. Let  $\{X_N, N \ge 1\}$  be a sequence of S-valued random variables.
- ▶ Roughly,  $P(X_N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$ .
- ▶ Here,  $I: S \to [0, \infty]$  is called the rate function.

# Large deviation principle (LDP)

#### Definition

 $\{X_N, N \geq 1\}$  is said to satisfy the LDP on S with rate function I if

- (Compactness of level sets). For any  $s \ge 0$ ,  $\Phi(s) := \{x \in S : I(x) \le s\}$  is a compact subset of S;
- (LDP lower bound). For any  $\gamma > 0$ ,  $\delta > 0$ , and  $x \in S$ , there exists  $N_0 \ge 1$  such that

$$P(d(X_N, x) < \delta) \ge \exp\{-N(I(x) + \gamma)\}$$

for any  $N \geq N_0$ ;

• (LDP upper bound). For any  $\gamma > 0$ ,  $\delta > 0$ , and s > 0, there exists  $N_0 \ge 1$  such that

$$P(d(X_N, \Phi(s)) \ge \delta) \le \exp\{-N(s-\gamma)\}$$

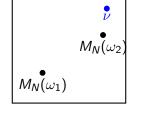
for any  $N \geq N_0$ .



#### Example: Sanov's theorem

- Let S be a Polish space. Let  $\mu$  be a probability measure on S.
- Let  $X_1, X_2, \ldots, X_N$  be i.i.d.  $\mu$ .
- ▶ Define the empirical measure

$$\mu_N = \frac{1}{N} \sum_{n=1}^N \delta_{X_n}.$$



- ► This is an  $\mathcal{M}_1(S)$ -valued random variable.
- ▶ By the weak law of large numbers,  $\mu_N \to \mu$  in  $\mathcal{M}_1(S)$  as  $N \to \infty$ , in probability.
- ▶ But there is a positive probability for  $\mu_N$  to be close to  $\nu \neq \mu$ .

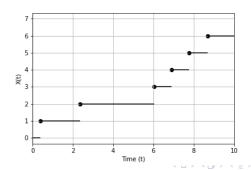
#### Theorem (Sanov)

 $\{\mu_N, N \geq 1\}$  satisfies the LDP on  $\mathcal{M}_1(S)$  with rate function  $I(\cdot||\mu)$ .



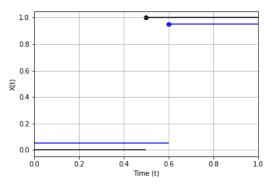
#### The *D*-space

- ▶ Let *S* be a complete and seperable metric space.
- Fix T > 0. Let D([0, T], S) denote the space of S-valued functions on [0, T] that are
  - ▶ Right continuous at each  $t \in [0, T)$ , and
  - ▶ Possesses left limits at each  $t \in (0, T]$ .
- **Examples**:
  - All continuous functions on [0, T].
  - Trajectories of a Poisson point process.



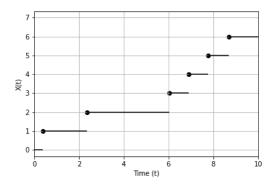
#### The *D*-space

► We can define a distance function on *D* that takes into account small time perturbations.



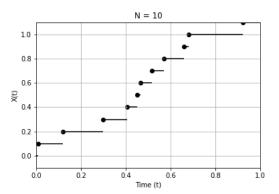
▶ Under this metric, *D* is a complete and seperable metric space.

Consider the unit rate Poisson point process X(t) for  $t \in [0, T]$ .

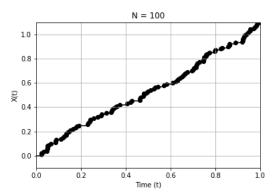


▶ X is a  $D([0, T], \mathbb{R})$ -valued random variable.

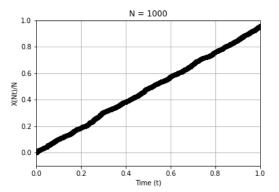
Consider the time-scaled and amplitude-scaled process:  $\frac{1}{N}X(Nt)$ .



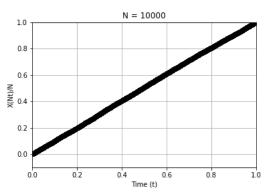
Consider the time-scaled and amplitude-scaled process:  $\frac{1}{N}X(Nt)$ .



Consider the time-scaled and amplitude-scaled process:  $\frac{1}{N}X(Nt)$ .



Consider the time-scaled and amplitude-scaled process:  $\frac{1}{N}X(Nt)$ .



► The process  $\frac{1}{N}X(Nt)$  is a small random perturbation of the ODE

$$\dot{x}(t) = 1, x(0) = 0, t \in [0, 1].$$

• Question: probability that  $\frac{1}{N}X(Nt)$  tracks a given function  $\varphi$ ?



▶ One can show that  $\{\frac{1}{N}X(Nt), N \ge 1\}$  satisfies the LDP on  $D([0, T], \mathbb{R})$  with rate function

$$S(\varphi) = \int_{[0,T]} \tau^*(\dot{\varphi}(t) - 1) dt,$$

if  $t \mapsto \varphi(t)$  is absolutely continuous, increasing, and  $\varphi(0) = 0$ ;  $S(\varphi) = \infty$  otherwise.

► Here,

$$\tau^*(x) = \begin{cases} (x+1)\log(x+1) - x, & \text{if } x \ge -1, \\ \infty, & \text{if } x < -1. \end{cases}$$

#### A closer look at the rate function

$$S(\varphi) = \int_{[0,T]} \tau^*(\dot{\varphi}(t) - 1) dt.$$

 $ightharpoonup au^*$  is the convex dual of  $au(u)=e^u-u-1,\ u\in\mathbb{R};$ 

$$\tau^*(t) = \sup_{u} (ut - \tau(u)), \ t \in \mathbb{R}.$$

So,

$$S(\varphi) = \int_{[0,T]} \sup_{u} (u(\dot{\varphi}(t)-1) - \tau(u)) dt.$$

Such variational forms will appear later.

#### Contraction principle

- ▶ S, T are metric spaces.  $f: S \to T$  is continuous.
- ▶  $\{X_N\}$ s are S-valued random variables. Define  $Y_N = f(X_N)$ .

#### Theorem (Contraction Principle)

If  $\{X_N\}$  satisfies the LDP with rate function I, then  $\{Y_N\}$  satisfies the LDP with rate function

$$J(y) = \inf_{x \in S: y = f(x)} I(x).$$

#### A new LDP from change of measure

- ▶ Let  $\{P_N\}$  satisy the LDP with rate function I.
- ightharpoonup Let  $Q_N$  be such that

$$\frac{dQ_N}{dP_N}(x) = \exp\{Nf(x)\},\,$$

for some  $f: S \to \mathbb{R}$ , bounded and continuous.

- Additionally, suppose that  $\{Q_N\}$  is exponentially tight: Given M>0, there exists a compact set  $K_M$  such that  $Q_N(K_M^c) \leq \exp\{-NM\}$  for all N.
- ▶ Then,  $\{Q_N\}$  satisfies the LDP with rate function I(x) f(x).

