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Outline

1 Model description, finite and large-time mean-field limits, and the
fixed-point method.

2 Large deviation from the mean-field limit for finite time durations.

3 Large deviation from the mean-field limit for the stationary measure.



A mean-field model of a spin system

◮ Interacting system with N particles

◮ Each particle’s state space: Z = {UP,DN}

◮ Transitions:

UP DN

◮ Dynamics depends on the “mean field”. Global interaction.
µN(t) = Fraction of particles having UP spin

◮ Transition from i to j at rate λij(µN(t))



Reversible versus nonreversible dynamics

◮ (Reversible) Gibbsian system

◮ Example: Heat bath dynamics

◮ E(µN): Energy of a configuration x = (x1, . . . , xN) with mean µN

◮ An i to j transition takes µN to µ− 1
N
δi +

1
N
δj

λij(µN) =
e−NE (µN )

e−NE (µN− 1
N
δi+

1
N
δj ) + e−NE (µN )

◮ In general, λij(·) may result in nonreversible dynamics

◮ Weak interaction



Wireless Local Area Network (WLAN) interactions

◮ N particles accessing the common medium in a wireless LAN

◮ Each particle’s state space: Z = {0, 1, · · · , r − 1}

◮ Transitions:

0 1 i i + 1 r - 1

◮ Interpretation
◮ State = # of transmission attempts for head-of-line packet
◮ r : Maximum number of transmission attempts before discard

◮ Coupled dynamics: Transition rate for success or failure depends on
empirical distribution µN(t) of particles across states



Mean-field interaction and dynamics

◮ Configuration XN(t) = (x1(t), . . . xN(t)).

◮ Empirical measure µN(t): Fraction of particles in each state

◮ A particle transits from state i to state j at time t with rate
λi ,j(µN(t))



Example transition rates

◮ Matrix of rates: Λ(·) = [ λi ,j(ξ) ]i ,j∈Z .

◮ Assume three states, Z = {0, 1, 2} or r = 3.

◮ Aggressiveness of the transmission c = (c0, c1, c2).

◮ For µ, the empirical measure of a configuration, the rate matrix is

Λ(µ) =





−(·) c0(1 − e−〈c,µ〉) 0

c1e
−〈c,µ〉 −(·) c1(1− e−〈c,µ〉)
c2 0 −(·)



 .

◮ “Activity” coefficient a = 〈c , µ〉.
Probability of no activity = e−a.



Engineering: Going the full cycle

◮ Design the protocol. This fixes the interaction and the dynamics.

◮ Allow ourselves flexibility. Enough parameters to tune.
Here, aggressiveness c.

◮ Analysis/Simulation: Study phenomena as a function of the
parameters.

◮ Choose parameters. Choice guided by studies in the previous step.

◮ At a slower time-scale, change the protocol.
Flaws in protocol. Or newer requirements.
Capture model (Neelesh Mehta and his team).
IEEE 1901 (P. Thiran and his team).

These talks: analysis.
Example happy situation where analysis justified a simplifying
approximation, explained phenomena observed in simulations and in
practice. Also, general enough to handle capture model, IEEE 1901
model etc.



The Markov processes, big and small

◮ (X
(N)
n (·), 1 ≤ n ≤ N) is Markov

◮ State space grows exponentially with N : size rN

◮ Study µN(·) instead, also a Markov process
Its state space size is at most (N + 1)r , and is a subset of M1(Z)
Then try to draw conclusions on the original process.

◮ State space of µN(·)



The smaller Markov process µN(·)

◮ A Markov process with state space being the set of empirical
measures of N particles.

◮ This is a measure-valued flow across time.

◮ The transition from µ to µ+ 1
N ej −

1
N ei occurs with rate

Nµ(i)λi ,j(ξ).

◮ For large N , changes are small, O(1/N), at higher rates, O(N).
Individuals are collectively just about strong enough to influence the
evolution of the measure-valued flow.

◮ Fluid limit : µN converges to a deterministic limit given by an ODE.



The conditional expected drift in µN

◮ Recall Λ(·) = [ λi ,j(·) ]. Then

lim
h↓0

1

h
E [µN(t + h)− µN(t) | µN(t) = ξ] = Λ(ξ)∗ ξ

◮ Interpretation: The rate of change in the kth component is
∑

i :i 6=k

ξiλi ,k(ξ)− ξk
∑

i :i 6=k

λk,i(ξ)

◮ Anticipate that µN(·) will solve (in the large N limit)

µ̇(t) = Λ(µ(t))∗ µ(t), t ≥ 0 [McKean-Vlasov equation]

µ(0) = ν

◮ Nonlinear ODE. A transport equation. Lives in M1(Z).



