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Section 1

The classical fixed point analysis



DCF: The 802.11 countdown and its Markovian caricature

◮ N nodes accessing the common medium in a wireless LAN.
Infinite backlog of packets. Attempts to transmit HOL packet.

◮ Each node’s (backoff) state space: Z = {0, 1, · · · ,m − 1}.
Backoff state determines attempt probability for a node in a slot.

◮ Transitions:

0 1 i i + 1 m - 1



Example design – exponential backoff

◮ Assume three states, Z = {0, 1, 2} or m = 3.

◮ Attempt probability for node in state i is ci/N .

◮ Aggressiveness of the transmission c = (c0, c1, c2).

◮ The scaling by 1/N ensures that the overall attempt probability of a
single node is O(1/N) so that the overall (system) attempt
probability for the system is O(1).

◮ Conventional wisdom: exponential backoff:

ci = ci−1/2.

Double the average waiting time after every failure.



Back-of-envelope analysis

◮ Observation: your collision probability depends only on the empirical
measure of node states ... excepting you.

◮ ξ = current empirical measure of nodes across states.

◮ Number of nodes across states is (Nξ0,Nξ1, . . . ,Nξm−1).

◮ If you are in state 0, others states (Nξ0 − 1,Nξ1, . . . ,Nξm−1).
Probability that no one else transmits is:

(

1−
c0
N

)Nξ0−1

·

m−1
∏

i=1

(

1−
ci
N

)Nξi

=
(

1−
c0
N

)−1

·

m−1
∏

i=0

(

1−
ci
N

)Nξi

→ e−〈c,ξ〉.

◮ 〈c , ξ〉 is the attempt probability:
∑

i(Nξi )(ci/N).

◮ If N is small or if attempt probabilities don’t scale, avoid the limit.



The classical fixed-point analysis

1. Conditional collision probability, when making an attempt, is the
same for each node in each state.

γ := 1− e−〈c,ξ〉 = 1− e−(attempt)

This amounts to assuming that spatial distribution stabilises at ξ.

2. The system interactions decouple.

3. Focus on a node. Consider renewal instants of return to state 0.
From the renewal-reward theorem:

0 1 i i + 1 m - 1

attempt

N
=

E [Reward ]

E [RenewalTime]
=

1 + γ + γ2 + . . .
N
c0
+ γ N

c1
+ γ2 N

c2
+ . . .

=:
G(γ)

N
.

4. Solve for the fixed point: γ = 1− e−G(γ).



Goodness of the approximation (from Bianchi 1998)

Plot for fixed-point analysis without taking N → ∞.
W is the window size in the basic WLAN protocol.



In this talk:

We will see an overview of

◮ why decoupling is a good assumption;

◮ when node independent, state independent, conditional collision
probability assumption holds;

◮ and going a little beyond

what to do when the ’node/state independent collision probability’
does not hold.



Section 2

The decoupling assumption



Mean-field interaction

◮ Coupled dynamics.

◮ Embed slot boundaries on R+. Assume slots of duration 1/N .

◮ Transition rate = prob. of change in a slot / slot duration = O(1).

◮ Transition rate for success or failure depends on the states of the
other nodes, but only through the empirical measure µN(t) of nodes
across states.

◮ At time t, node transition rates are as follows:

◮ i  i + 1 with rate λi,i+1(µN(t)).

◮ i  0 with rate λi,0(µN(t)).

◮ In general, i  j with rate λi,j(µN(t)).



The transition rates

If µN(t) = ξ, then

◮ Example:

λ0,1(ξ) =
(c0/N)(1− e−attempt)

1/N
= c0(1− e−〈c,ξ〉).

◮ Write as a matrix of rates: Λ(·) = [ λi ,j(ξ) ]i ,j∈Z .

◮ For ξ, the empirical measure of a configuration, the rate matrix is

Λ(ξ) =





− c0(1− e−〈c,ξ〉) 0

c1e
−〈c,ξ〉 − c1(1− e−〈c,ξ〉)

c2e
−〈c,ξ〉 0 −



 .

For today’s exposition, we will assume this continuous-time caricature
with these instantaneous transition rates.

This is different, since at most one node can transit at any time.



The Markov processes, big and small

◮ (X
(N)
n (·), 1 ≤ n ≤ N), the trajectory of all the n nodes, is Markov

◮ Study µN(·) instead, also a Markov process
Its state space size is the set of empirical probability measures on N
particles with state space Z.

◮ Then try to draw conclusions on the original process.



The smaller Markov process µN(·)

◮ A Markov process with state space being the set of empirical
measures of N nodes.