## A new LDP from change of measure

▶ Lower bound: For  $x \in S$  and  $\delta > 0$ ,

$$Q_{N}(d(X_{N},x) < \delta) = E^{Q_{N}}(\mathbf{1}_{\{X_{N} \in B(x,\delta)\}})$$

$$= E^{P_{N}}(\exp\{Nf(X_{N})\}\mathbf{1}_{\{X_{N} \in B(x,\delta)\}})$$

$$\geq \exp\{N(f(x) - \varepsilon)\}P_{N}(X_{N} \in B(x,\delta))$$

$$\geq \exp\{-N(I(x) - f(x) + 2\varepsilon)\}.$$

Upper bound: For a closet set F,

$$Q_N(F) \le Q_N(K_M^c) + Q_N(F \cap K_M)$$
  
 
$$\le \exp\{-NM\} + Q_N(F \cap K_M).$$

Since  $F \cap K_M$  is compact, we can cover it using a finite number of balls. For the *i*th ball,

$$Q_N(\overline{B}(x_i,\delta)) \le \exp\{-N(I(x)-f(x)-\varepsilon)\}.$$



#### Varadhan's lemma

#### **Theorem**

Let  $f: S \to \mathbb{R}$  be bounded and continuous. Suppose that  $\{X_N\}$  satisfies the LDP with rate function 1. Then

$$\lim_{N\to\infty}\frac{1}{N}\log E(\exp\{Nf(X_N)\})=\sup_{x\in S}(f(x)-I(x)).$$

- ▶ By the LDP,  $E(\exp\{Nf(X_N)\}\mathbf{1}_{\{X_N\sim x\}}) \sim \exp\{Nf(x)\}\exp\{-NI(x)\}.$
- ▶ The leading terms in the expectation are those  $x \in S$  for which f(x) I(x) is the largest.

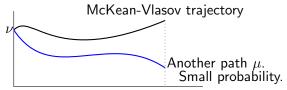
Large deviations of the empirical measure process

## Recall the empirical measure process

- $ightharpoonup \mu_N(t) 
  ightarrow \mu_N(t) + rac{\delta_j}{N} rac{\delta_i}{N}$  at rate  $N\mu_N(t)(i)\lambda_{i,j}(\mu_N(t))$ .
- Recall the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \geq 0.$$

- From Section 1, if  $\mu_N(0) \to \nu$  in  $\mathcal{M}_1(\mathcal{Z})$ , then  $\mu_N(\cdot) \to \mu(\cdot)$  in  $D([0,T],\mathcal{M}_1(\mathcal{Z}))$ , in probability.
- ▶ We now present the large deviations of  $\mu_N$ .



# Large deviations of $\mu_N$

#### **Theorem**

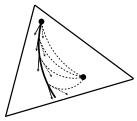
Let  $\mu_N(0) \to \nu$  in  $\mathcal{M}_1(\mathcal{Z})$ . Then  $\mu_N$  satisfies the LDP on  $D([0,T],\mathcal{M}_1(\mathcal{Z}))$  with rate function  $S_{[0,T]}(\cdot|\nu)$  defined as follows. If  $\mu_0 = \nu$  and  $[0,T] \ni t \mapsto \mu_t \in \mathcal{M}_1(\mathcal{Z})$  is absolutely continuous,

$$S_{[0,T]}(\mu|\nu) = \int_{[0,T]} \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left\{ \langle \alpha, \dot{\mu}_t - \Lambda(\mu_t)^T \mu_t \rangle - \sum_{(i,j) \in \mathcal{E}} \tau(\alpha(j) - \alpha(i)) \lambda_{i,j}(\mu_t) \mu_t(i) \right\} dt,$$

else 
$$S_{[0,T]}(\mu|\nu)=\infty$$
. Here,  $\tau(u)=e^u-u-1$ .

## An interpretation of the rate function

• Consider a path  $\dot{\mu}_t = G(t)^T \mu_t$ .



- ▶ In a small time around t, for an  $i \rightarrow j$  transition,
  - ▶ The usual rate is Bernoulli( $p = \lambda_{i,j}(\mu(t))dt$ ).
  - ▶ The new rate is Bernoulli( $q = G_{i,j}(t)dt$ ).
- By Sanov's theorem, the infinitesimal cost of this change is

$$I(\mathsf{Bernoulli}(q) || \mathsf{Bernoulli}(p)) = \left( q \log \frac{q}{p} - q + p \right).$$

Accumulate these costs over [0, T] to get the rate function.



# LDP for $\{\mu_N\}$ – proof sketch

- ► Consider a system of non-interacting particles.
  - $ightharpoonup \lambda_{i,j}(\xi) = 1$  for all  $\xi \in \mathcal{M}_1(\mathcal{Z})$  and  $(i,j) \in \mathcal{E}$ .
- Define the empirical measure on paths

$$\overline{\mu}_{N} = \frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}}.$$

- ▶ This is a  $\mathcal{M}_1(D([0,T],\mathcal{Z}))$  valued random variable.
  - $ightharpoonup \overline{\mu}_{N}(t) = \overline{\mu} \circ \pi_{t}^{-1}$ , where  $\pi_{t}$  is the projection mapping

$$D([0,T],\mathcal{Z})\ni \varphi\mapsto \varphi(t)\in \mathcal{M}_1(\mathcal{Z}).$$

- Let  $\bar{P}_z$  denote the law of a particle starting at z.
- ▶ If  $X_n^N(0) = z$  for all n, then by Sanov's theorem,  $\{\overline{\mu}_N\}$  satisfies the LDP with rate function  $Q \mapsto I(Q || \overline{P}_z)$ .

# LDP for $\{\mu_N\}$ – proof sketch

▶ When  $\overline{\mu}_N(0) \to \nu$ , then a generalisation of Sanov's theorem gives the LDP for  $\{\overline{\mu}_N\}$  with rate function

$$J(Q) = \sup_{f \in C_b(D)} \left[ \int_D f dQ - \sum_{z \in \mathcal{Z}} \nu(z) \log \int_D e^f d\overline{P}_z \right]$$

(Dawson and Gärtner, 1987).

- ▶ In particular, when  $\nu = \delta_z$ ,  $J(Q) = I(Q \| \bar{P}_z)$ .
- ▶ By Jensen's inequality,  $J(Q) \ge I(Q \| \sum_{z} \nu(z) \bar{P}_{z})$ .

#### A change of measure

- ▶ Consider two probability measures:  $P \sim \text{Poisson}(\lambda_1)$ , and  $Q \sim \text{Poisson}(\lambda_2)$ .
- We have

$$P(k) = \frac{\lambda_1^k \exp\left\{-\lambda_1\right\}}{k!}, \ k \ge 0,$$

and similarly Q(k).

► So,

$$\frac{Q(k)}{P(k)} = \left(\frac{\lambda_2}{\lambda_1}\right)^k \exp\{-(\lambda_2 - \lambda_1)\}$$
$$= \exp\left\{k \log\left(\frac{\lambda_2}{\lambda_2}\right) - (\lambda_2 - \lambda_1)\right\}.$$

#### A change of measure

- More generally, let P (resp. Q) be the law of the Poisson point process with rate  $\lambda_1$  (resp.  $\lambda_2$ ).
- ▶ Both P and Q are probability measures on  $D([0, T], \mathbb{Z}_+)$ .
- By Girsanov's theorem,

$$\frac{dQ}{dP}(x) = \exp\left\{\sum_{0 \le t \le T} \mathbf{1}_{\{x_t \ne x_{t-}\}} \log\left(\frac{\lambda_2}{\lambda_1}\right) - \int_{[0,T]} (\lambda_2 - \lambda_1) dt\right\},\,$$

for 
$$x \in D([0, T], \mathbb{Z}_+)$$
.