Assumptions

◮ The graph with vertex set Z and edge set E is irreducible
Holds in our WLAN example

◮ There exist positive constants c > 0 and C < +∞ such that, for
every (i , j) ∈ E , we have

c ≤ λi ,j(·) ≤ C

◮ The mapping µ 7→ λi ,j(µ) is Lipschitz continuous over M1(Z)



The notion of convergence

◮ µN(·) takes values in D([0,T ],M1(Z)), right-continuous with left
limits, measure-valued paths.

◮ Equip this space with the metric

ρT (η(·), ζ(·)) = sup
t∈[0,T ]

||η(t)− ζ(t)||1

where || · ||1 is the L1 metric.

◮ Convergence is uniform over [0,T ].



Kurtz’s theorem: a formal statement

Let µ(·) be the solution to the McKean-Vlasov dynamics with initial
condition µ(0) = ν.

Theorem
Let µN(0)

p
→ ν, where ν is deterministic. Then, for each T > 0,

µN(·)
p
→ µ(·).

Remarks:

◮ The McKean-Vlasov ODE must be well-posed. Lipschitz suffices.

◮ µN(0)
p
→ ν: Probability of being outside a ball around ν vanishes.

◮ µN(·)
p
→ µ(·): For any finite duration, probability of being outside a

tube around µ(·) vanishes.



Proof methods

◮ Get estimates on ρT (µN , µ) via Gronwall bound and show that the
probability that it exceeds ε vanishes with N .

◮ Or show that the infinitesimal generator LN for the Markov process
µN() converges to a first order differential operator.

For any bounded and continuous Φ : M1(Z) → R, the function
LNΦ is the conditional expected drift starting from the argument ξ:

LNΦ(ξ) = lim
h↓0

1

h
E [Φ(µN(t + h)) − Φ(µN(t)) | µN(t) = ξ]

=
∑

(i ,j):j 6=i

Nξ(i)λi ,j(ξ)

[

Φ

(

ξ +
1

N
ej −

1

N
ei

)

− Φ(ξ)

]

= 〈∇Φ(ξ),Λ(ξ)∗ξ〉+ O

(

1

N

)

via Taylor if Φ has bounded second order derivatives.



Back to the individual particles

◮ Let µ(·) be the solution to the McKean-Vlasov dynamics

◮ Tag a particle.

◮ Its evolution influenced by the mean-field µN(·).

◮ But the mean-field µN(·) converges to a deterministic limit.

◮ Asymptotically then, the particle executes a Markov process with
time-dependent transition rates λi,j(µ(t))

◮ Can formalise this notion.

◮ µ(t) is the distribution for the state of the tagged particle at time t.



Joint evolution of tagged particles

◮ Tag k particles.

◮ Exchangeable XN(0). Take the limit as N → ∞.

◮ De Finetti’s theorem: An infinite exchangeable process is a mixture
of iids.
The “driving” distribution is the distribution of limN µN(0).

◮ If exchangeable, and µN(0)
p
→ ν (deterministic), then the particle

states are asymptotically independent at time 0.

◮ Chaoticity or “Boltzmann property” (M. Kac 1956).

◮ If Boltzmann property holds at time 0, Boltzmann property holds at
any time t > 0. (Kac 1956)

◮ Initial chaos propagates over time.

◮ “Canonical ensemble” at time t.



Large time behaviour

◮ limt→∞ [limN→∞ µN(t)] reduces to a study of the McKean-Vlasov
ODE for large time.

◮ limN→∞ [limt→∞ µN(t)]?

◮ For fixed N, the time limit continues to be random. Let
℘(N) = Law(µN(∞)).

◮ The stationary distribution exists and is unique by our assumptions.

◮ What is limN→∞ ℘(N)?
Does the first limit say something about this?



Some inescapable terminology on dynamical systems

◮ ODE: µ̇(t) = F (µ(t)) for t ≥ 0 with initial condition µ(0) = ν.

◮ Stationary point: Solutions to F (ξ) = 0.

◮ ω-limit set Ω(ν): All limit points of µ(·) when µ(0) = ν.

◮ Recurrent point: A ν such that ν ∈ Ω(ν).

◮ Birkhoff centre B = set of all recurrent points.

◮ Example: µ̇(t) = Aµ(t), with A nonsingular, µ(t) ∈ R
2.

◮ Stationary points = {0}.
◮ Case when all Re λi < 0: B = {0}.
◮ Case when all Re λi = 0: B = {0} ∪ all circles = R

2.