◮ This is a measure-valued flow across time.

◮ In the continuous-time version:
the transition ξ  ξ + 1

N
ej −

1
N
ei occurs at rate Nξ(i)λi ,j(ξ).

◮ For large N , changes are small, O(1/N), at higher rates, O(N).
Individuals are collectively just about strong enough to influence the
evolution of the measure-valued flow.

◮ Fluid limit : µN converges to a deterministic limit given by an ODE.



The conditional expected drift in µN

◮ Recall Λ(·) = [ λi ,j(·) ] without diagonal entries. Then

lim
h↓0

1

h
E [µN(t + h) − µN(t) | µN(t) = ξ] = Λ(ξ)∗ ξ

with suitably defined diagonal entries.



An interpretation

◮ The rate of change in the kth component is made up of increase

∑

i :i 6=k

(Nξi ) · λi ,k(ξ) · (+1/N)

◮ and decrease
(Nξk)

∑

i :i 6=k

λk,i (ξ)(−1/N).

◮ Put these together:

∑

i :i 6=k

ξiλi ,k(ξ)− ξk
∑

i :i 6=k

λk,i (ξ) =
∑

i

ξiλi ,k(ξ) = (Λ(ξ)∗ξ)k .



The conditional expected drift in µN

◮ Recall Λ(·) = [ λi ,j(·) ] without diagonal entries. Then

lim
h↓0

1

h
E [µN(t + h)− µN(t) | µN(t) = ξ] = Λ(ξ)∗ ξ

with suitably defined diagonal entries.

◮ Anticipate that µN(·) will solve (in the large N limit)

µ̇(t) = Λ(µ(t))∗ µ(t), t ≥ 0 [McKean-Vlasov equation]

µ(0) = ν

◮ Nonlinear ODE.



A limit theorem

Theorem
Suppose that the initial empirical measure µN(0)

p
→ ν, where ν is

deterministic.

Let µ(·) be the solution to the McKean-Vlasov dynamics with initial
condition µ(0) = ν.

Then µN(·)
p
→ µ(·).

Technicalities:

◮ The McKean-Vlasov ODE must be well-posed.

◮ µN(0)
p
→ ν: Probability of being outside a ball around ν vanishes.

◮ µN(·)
p
→ µ(·): For any finite duration, probability of being outside a

tube around µ(·) vanishes.



Back to the individual nodes

◮ Let µ(·) be the solution to the McKean-Vlasov dynamics

◮ Choose a node uniformly at random, and tag it.

◮ µN(·) is the distribution for the state of the tagged node at time t.

◮ As N → ∞, the limiting distribution is then µ(t)



Joint evolution of tagged nodes

◮ Tag k nodes.

◮ If the interaction is only through µN(t), and this converges to a
deterministic µ(t), the transition rates are just λi,j(µ(t)).

◮ Each of the k nodes is then executing a time-dependent Markov
process with transition rate matrix Λ(µ(t)).

◮ Asymptotically, no interaction ... decoupling.

◮ The node trajectories are (asymptotically) independent and
identically distributed.
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The steady state assumption



The fixed-point analysis again

◮ Solve for the rest point of the dynamical system.

Λ(ξ)∗ξ = 0.

◮ If the solution is unique, predict that the system will settle down at
ξ ⊗ ξ ⊗ . . .⊗ ξ.

◮ Works very well for the exponential backoff.

◮ But not in general due to limit cycles.



A malware propagation example (from Benaim and Le

Boudec 2008)

◮ The fixed point is unique, but unstable.
◮ All trajectories starting from outside the fixed point, and all

trajectories in the finite N system, converge to the stable limit cycle.



What is the issue?

◮ Large time behaviour for a finite N system: limt→∞ µN(t).
If N is large, we really want:

lim
N→∞

[

lim
t→∞

µN(t)
]

.

◮ But we are trying to predict where the system will settle from the
following:

lim
t→∞

[

lim
N→∞

µN(t)

]

= lim
t→∞

µ(t).

◮ We need a little bit of robustness of the ODE for this work.



Does the method work?

Theorem
Let µN(0) → ν in probability.

Let the ODE have a (unique) globally asymptotically stable equilibrium
ξf with every path tending to ξf .

Then µN(∞)
d
→ ξf .

It is not enough to have a unique fixed point ξf .
But if that ξf is globally asymptotically stable, that suffices.



A sufficient condition

A lot of effort has gone into identifying when we can ensure a globally
asymptotic stable equilibrium.

Theorem
If c is such that 〈c , ξ〉 < 1 for all ξ, then the rest point ξf of the
dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with c0 < 1.