## LDP for $\{\mu_N\}$ – proof sketch

- Let  $\mathbb{P}_N$  (resp.  $\overline{\mathbb{P}}_N$ ) be the law of the interacting (resp. non-interacting) system.
- ▶ By Girsanov's theorem,

$$rac{d\mathbb{P}_{N}}{d\overline{\mathbb{P}}_{N}}(Q)=\exp\{\mathit{Nh}(Q)\},\,Q\in\mathcal{M}_{1}(D),$$

where,

$$h(Q) = \int_D h_1(x, Q) Q(dx),$$

$$egin{aligned} h_1(x,Q) &= \sum_{0 \leq t \leq T} \mathbf{1}_{\{x_t 
eq x_{t-}\}} \log \lambda_{x_{t-},x_t}(Q(t-)) \ &- \int \sum_{j:(x_{t-},j) \in \mathcal{E}} (\lambda_{x_{t-},j}(Q(t-))-1) dt. \end{aligned}$$

# LDP for $\{\mu_N\}$ – proof sketch

- ▶ However, *h* is neither bounded nor continuous.
- ▶ Consider a subspace of  $\mathcal{M}_1(D)$ :

$$M_{1,\varphi}(D) = \left\{Q \in \mathcal{M}_1(D) : \int_D \varphi dQ < \infty\right\},$$

where,  $\varphi: D \to \mathbb{R}_+$  is the function  $\varphi(x) = \sum_{0 \le t \le T} \mathbf{1}_{\{x_t \ne x_{t-}\}}$ .

- ▶ Show that h is continuous at all points in  $M_{1,\varphi}(D)$ .
- ► Then show that  $\{\gamma_N\}$  satisfies the LDP with rate function  $Q \mapsto J(Q) h(Q)$ .
- ▶ By the contraction principle,  $\{\mu_N(t)\}$  satisfies the LDP with rate function  $S_{[0,T]}(\cdot|\nu)$ .

Large deviations in the stationary regime

#### The unique attractor case

- ▶ Recall the empirical measure process  $\mu_N$ . Let  $\wp_N$  be its unique invariant probability measure.
- $\triangleright \wp_N$  is the law of  $\mu_N(\infty)$ . It is a probability measure on  $\mathcal{M}_1(\mathcal{Z})$ .
- Recall the McKean-Vlasov equation

$$\dot{\mu}_t = \Lambda(\mu_t)^T \mu_t, \ t \ge 0.$$

- Suppose that  $\xi^*$  is the unique globally asymptotically stable equilibrium of the McKean-Vlasov equation.
- ► From Section 1,  $\mu_N(\infty)$  converges to  $\xi^*$  in distribution as  $N \to \infty$ .
- ▶ We now study the large deviations of  $\{\wp_N\}$ .

#### LDP for the terminal time

- ▶ Consider the random variable  $\mu_N(T)$ .
- The mapping

$$D([0,T],\mathcal{M}_1(\mathcal{Z}))\ni \varphi\mapsto \varphi(T)\in \mathcal{M}_1(\mathcal{Z})$$

is continuous.

▶ Let  $\mu_N(0) \rightarrow \nu$ . By the contraction principle,  $\{\mu_N(T)\}$  satisfies the LDP with rate function

$$S_T(\xi|\nu) = \inf\{S_{[0,T]}(\mu|\nu) : \mu(0) = \nu, \mu(T) = \xi\}.$$



# LDP for the joint law $(\mu_N(0), \mu_N(T))$

- ▶ So far, we assumed  $\mu_N(0) \rightarrow \nu$ .
- Suppose we start at stationarity, i.e., the law of  $\mu_N(0)$  is  $\wp_N$ . Then the law of  $\mu_N(T)$  is also  $\wp_N$ .
- ► Consider  $(\mu_N(0), \mu_N(T))$ .
- Suppose that  $\wp_N$  satisfies the LDP with rate function V. Then, under some conditions, the joint law  $(\mu_N(0), \mu_N(T))$  satisfies the LDP with rate function

$$(\nu,\xi)\mapsto V(\nu)+S_T(\xi|\nu)$$

#### A recursion for the rate function

- ▶ Suppose that  $\wp_N$  satisfies the LDP with rate function V.
- ▶ We have that  $(\mu_N(0), \mu_N(T))$  satisfies the LDP with rate function

$$(\nu,\xi)\mapsto V(\nu)+S_T(\xi|\nu)$$

▶ On one hand, by the contraction principle,  $\{\mu_N(T)\}$  satisfies the LDP with rate function

$$\xi \mapsto \inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$

▶ On the other hand, since the law of  $\mu_N(T)$  is  $\wp_N$ , we have

$$V(\xi) = \inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$
 for all  $T > 0$ .

▶ Is there a unique *V* that satisfies this?



# Large deviations of $\wp_N$

#### Theorem

The family  $\{\wp_N\}$  satisfies the LDP on  $\mathcal{M}_1(\mathcal{Z})$  with rate function

$$V(\xi) = \inf_{T>0} S_T(\xi|\xi^*).$$

Further, there exists a trajectory  $\hat{\mu}$  such that  $\hat{\mu}(t) \to \xi^*$  as  $t \to -\infty$ ,  $\hat{\mu}(0) = \xi$ , and

$$V(\xi) = S_{(-\infty,0]}(\hat{\mu}|\xi^*).$$



# Large deviations of $\wp_N$ – proof sketch

- ▶ Show that  $V(\xi^*) = 0$ .
- ► Then,

$$V(\xi) \leq V(\xi^*) + S_T(\xi|\xi^*)$$
 for all  $T > 0$ .

► So,

$$V(\xi) \leq \inf_{T>0} S_T(\xi|\xi^*).$$

## Large deviations of $\wp_N$ – proof sketch

For T > 0, show that the infimum in

$$\inf_{\nu \in \mathcal{M}_1(\mathcal{Z})} [V(\nu) + S_T(\xi|\nu)]$$

is attained.

- For each  $\nu$ ,  $\xi$  and T > 0, there is an optimal path  $\hat{\mu}$  from  $\nu$  to  $\xi$ , i.e.,  $S_T(\xi|\nu) = S_{[0,T]}(\hat{\mu}|\nu)$ .
- ► So,

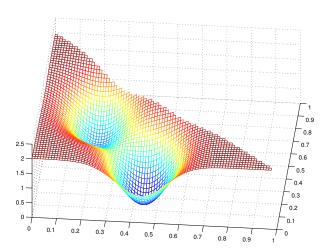
$$V(\xi) = V(\hat{\mu}(-mT)) + S_{mT}(\xi|\hat{\mu}(-mT)).$$

- Argue that  $\hat{\mu}(-mT) \to \xi^*$  as  $m \to \infty$ .
- ▶ By the lower semicontinuity of V, and  $V(\xi^*) = 0$ , we have

$$V(\xi) \geq S_{(-\infty,0]}(\hat{\mu}|\xi^*).$$

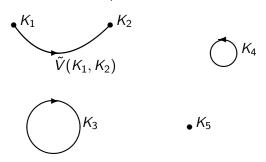
## The general case – multiple equilibria

- ▶ The Freidlin-Wentzell quasipotential V on  $\mathcal{M}_1(\mathcal{Z})$ .
- ▶  $P(\mu_N(\infty) \sim \xi) \sim \exp\{-NV(\xi)\}$ .