◮ A stationary point ξ0 is globally asymptotically stable if (among
other things) µ(t) → ξ0 for all initial conditions µ(0).
In particular, B = {ξ0}



The limiting behaviour of the stationary distribution

Theorem

◮ The support of any limit of (℘(N),N ≥ 1) is a compact subset of the
Birkhoff centre B.

◮ If ξ0 is a stationary point that is globally asymptotically stable for
the McKean-Vlasov dynamics, then ℘(N) → δξ0 , that is,
µN(∞) → ξ0 in distribution (and hence in probability).

◮ Decoupling: Tag k nodes n1, n2, . . . , nk . Then

(

X (N)
n1 (∞),X (N)

n2 (∞), . . . ,X (N)
nk (∞)

)

→ ξ⊗k
0 in distribution.

We will not discuss the proof. But the first two are consequences of a
more general result (to be covered in a later lecture).



Stationary points, fixed-points, and all that

◮ Stationary point of the dynamics: Solve for ξ in Λ(ξ)∗ξ = 0.

◮ Fixed-point analysis

◮ Assume that a tagged particle has distribution ξ0 in steady state.
Assume symmetry – all particles have the same steady state
distribution. This sets up the field Λ(ξ0)

∗ for the tagged particle.
The field must be such that ξ0 is fixed.

◮ Solving for stationary points.

◮ In some cases, can look for simpler interpretable macroscopic
variables - attempt probabilities or collision probabilities. In the
WLAN case, a fixed point equation in one variable (e.g., collision
probability).

◮ Take ξ0 as describing the steady state behaviour of the system.



Limitation of the fixed-point analysis

◮ There may be a unique stationary point, but it may not be globally
asymptotically stable.

◮ Benaim and Le Boudec have an example where stationary point is
unique, but unstable. All trajectories converge to a limit cycle.

◮ If ci = c0/2
i and c0 < ln 2, then there is a unique stationary point ξ0

that is globally asymptotically stable.

◮ Three states with c0 = 0.5, c1 = 0.3 but c3 = 8 (say). Three
stationary points – two stable and one unstable.

◮ Since the finite N system can be viewed as the deterministic
dynamical system with noise, the unstable points are not going to be
in the support of any limit point of ℘(N).

◮ Question: Which of the multiple stable stationary points (or limit
cycles) will best describe the large time behaviour of the system?



A Lyapunov function

◮ If the differential equation were linear, i.e., µ̇(t) = Λ∗µ(t) ...

◮ The associated Markov process XN does not have any interaction.

◮ Let the stationary measure for one particle’s evolution be π∗.

◮ Relative entropy I (·|π∗) is a “Lyapunov function” for the dynamics.

◮ I (µ(t)||π∗) ↓ 0 as time progresses, and µ(t) → π∗.

◮ Does a Lyapunov function exist for the nonlinear dynamical system?

◮ When is it global?
When local, does it “select” the best stable equilibrium or equilibria?



Large deviations, Freidlin-Wentzell theory, quasipotential

◮ For the linear differential equation, and the associated
(noninteracting) Markov process, let π∗ denote the stationary
distribution.

◮ The sequence of stationary distributions for µN(·) satisfies a large
deviation principle:

Pr {µN(∞) ∈ neighbourhood of q} ∼ exp{−NI (q|π∗)}

with rate function I (·|π∗)

◮ Independent samplings of π∗ leading to the empirical measure
µN(∞). Apply Sanov’s theorem.

◮ This rate function serves as a Lyapunov function.



Large deviations, Freidlin-Wentzell theory, quasipotential

Do the same for the nonlinear differential equation, and its associated
(weak interaction) Markov process.

Theorem (with V.S.Borkar)
Let the McKean-Vlasov dynamics have a globally asymptotically stable
equilibrium π∗. Let V (q) minimise the following actional functional.

V (q) = inf

{

∫ T

0

L(φ(s), φ̇(s)) ds | φ(0) = π∗, φ(T ) = q,T ∈ (0,∞)

}

.

Then the sequence of stationary distributions for µN(·) satisfies an LDP
with rate funtion V .

L(φ(t), φ̇(t)) = 0 if φ̇(t) obeys the nonlinear dynamics.
V (q) plays the role of relative entropy.
(In particular, V (π∗) = 0.)

Can extend to metastable setting as well. See a later lecture.



Final remarks

◮ A local Lyapunov function in Gibbsian, locally Gibbsian systems.
Budhiraja et al. (arXiv:1412.5555)

◮ Analogy: Second law of thermodynamics. Fixed-point analysis is an
analysis of the system in equilibrium. Collision probability is a
macroscopic variable. ξ0 corresponds to the canonical ensemble.