The case of multiple stable equilibria for the ODE
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◮ Different parameters: c = (0.5, 0.3, 8.0).

◮ There are two stable equilibria.
One near (0.6, 0.4, 0.0) and another near (0, 0, 1).



The case of multiple stable equilibria: metastability
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Fraction of nodes in state 0 is near 0.6 for a long time, but then moves
to 0, and in a sequence of rapid steps.

The reverse move is a lot less frequent.



Metastability video

Separate file highlighting metastability.
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Multiple stable limit sets: A selection principle



A selection principle

◮ If unique globally asymptotically stable equilibrium ξf , then

µN(∞)
d
→ ξf . (Limit law).

◮ If we encounter multiple stable limit sets, look at probability of a
large deviation.

◮ Characterise the exponent in

Pr {µN(∞) ∈ neighbourhood of q} ∼ exp{−NV (q)}.

◮ The locations {q : V (q) = 0} should “select” the correct limit set.

◮ V (q) is called a quasipotential (Freidlin-Wentzell).



Quasipotential V (q)
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The case of a (unique) globally asymptotically stable equilibrium for the
McKean-Vlasov dynamics: V (ξf ) = 0.



Quasipotential V (q)
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The case of a unique but unstable rest point. V (ξf ) > 0.

All trajectories converge to the stable limit cycle.



Quasipotential V (q)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

1.5

2

2.5

The case of two stable equilibria.

The selection is the one that has the deepest shade of blue (V (ξf 1) = 0).



Quasipotential V (q)
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A qualitative picture for the case c = (0.5, 0.3, 8.0).

The two stable points are (0.6, 0.4, 0.0) and (0.0, 0.0, 1.0).
The latter is a truer representative of the large time behaviour.
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The quasipotential by inspection



The running cost of following a trajectory φ(·)

◮ At each time t, if the current state is φ(t), the natural tendency is
to go along the tangent Λ(φ(t))∗φ(t).

◮ To follow φ(t) however, the system needs to work against the
McKean-Vlasov gradient and move along the tangent φ̇(t).

◮ L(φ(t), φ̇(t)).



Guessing the running cost

◮ Write φ̇(t) = G(t)∗φ(t).

◮ By decoupling, each node’s state is iid φ(t).

◮ Natural tendency for the Nφ(t)(i) nodes in state i is to have i  j
at current (instantaneous) rate λi ,j(φ(t)).

◮ But to move along φ(t) they must have an instantaneous rate of
Gi ,j(t).

◮ The Nφ(t)(i) Bernoulli(p = λi ,j(t) dt) random variables must have
a large deviation and must have an empirical measure close to
(q = Gi ,j(t) dt). By Sanov’s theorem, the negative exponent is:

Nφ(t)(i)D(q||p) ∼= Nφ(t)(i)(q log
q

p
− q + p)

◮ Sum over i and j and integrate over [0,T ] to get the action
functional:

∫ T

0

L(φ(t), φ̇(t)) dt.



The case of a globally asymptotically stable equilibrium ξf

Theorem
V (q) is given by

V (q) = inf

{

∫ T

0

L(φ(t), φ̇(t)) dt | φ(0) = ξf , φ(T ) = q,T ∈ (0,∞)

}

.

◮ Any deviation that puts the system at q must have started its effort
from ξf .

◮ V (ξf ) = 0.



The path to q
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Can specify not only exponent V (q) of the probability, but also the path.

Any deviation that puts the system near q must have started from ξf ,
and must have taken the least cost path.



When there are multiple stable limit sets
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The case of two stable equilibria is easy to describe.
◮ V12 = cost of moving from ξf 1 to ξf 2.
◮ V21 = cost of the reverse move.
◮ If V12 > V21, then v1 = 0 and v2 = V12 − V21.



When there are multiple stable limit sets

Theorem
V (q) is given by

V (q) = inf

{

vi +

∫ T

0

L(φ(t), φ̇(t)) dt | i , φ(0) = ξfi , φ(T ) = q,T ∈ (0,∞)

}

.

◮ Start from the global minimum ξf 1 and move to the attractor in the
basin in which q lies along the least cost path.

◮ Then move to q along the least cost path.



If you are interested in the methodology

◮ Finite time horizons again, but this time to study large deviation
from the McKean-Vlasov limit.

◮ Large deviation of the stationary measure when there is a globally
asymptotic stable equilibrium.

◮ Analysis of the Markov chain of equilibrium neighbourhoods at
hitting times of these neighbourhoods, and associated large
deviation principles, when there are multiple stable limit sets.



The take-away picture
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V1→2 > V2→1
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