## The general case – some notation

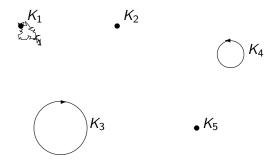
- Assumptions on the McKean-Vlasov equation: There exists a finite number of compact sets  $K_1, K_2, \ldots, K_l$  such that
  - Every equilibrium of the McKean-Vlasov equation lies completely in one of the compact sets  $K_i$ .
  - No cost of movement within K<sub>i</sub>. Positive cost to go out of (or come into) K<sub>i</sub>.



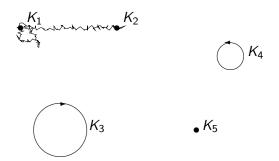
 $\tilde{V}(K_i, K_j) = \inf\{S_{[0,T]}(\varphi|\varphi_0) : \varphi_0 \in K_i, \varphi_T \in K_j, \varphi_t \notin \bigcup_{i' \neq i,j} K_{i'}, T > 0\} \text{ (communication cost from } K_i \text{ to } K_j).$ 



# Approximation of $\mu_N$ using a discrete chain



## Approximation of $\mu_N$ using a discrete chain



- $ightharpoonup au_n$ : hitting time of  $\mu_N$  in a given neighbourhood of  $K_i$ 's.
- ▶ Hitting time chain:  $Z_n^N = \mu_N(\tau_n), n \ge 1.$
- ▶ To quantify the transitions between  $K_i$ 's, we need large deviation estimates of  $\mu_N$  uniformly with respect to the initial condition.

## Uniform large deviations

 $\blacktriangleright \mu_N^{\nu}$ : process starting from  $\nu$ . Indexed by two parameters.

#### Definition

 $\{\mu_N^{\nu}\}$  is said to satisfy the uniform LDP over a class of subsets  $\mathcal{A}\subset\mathcal{M}_1(\mathcal{Z})$  if

- ▶ for each  $K \subset \mathcal{M}_1(\mathcal{Z})$  compact and s > 0,  $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$  is a compact subset of  $D([0, T], \mathcal{M}_1(\mathcal{Z}))$ ;
- for any  $\gamma > 0, \delta > 0, s > 0$  and  $A \in A$ , there exists  $N_0 \ge 1$  such that

$$P_{\nu}(\rho(\mu_{N}^{\nu},\varphi)<\delta)\geq \exp\{-N(S_{[0,T]}(\varphi|\nu)+\gamma)\},$$

for all  $\nu \in A$ ,  $\varphi \in \Phi_{\nu}(s)$  and  $N \geq N_0$ ;

▶ for any  $\gamma > 0, \delta > 0, s_0 > 0$  and  $A \in \mathcal{A}$ , there exists  $N_0 \ge 1$  such that

$$P_{\nu}(\rho(\mu_N^{\nu}, \Phi_{\nu}(s)) \geq \delta) \leq \exp\{-N(s-\gamma)\},$$

for all  $\nu \in A$ ,  $s \leq s_0$  and  $N \geq N_0$ .

▶ Theorem:  $\{\mu_N^{\nu}\}$  satisfies the uniform LDP over  $\mathcal{M}_1(\mathcal{Z})$ .



# One step transition probability of $Z^N$

#### Lemma

Given  $\varepsilon > 0$ , there exists  $\delta > 0$  such that the one-step transition probability of the chain  $Z^N$  satisfies

$$\exp\{-N(\tilde{V}(K_i, K_j) + \varepsilon)\} \le P(B(K_i, \delta), B(K_j, \delta))$$

$$\le \exp\{-N(\tilde{V}(K_i, K_j) - \varepsilon)\}$$

for all large enough N.

▶ Upon exit from  $K_i$ ,  $\mu_N$  is most likely to visit  $K_j$  that attains  $\min_{j'} \tilde{V}(K_i, K_{j'})$  (=  $\tilde{V}(K_i)$ ).

# One step transition probability of $Z^N$ – proof sketch

- Lower bound:
  - ▶ By the definition of  $\tilde{V}(K_i, K_j)$ , given  $\varepsilon > 0$ , there exists a trajectory  $\varphi$  from  $K_i$  to  $K_j$  such that  $S_{[0,T]}(\varphi|K_i) \leq \tilde{V}(K_i, K_i) + \varepsilon$ .
  - ▶ Then, using the uniform LDP for  $\{\mu_N\}$ ,

$$P(B(K_i, \delta), B(K_j, \delta)) \ge P_{K_i}(\mu_N \in \mathsf{nbhd}(\varphi))$$
  
  $\ge \exp\{-N(\tilde{V}(K_i, K_j) + \varepsilon)\}.$ 

- Upper bound:
  - Let  $\tau_1$  be the hitting time of  $\cup K_I$ .
  - Given M > 0, we can find  $T_1 > 0$  such that  $P_{K_i}(\tau_1 > T_1) \le \exp\{-NM\}$ .
  - Let  $A = \{ \varphi : \varphi_0 \in K_i, \varphi_{T_1} \in K_j, S_{[0,T]}(\varphi|K_i) \leq \tilde{V}(K_i, K_j) \varepsilon \}.$
  - ► Then using the uniform LDP for  $\{\mu_N\}$ ,

$$P(B(K_i, \delta), B(K_j, \delta)) \le P_{K_i}(\tau_1 \ge T_1) + P_{K_i}(\operatorname{dist}(\mu_N, A) \ge \delta)$$
  
$$\le \exp\{-NM\} + \exp\{-N(\tilde{V}(K_i, K_j) - \varepsilon)\}.$$

#### The Markov chain tree theorem

- Consider an irreducible Markov chain on  $L = \{1, 2, ..., I\}$  with transition probability matrix P.
- ▶ An *i*-graph G(i) is a directed graph on L such that
  - ▶ There is exactly one outgoing arrow from every  $j \in L$ .
  - There are no closed cycles.
- ▶ For an *i*-graph *g*, let  $\pi(g) = \prod_{(i,j) \in g} P(i,j)$ .
- ▶ Let  $W(i) = \sum_{g \in G(i)} \pi(g)$ .
- ► Then,

$$\frac{W(i)}{\sum_{j}W(j)}, j \in L,$$

is the stationary distribution of the Markov chain.