◮ Metastability or not?
◮ When no metastability, the decoupling approximation works.
◮ Large deviation principle suggests exponentially fast concentration.

Approximation is likely to be good.

◮ Design c to avoid metastability. Example: ln 2 > c0 > 2c1 > 4c2.
Is this the best in terms of throughput without metastability?

◮ Current studies:

◮ Best choice of c in the stable regime.

◮ Newer protocols with particles of different classes (arising from
different quality of service requirements).
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A primer on large deviations

◮ N iid tosses from a coin with bias Pr{Xn = 1} = λ ∈ (0, 1).

◮ Estimate of bias λ̂N = 1
N

∑N
n=1 Xn.

◮ Weak LLN says λ̂N → λ (in probability)

◮ Assume τ > λ. Chernoff bound says

Pr

{

1

N

N
∑

n=1

Xn ≥ τ

}

≤ exp{−N sup
t≥0

[

τ · t − logEetX1
]

} = exp{−NI (τ ||λ)}

where I is relative entropy

I (τ ||λ) = τ log
( τ

λ

)

+ (1− τ) log

(

1− τ

1− λ

)

.

Cramer’s theorem says this bound is tight in exponential scale, i.e.,

lim
N→∞

1

N
log Pr{· · · } = −I (τ ||λ)

◮ Similarly for τ < λ.



Deviations to more general sets

◮ If A ⊂ [0, 1] is some interval, then by chopping into small intervals,
using continuity of I , we get

lim
N→∞

1

N
log Pr{λ̂N ∈ A} = − inf

x∈A
I (x ||λ).

◮ In general, inf{I (x)|x ∈ A◦} and inf{I (x)|x ∈ A} may be different,
and so



Large deviation principle (LDP)

◮ Definition: A sequence (p(N),N ≥ 1) of probability measures on a
metric space X satisfies the LDP with speed N and good rate
function I (·) if

◮ For every open set G and closed set F of the metric space X , we
have

lim inf
N→+∞

log p(N)(G)

N
≥ − inf

x∈G
I (x)

lim sup
N→+∞

log p(N)(F )

N
≤ − inf

x∈F
I (x)

◮ For each a ∈ [0,∞), the level sets {x : I (x) ≤ a} are compact



An aside: LDP for empirical measures

◮ Fact: Let p(N) be the law of 1
N

∑N
n=1 Xn ∈ [0, 1]. This sequence

satisfies the LDP speed N and good rate function I (·||λ).

◮
1
N

∑N
n=1 Xn may be viewed as an empirical measure 1

N

∑N
n=1 δXn on

{0, 1}.

◮ Restatement of fact:
Let p(N) now be the law of 1

N

∑N
n=1 δXn ∈ M1({0, 1}).

This sequence satisfies the LDP with speed N and rate function

S({τ, 1− τ}||{λ, 1− λ}) = I (τ ||λ).

Theorem (Sanov’s theorem)
Let X be a Polish space and let M1(X ) be the space of probability
measures on X equipped with the topology of weak convergence. Let
X1, · · · ,XN be sampled iid from P. Then the empirical measures satisfy
the LDP on M1(X ) with good rate function I (·||P).



Back to µN ...

◮ Metric space D([0,T ],M1(Z)) (with metric ρT coming from
sup-norm).

◮ p
(N)
νN is the law of (µN(t), t ∈ [0,T ]) starting at νN .

◮ Rate function will be a function of paths and will be denoted
S[0,T ](µ|ν).

◮ There is dependence on the initial condition ν.



Finite duration LDP

Theorem
Suppose that the initial conditions νN → ν.

Then the sequence (p
(N)
νN ,N ≥ 1) satisfies the LDP on D([0,T ],M1(Z))

(with metric ρT ) with speed N and a good rate function S[0,T ](µ|ν).

If a path µ ∈ D([0,T ],M1(Z)) has S[0,T ](µ|ν) < +∞, then

◮ the time derivative µ̇ exists for almost all t ∈ [0,T ];

◮ there exist rates (li ,j(t), t ∈ [0,T ], (i , j) ∈ E) such that

µ̇(t) = L(t)∗µ(t)

where L(t) is the rate matrix associated with the time-varying rates
(li ,j(t), (i , j) ∈ E) and L(t)∗ is its adjoint;

◮ the good rate function S[0,T ](µ|ν) is given by

S[0,T ](µ|ν) =

∫

[0,T ]

[

∑

(i ,j)∈E

(µ(t)(i))λi ,j (µ(t)) τ
∗

(

li ,j(t)

λi ,j(µ(t))
− 1

)

]

dt.