## The invariant measure of $Z^N$

Recall the one-step transition probabilities of Z<sup>N</sup>:

$$P(K_i, K_j) \sim \exp\{-N\tilde{V}(K_i, K_j)\}.$$

- ▶ Let  $W(K_i) = min_{g \in G(i)} \sum_{(m,n) \in g} \tilde{V}(K_m, K_n)$ .
- ▶ By the Markov chain tree theorem, the the invariant measure of  $Z^N$  satisfies

$$\gamma_N(K_i) \sim \exp\{-N(W(i) - \min_j W(j))\}.$$

lacktriangle Reconstruct  $\wp_N$  from  $\gamma_N$  and show that

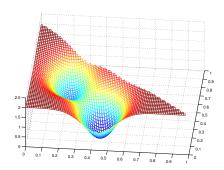
$$\wp_N(K_i) \sim \exp\{-N(W(i) - \min_j W(j))\}.$$

## Large deviations of the invariant measure

#### **Theorem**

In the case of multiple equilibria,  $\{\wp_N\}$  satisfies the LDP with rate function

$$V(\xi) = \min_{1 \leq i \leq l} [W(K_i) + \tilde{V}(K_i, \xi)] - \min_{1 \leq i \leq l} W(K_i)$$



## Some applications of the LDP

- Exit times:
  - The mean exit time from  $K_i$  is of the order  $\exp\{N\tilde{V}(K_i)\}$ , where  $\tilde{V}(K_i) = \min_j \tilde{V}(K_i, K_j)$ .
- ▶ Mixing time of  $\mu_N$ :
  - There is a constant  $\Lambda > 0$  such that  $\mu_N$  mixes well when the time is of the order  $\exp\{N\Lambda\}$ .
  - ▶ Proof via the exploration of equilibria. Mean passage times are of the order  $\exp\{N\tilde{V}\}$ , and has probability at least  $\exp\{-N\varepsilon\}$ .

## Summary of Section 2

- A primer on large deviations.
- ► The process-level large deviations of the empirical measure process  $\{\mu_N\}$ .
  - Get the LDP for a non-interacting system using Sanov's theorem.
  - Use Varadhan's lemma to transfer it to  $\{\mu_N\}$ .
- Large deviations of the family of invariant measures {ρ<sub>N</sub>}.
  - The unique attractor case: Identify the rate function from a recursion.
  - ► The multiple attractor case: Identify the values on the attractors.

## Section 3

## Variations - Two time-scales

# Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 3: Variations and Phenomena

SIGMETRICS/PERFORMANCE 2022

## Outline of Section 3

- Variations:
  - A two time scale mean-field model.
  - Process-level large deviations of the empirical measure process.
- Phenomena:
  - A countable state mean-field model.
  - Large deviations of the family of invariant measures.
- Summary and some open questions.

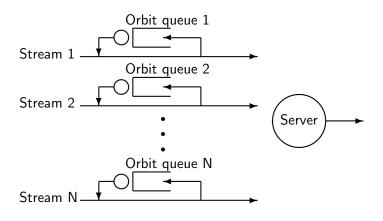
## A two time scale mean-field model

- N particles and an environment.
- $\triangleright$  At time t,
  - ▶ The state of the *n*th particle is  $X_n^N(t) \in \mathcal{Z}$ ;
  - ▶ The state of the environment is  $Y_N(t) \in \mathcal{Y}$ .
- Certain allowed transitions.
  - ▶ Particles: a directed graph  $(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}})$ ;
  - ▶ Environment: a directed graph  $(\mathcal{Y}, \mathcal{E}_{\mathcal{V}})$ .
- Empirical measure of the system of particles at time t:

$$\mu_N(t) := \frac{1}{N} \sum_{n=1}^N \delta_{X_n^N(t)} \in \mathcal{M}_1(\mathcal{Z}).$$

- ▶ We are given functions  $\lambda_{i,j}(\cdot,y)$ ,  $(i,j) \in \mathcal{E}_{\mathcal{Z}}$ ,  $y \in \mathcal{Y}$  and  $\gamma_{v,v'}(\cdot)$ ,  $(y,y') \in \mathcal{E}_{\mathcal{Y}}$  on  $\mathcal{M}_1(\mathcal{Z})$ .
- ► Markovian evolution at time t:
  - ▶ Particles:  $i \rightarrow j$  at rate  $\lambda_{i,j}(\mu_N(t), Y_N(t))$ ;
  - ► Environment:  $y \to y'$  at rate  $N\gamma_{y,y'}(\mu_N(t))$ .

## An example: Constant rate retrial systems



- N queues (particles), and a single server (environment).
- ▶ The server becomes busy at rate  $N(\lambda + \alpha(1 \mu_N(t)(0)))$ .



#### A two time scale mean-field model

 $\blacktriangleright$   $(\mu_N, Y_N)$  is a Markov process with the transition rates

$$(\xi,y) 
ightarrow \left\{ egin{array}{ll} (\xi,y') & ext{ at rate } N\gamma_{y,y'}(\xi) \ \left(\xi+rac{\delta_j}{N}-rac{\delta_i}{N}
ight) & ext{ at rate } N\xi(i)\lambda_{i,j}(\xi,y). \end{array} 
ight.$$

- A "fully coupled" two time scale process.
- Assumptions:
  - ▶ The graphs  $(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}})$  and  $(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}})$  are irreducible.
  - The functions  $\lambda_{i,j}(\cdot,y)$  are Lipschitz continuous and  $\inf_{\xi} \lambda_{i,j}(\xi,y) > 0$  for all  $(i,j) \in \mathcal{E}_{\mathcal{Z}}$  and  $y \in \mathcal{Y}$ .
  - The functions  $\gamma_{y,y'}(\cdot)$  are continuous and  $\inf_{\xi} \gamma_{y,y'}(\xi) > 0$  for all  $(y,y') \in \mathcal{E}_{\mathcal{Y}}$ .

## The occupation measure process

- Fix a time duration T > 0.
- ▶ View  $\mu_N$  as a random element of  $D([0, T], \mathcal{M}_1(\mathcal{Z}))$ .
- ▶ Consider the occupation measure of the fast environment:

$$\theta_N(t)(\cdot) := \int_0^t 1_{\{Y_N(s) \in \cdot\}} ds, \ 0 \le t \le T.$$

- ▶  $\theta_N$  is a random element of  $D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$ , the set of  $\theta$  such that  $\theta_t \theta_s \in \mathcal{M}(\mathcal{Y})$  and  $\theta_t(\mathcal{Y}) = t$  for  $0 \le s \le t \le T$ .
- We can write  $\theta$  as  $\theta(dydt) = m_t(dy)dt$  where  $m_t \in M_1(\mathcal{Y})$ .
- We consider the process  $(\mu_N, \theta_N)$  with sample paths in  $D([0, T], \mathcal{M}_1(\mathcal{Z})) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$ .

## The averaging principle

- ▶ Suppose we freeze  $\mu_N(t)$  to be  $\xi$ . Then for large N,
  - ► The  $Y_N$  process would quickly equilibrate to  $\pi_\xi$ , the unique invariant probability measure of

$$L_{\xi}g(y):=\sum_{y':(y,y')\in\mathcal{E}_{\mathcal{Y}}}(g(y')-g(y))\gamma_{y,y'}(\xi),y\in\mathcal{Y}.$$

For a particle, an (i,j) transition occurs at rate  $\sum_{y \in \mathcal{Y}} \lambda_{i,j}(\xi,y) \pi_{\xi}(y) =: \bar{\lambda}_{i,j}(\xi,\pi_{\xi}).$ 

## Theorem (Bordenave et al. 2009)

Suppose that  $\mu_N(0) \to \nu$  in  $\mathcal{M}_1(\mathcal{Z})$ . Then  $\mu_N$  converges in probability, in  $D([0,T],\mathcal{M}_1(\mathcal{Z}))$ , to the solution to the ODE

$$\dot{\mu}_t = \bar{\Lambda}_{\mu_t, \pi_{\mu_t}}^T \mu_t, \ 0 \le t \le T, \ \mu_0 = \nu.$$

where 
$$\bar{\Lambda}_{\mu_t,\pi_{\mu_t}}(i,j) = \bar{\lambda}_{i,j}(\mu_t,\pi_{\mu_t})$$
.

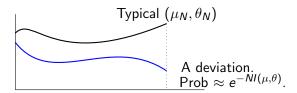
 $\blacktriangleright$   $\mu_N$  is a small random perturbation of the above ODE. We study the large deviations of  $(\mu_N, \theta_N)$ .

#### Main result

#### **Theorem**

Suppose that  $\{\mu_N(0)\}_{N\geq 1}$  satisfies the LDP on  $\mathcal{M}_1(\mathcal{Z})$  with rate function  $I_0$ . Then the sequence  $\{(\mu_N(t),\theta_N(t)),0\leq t\leq T\}_{N\geq 1}$  satisfies the LDP on  $D([0,T],\mathcal{M}_1(\mathcal{Z}))\times D_{\uparrow}([0,T],\mathcal{M}(\mathcal{Y}))$  with rate function

$$I(\mu,\theta):=I_0(\mu(0))+J(\mu,\theta).$$



## The rate function *J*

$$\begin{split} J(\mu,\theta) &:= \int_{[0,T]} \left\{ \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left( \left\langle \alpha, (\dot{\mu}_t - \bar{\Lambda}_{\mu_t,m_t}^T \mu_t) \right\rangle \right. \\ & - \sum_{(i,j) \in \mathcal{E}_{\mathcal{Z}}} \tau(\alpha(j) - \alpha(i)) \bar{\lambda}_{i,j}(\mu_t, m_t) \mu_t(i) \right) \\ & + \sup_{g \in \mathbb{R}^{|\mathcal{Y}|}} \sum_{y \in \mathcal{Y}} \left( -L_{\mu_t} g(y) \right. \\ & \left. - \sum_{y': (y,y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g(y') - g(y)) \gamma_{y,y'}(\mu_t) \right) m_t(y) \right\} dt \end{split}$$

whenever the mapping  $[0, T] \ni t \mapsto \mu_t \in \mathcal{M}_1(\mathcal{Z})$  is absolutely continuous, where  $\theta(dtdy) = m_t(dy)dt$ , and  $J(\mu, \theta) = +\infty$  otherwise.

$$ightharpoonup au(u) = e^u - u - 1, u \in \mathbb{R}.$$



## Some remarks about the rate function

- ▶  $J(\mu, \theta) \ge 0$  with equality iff  $(\mu, \theta)$  satisfies the mean-field limit.
- ➤ Two parts. The mean-field part (slow component) and occupation measure part (fast component).
  - For the slow component, the average of the fast variable appears.
  - For the fast component, the slow variable is frozen.
- For occupation measure of Markov processes, the canonical form of the rate function is  $\int_{[0,T]} \sup_{h>0} \sum_{\mathcal{Y}} -\frac{L_{\mu_t}h(y)}{h(y)} m_t(y) dt$  (Donsker and Varadhan, 1973). This can be obtained by taking  $h=e^g$ .

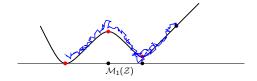
# Large deviations of $\mu_N$

## Corollary

 $\{\mu_N\}$  satisfies the LDP on  $D([0,T],\mathcal{M}_1(\mathcal{Z}))$  with rate function

$$\mu \mapsto I_0(\mu_0) + \inf_{\theta} J(\mu, \theta).$$

- ► Follows from contraction principle since the mapping  $(\mu, \theta) \mapsto \mu$  is continuous.
- Can quantify rare transitions.



## Outline of the proof

- ▶ We use the method of stochastic exponentials (Pulahskii 2016, 1994).
- Show exponential tightness. This gives a subsequential LDP.
- ► Get a condition for any subsequential rate function (in terms of an exponential martingale).
- Identify the subsequential rate function on "nice" elements of the space.
- Extend to the whole space using suitable approximations.
- Unique identification any subsequential rate function (regardless of the subsequence) implies the LDP.

## An exponential martingale

- ▶ If  $N_t$  is the unit rate Poisson point process, then  $N_t t$  is a martingale.
- Recall that

$$\tau(\alpha) = \log E(\exp{\{\alpha(N_1 - 1)\}}).$$

One can verify that

$$\exp\{\alpha(N_t-t)-\tau(\alpha)t\}$$

is a martingale for all  $\alpha$ .

We get a necessary condition for the subsequential rate function in terms of such exponential martingales.

## Exponential tightness

#### **Theorem**

The sequence  $\{(\mu_N(t), \theta_N(t)), t \in [0, T]\}_{N \ge 1}$  is exponentially tight in  $D([0, T], M_1(\mathcal{Z})) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$ , i.e., given any M > 0, there exists a compact set  $K_M$  such that

$$\limsup_{N\to\infty}\frac{1}{N}\log P\left(\{(\mu_N(t),\theta_N(t)),0\leq t\leq T\}\notin K_M\right)\leq -M.$$

For 
$$\beta > 0$$
 and  $\alpha \in \mathbb{R}^{|\mathcal{Z}|}$ , with  $X_{N,t} = \langle \alpha, \mu_N(t) \rangle$ ,

$$\begin{split} \exp&\bigg\{N\bigg(\beta X_{N,t}-\beta X_{N,0}-\beta\int_0^t\Phi_{Y_{N,s}}f(\mu_{N,s})ds\\ &-\int_0^t\sum_{(i,i)}\tau(\beta(\alpha(j)-\alpha(i)))\lambda_{i,j}(\mu_{N,s},Y_{N,s})\mu_{N,s}(i)ds\bigg)\bigg\},t\geq 0, \end{split}$$

is an exponential martingale. Use Doob's inequality and a condition for exponential tightness in  $D([0,T],\mathbb{R})$  (Puhalskii, 1994).

## An equation for the subsequential rate function

- ▶ Let  $\{(\mu_{N_k}, \theta_{N_k})\}_{k \ge 1}$  be a subsequence that satisfies the LDP with rate function  $\tilde{I}$ .
- Let  $\alpha: [0,T] \times \mathcal{M}_1(\mathcal{Z}) \to \mathbb{R}^{|\mathcal{Z}|}$  and  $g: [0,T] \times \mathcal{M}_1(\mathcal{Z}) \times \mathcal{Y} \to \mathbb{R}$  be bounded measurable, and continuous on  $\mathcal{M}_1(\mathcal{Z})$ .
- ▶ Define  $U_t^{\alpha,g}(\mu,\theta)$  by

$$\int_{[0,t]} \left\{ \langle \alpha_s(\mu_s), \dot{\mu}_s - \bar{\Lambda}_{\mu_s,m_s}^T \mu_s \rangle \right.$$

$$\left. - \sum_{(i,j)} \tau(\alpha_s(\mu_s)(j) - \alpha_s(\mu_s)(i)) \bar{\lambda}_{i,j}(\mu_s, m_s) \mu_s(i) \right.$$

$$\left. + \sum_{y} \left( -L_{\mu_s} g_s(\mu_s, \cdot)(y) \right.$$

$$\left. - \sum_{y:(y,y') \in \mathcal{E}_{\mathcal{Y}}} \tau(g_s(\mu_s, y') - g_s(\mu_s, y)) \gamma_{y,y'}(\mu_s) \right) m_s(y) \right\} ds.$$

## An equation for the subsequential rate function

• We can show that, for each  $\alpha$  and g,

$$\sup_{(\mu,\theta)\in\Gamma} (U_T^{\alpha,g}(\mu,\theta) - \tilde{I}(\mu,\theta)) = 0, \tag{1}$$

where  $\Gamma$  is the set of  $(\mu, \theta)$  such that  $t \mapsto \mu_t$  absolutely continuous.

ightharpoonup On one hand, for a smaller class of  $\alpha$  and g,

$$\label{eq:exp} \textit{E} \exp\{\textit{NU}_{\textit{T}}^{\alpha,\textit{g}}(\mu_{\textit{N}},\theta_{\textit{N}}) + \textit{V}_{\textit{T}}^{\textit{g}}(\mu_{\textit{N}},\textit{Y}_{\textit{N}})\} = 1,$$

where  $V_T^g$  is O(1) a.s.

▶ On the other hand, Varadhan's lemma implies that

$$\lim_{k \to \infty} \frac{1}{N_k} \log E \exp\{N_k U_T^{\alpha, g}(\mu_{N_k}, \theta_{N_k}) + V_T^g(\mu_{N_k}, Y_{N_k})\}$$

$$= \sup_{(\mu, \theta)} (U_T^{\alpha, g}(\mu, \theta) - \tilde{I}(\mu, \theta))$$

This can be extended to (1).

▶ Moreover, the supremum in (1) is attained.

#### A candidate rate function

- ► Recall that  $\sup_{(\mu,\theta)\in\Gamma}(U^{\alpha,g}_T(\mu,\theta)-\tilde{I}(\mu,\theta))=0.$
- ► A natural candidate for the rate function

$$I^*(\mu, \theta) = \sup_{\alpha, g} U_T^{\alpha, g}(\mu, \theta).$$

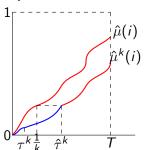
- lt can be shown that  $I^* = J$ .
- ▶ Note that  $\tilde{I} \ge I^*$  on Γ. Outside Γ,  $I^*$  can be shown to be  $+\infty$ .
- ▶ Goal: show that  $\tilde{I} \leq I^*$  whenever  $I^* < +\infty$ . Once this is established, the LDP follows.

## Identification of $\tilde{l}$ on "nice" elements

- ▶ Suppose  $(\hat{\mu}, \hat{\theta})$  is such that  $I^*(\hat{\mu}, \hat{\theta}) < +\infty$ , and
  - $\qquad \inf\nolimits_{t \in [0,T]} \min\nolimits_{i \in \mathcal{Z}} \hat{\mu}_t(i) > 0,$
  - ▶ the mapping  $[0, T] \ni t \mapsto \hat{\mu}_t \in \mathcal{M}_1(\mathcal{Z})$  is Lipschitz continuous,
  - $ightharpoonup \inf_{t\in[0,T]}\min_{y\in\mathcal{Y}}\hat{m}_t(y)>0 \text{ where } \hat{\theta}(dydt)=\hat{m}_t(dy)dt.$
- ▶ Then, there exists  $(\hat{\alpha}, \hat{g})$  that attains  $\sup_{\alpha, g} U_T^{\alpha, g}(\hat{\mu}, \hat{\theta})$ .
  - ▶ To show that  $\hat{\alpha}$  and  $\hat{g}$  are continuous on  $\mathcal{M}_1(\mathcal{Z})$ , we use the Berge's maximum theorem.
- With this  $(\hat{\alpha}, \hat{g})$ , get  $(\tilde{\mu}, \tilde{\theta})$  that attains the supremum in  $\sup_{(\mu, \theta) \in \Gamma} (U_T^{\hat{\alpha}, \hat{g}}(\mu, \theta) \tilde{I}(\mu, \theta)) = 0$ .
- ▶ Hence,  $I^*(\tilde{\mu}, \tilde{\theta}) \geq U_T^{\hat{\alpha}, \hat{g}}(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$ .
- ▶ Since  $I^* \leq \tilde{I}$ , we get  $I^*(\tilde{\mu}, \tilde{\theta}) = \tilde{I}(\tilde{\mu}, \tilde{\theta})$ .
- ▶ Show that  $(\tilde{\mu}, \tilde{\theta}) = (\hat{\mu}, \hat{\theta})$ .
- lt follows that  $\tilde{I}(\hat{\mu}, \hat{\theta}) = I^*(\hat{\mu}, \hat{\theta})$ .

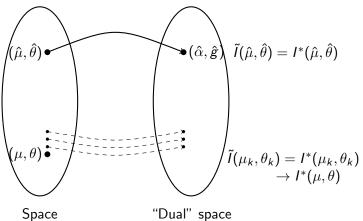
## Approximation procedure

- ► For general elements  $(\hat{\mu}, \hat{\theta})$ ,  $(\hat{\alpha}, \hat{g})$  may not exist.
- lacktriangle Produce  $(\hat{\mu}_k,\hat{ heta}_k)$  that are "nice", and satisfy
  - $ightharpoonup (\hat{\mu}_k,\hat{ heta}_k) 
    ightarrow (\hat{\mu},\hat{ heta})$  as  $k
    ightarrow \infty$ ,
  - $ightharpoonup ilde{I} = I^*$  on  $(\hat{\mu}_k, \hat{ heta}_k)$  for all k,
    - $I^*(\hat{\mu}_k,\hat{\theta}_k) \to I^*(\hat{\mu},\hat{\theta}) \text{ as } k \to \infty.$
- lt then follows that  $\tilde{I} = I^*$  on  $(\hat{\mu}, \hat{\theta})$ .
- ► Relaxation of  $\inf_{t \in [0,T]} \min_{i \in \mathcal{Z}} \hat{\mu}_t(i) > 0$ :



Other conditions are relaxed using suitable approximations. We finally get  $\tilde{I} = I^*$  for all elements.

Summary of the proof

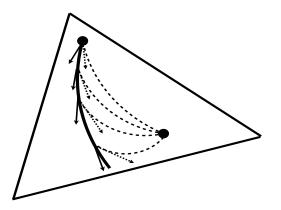


- For "nice" elements of  $D([0, T], \mathcal{M}_1(\mathcal{Z})) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$ , we show that  $\tilde{I} = I^*$  (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

## Section 4

# Variations - Phenomena in the infinite state space case

# The running cost of following a trajectory $\phi(\cdot)$



- At each time t, if the current state is  $\phi(t)$ , the natural tendency is to go along the tangent  $\Lambda(\phi(t))^T \phi(t)$ .
- To follow  $\phi(t)$  however, the system needs to work against the McKean-Vlasov gradient and move along the tangent  $\dot{\phi}(t)$ .
- $\blacktriangleright L(\phi(t),\dot{\phi}(t)).$

# Guessing the running cost

- $\blacktriangleright \text{ Write } \dot{\phi}(t) = G(t)^T \phi(t).$
- **b** By decoupling, each node's state is iid  $\phi(t)$ .
- Natural tendency for the  $N\phi(t)(i)$  nodes in state i is to have  $i \rightsquigarrow j$  at current (instantaneous) rate  $\lambda_{i,j}(\phi(t))$ .
- ▶ But to move along  $\phi(t)$  they must have an instantaneous rate of  $G_{i,j}(t)$ .
- The  $N\phi(t)(i)$  Bernoulli( $p = \lambda_{i,j}(t) \ dt$ ) random variables must have a large deviation and must have an empirical measure close to  $(q = G_{i,j}(t) \ dt)$ . By Sanov's theorem, the negative exponent is:

$$N\phi(t)(i)D(q||p)\cong N\phi(t)(i)(q\log rac{q}{p}-q+p)$$

► Sum over *i* and *j* and integrate over [0, *T*] to get the action functional:

$$\int_0^T L(\phi(t),\dot{\phi}(t)) dt.$$

The case of a globally asymptotically stable equilibrium  $\xi^*$ 

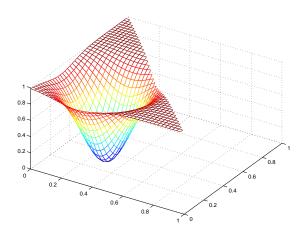
### Theorem

 $V(\xi)$  is given by

$$V(\xi)=\inf\left\{\int_0^T L(\phi(t),\dot{\phi}(t))\;dt\;|\;\phi(0)=\xi^*,\phi(T)=\xi,\,T\in(0,\infty)
ight\}.$$

- Any deviation that puts the system at  $\xi$  must have started its effort from  $\xi^*$ .
- $V(\xi^*) = 0.$

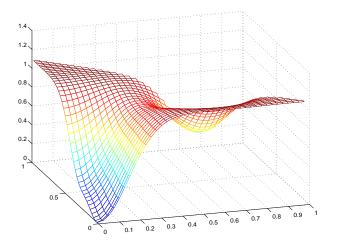
# The path to $\xi$



Can specify not only exponent  $V(\xi)$  of the probability, but also the path.

Any deviation that puts the system near q must have started from  $\xi^*$ , and must have taken the least cost path.

# When there are multiple stable limit sets



The case of two stable equilibria is easy to describe.

- $ightharpoonup V_{12} = \text{cost of moving from } \xi_1^* \text{ to } \xi_2^*.$
- $ightharpoonup V_{21} = {\rm cost}$  of the reverse move.
- ▶ If  $V_{12} > V_{21}$ , then  $v_1 = 0$  and  $v_2 = V_{12} V_{21}$ .

# When there are multiple stable limit sets

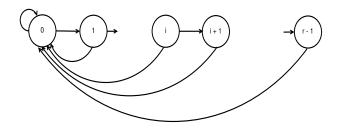
### **Theorem**

 $V(\xi)$  is given by

$$V(\xi) = \inf_i \left\{ v_i + \int_0^T L(\phi(t), \dot{\phi}(t)) \ dt \mid \phi(0) = \xi_i^*, \phi(T) = \xi, T \in (0, \infty) \right\}.$$

- Start from the global minimum  $\xi_1^*$  and move to the attractor in the basin in which  $\xi$  lies along the least cost path.
- ▶ Then move to  $\xi$  along the least cost path.

## Infinite state space



- Now  $r = \infty$
- ▶ Forward rate  $\lambda_f$ , backward rate  $\lambda_b$ . Let  $\xi^*$  be the invariant measure.
- $ightharpoonup X_n^{(N)}(\infty) \sim \xi^*$
- $ightharpoonup \xi^*(i) = (1ho)
  ho^i, \quad i \geq 0$ , where  $ho = rac{\lambda_f}{\lambda_f + \lambda_b}$ .

# The "interacting particle system", LDP, and the rate function

- For explicit calculations, assume that the queues are noninteracting (i.e., each evolves independently).
- ▶ We are interested in invariant measure for the empirical measure.
- ► The invariant measure is just the law of  $\mu_N(\infty) = \frac{1}{N} \sum_{n=1}^N \delta_{X_n^{(N)}(\infty)}$
- Sanov) The  $\mu_N(\infty)$  sequence satisfies the LDP with rate function given by relative entropy  $I(\cdot||\xi^*)$ .

# What are "reachable" points at stationarity?

- $\blacktriangleright \text{ Let } \iota(i) = i.$
- ▶  $I(\xi || \xi^*)$  is finite if and only if  $\langle \xi, \iota \rangle < \infty$ .
- Define  $\vartheta(i) = i \log i$ . There are points  $\xi$  for which  $\langle \xi, \iota \rangle < \infty$ , but  $\langle \xi, \vartheta \rangle = \infty$ . Mass is sufficiently spread out, since  $I(\xi, \xi^*)$  is finite, they are still reachable at stationarity.

## Quasipotential

Define the quasipotential as before.

$$V(\xi) = \inf \left\{ \int_0^T L(\phi(t), \dot{\phi}(t)) \ dt \mid \phi(0) = \xi^*, \phi(T) = \xi, T \in (0, \infty) \right\}$$

$$\geq \inf_T \sup_{f \in C_0^1([0, T] \times \mathcal{Z}} \left\{ \langle \phi_T, f_T \rangle - \langle \phi_0, f_0 \rangle - \int_0^T \langle \phi_u, \partial_u f_u \rangle du \right.$$

$$\left. - \int_0^T \langle \phi_u, \Lambda_{\phi_u} f_u \rangle du - \int_0^T \sum_{i,j} \tau(f_u(j) - f_u(i)) \lambda_{i,j}(\phi_u) \phi_u(i) du \right\}$$

- Last two terms simplify to  $\int_0^T \sum_{i,j} \exp\{f_u(j) f_u(i)\} \lambda_{i,j}(\phi_u) \phi_u(i) du$
- Strategy
  - ► Choose  $f_n = \vartheta(Hat(0, n, 2n))$ . This is like  $\vartheta(n)$  up to n.
  - ▶ Then  $f_n(j) f_n(i) \le 1 + \log(i+1)$  for the edges in the graph.
  - Last two terms  $\propto \langle \phi_u, \iota \rangle$  which integrates to a finite value.
  - ▶ Then let  $f_n \to \vartheta$  as  $n \to \infty$ .
  - ▶ Then  $\langle \xi, \vartheta \rangle = \infty \Rightarrow V(\xi) = \infty$ .

## Infinite state space

#### **Theorem**

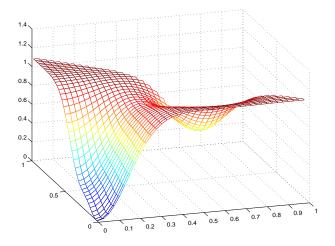
The rate function for the invariant measure is the relative entropy  $I(\cdot||\xi^*)$ , and this is not equal to the quasipotential V.

- ▶ Take a  $\xi$  whose mean is finite but the slightly larger  $i \log i$  moment is infinite.
- ▶ *V* comes from a finite horizon perspective. There are barriers that are too difficult to cross in any finite time horizon, but in the stationary regime these can be crossed leading to a finite rate function at these points.
- A partial answer

#### **Theorem**

If  $\lambda_{i,i+1}(\cdot) = \Theta(1/(i+1))$ , then the rate function for the invariant measure is indeed governed by the quasipotential.

## The take-away picture



$$V_{1\rightarrow 2} > V_{2\rightarrow 1}$$