Proof outline

◮ Apply Sanov’s theorem to noninteracting system on path space

◮ Relate the interacting system to the noninteracting system via
Girsanov’s formula

◮ Use the Laplace-Varadhan principle to extract a path space LDP for
the interacting system

◮ Then use the contraction principle (from an LDP for the empirical
measure in path space to an LDP for the law of µN(·)).

Corollary:

p
(N)
νN → δµ(·) weakly, where µ(·) is the McKean-Vlasov solution



Proof steps in a little more detail

◮ Look at a larger object. Empirical measures on path space.

◮ Space of interest, measures on the space, topology

◮ Given a particle’s trajectory x(·), let φ(x) = number of jumps in
[0,T ].

◮ X = {x(·) | x has jumps in E and φ(x) < ∞}.
◮ d(x , y) = dSko(x , y) + |φ(x)− φ(y)|. (Polish space)
◮ Let f be continuous and define

||f ||φ = sup
x∈X

|f (x)|

1 + φ(x)
.

◮ Cφ(X ) is the set of continuous functions with finite norm.
◮ M1,φ(X ) = {Q ∈ M1(X ) |

∫

φ dQ < ∞}.
◮ Topology:

QN → Q if and only if
∫

f dQN →
∫

f dQ for all f ∈ Cφ(X ).
◮ σ-field: cylinder σ-field on M1,φ(X ).



The probability measures with and without interaction

◮ P̄z : Law of the Markov process where all allowed transition rates
are 1, and initial condition is z .

◮ Pz(µ) : Law of the Markov process where rate matrix at time t is
Λ(µ(t)), and initial condition is z .

◮ P̄
(N)

zN
: Law of the N particle evolutions without interaction with

initial condition zN .

◮ P
(N)

zN
: Law of the N particle evolutions with interaction with initial

condition zN .

◮ xN(·) : description of evolution of all N particles, with identities
preserved.

◮ xN(·)
GN7→ QN = 1

N

∑N
n=1 δxn(·): empirical measure.

◮ QN
π
7→ µN : from empirical measure to measure-valued process.



Girsanov’s formula

◮ Using the independent increments property and the dependence of
transition rates only on the mean-field, we can get a Girsanov
formula:

dP
(N)

zN

d P̄
(N)

zN

(xN) = eNh(GN(x
N )) = eNh(QN).

◮ Let P
(N)
νN and P̄

(N)
νN be the push forwards of the interacting and

noninteracting distributions under xN 7→ QN . Then

dP
(N)
νN

dP̄
(N)
νN

(Q) = eNh(Q).



Apply Sanov’s theorem to the noninteracting system

Theorem
Let νN → ν. Then the laws of the empirical measure for the

noninteracting system (P̄
(N)
νN ,N ≥ 1) satisfies the LDP in M1,φ(X ) (with

σ-field ... and topology ...) with speed N and rate function

J(Q) =

{

I (Q||P̄) if Q ◦ π−1
0 = ν

∞ otherwise,

where dP̄ =
∑

z∈Z ν(z)dP̄z .

◮ Independent, but not identical because of possibly different initial
conditions for particles.

◮ Use an extension provided by Dawson and Gartner.



Establish additional properties

◮ Whenever J(Q) < ∞, we have the following:

◮ Q ∈ M1,φ(X ), i.e.,
∫

φ dQ < ∞.
◮ Q ◦ π−1

0 = ν
◮ h(·) is continuous at Q
◮ π(·) is continuous at Q

◮ Apply the Laplace-Varadhan principle: Since (P̄
(N)
νN ,N ≥ 1), the law

for empirical measure for the noninteracting system, satisfies an
LDP, and since h is continuous at every point where J(Q) < ∞,

argue that the interacting system’s (P
(N)
νN ,N ≥ 1) satisfies the LDP

with rate function

J(Q)− h(Q) = I (Q||P(π(Q))).

◮ h is not bounded. Its scaled cumulant is however bounded which
suffices.

◮ Interpretation ...



Contraction principle

◮ We now have an LDP for empirical measures (Laws of QN).
We want an LDP for the measure-valued process (Laws of µN(·)).

◮ Since QN
π
7→ µN(·) is continuous at all points where J(Q) < ∞, the

push-forwards also satisfy the LDP with rate function:

S[0,T ](µ|ν) = inf{I (Q||P(π(Q)) | π(Q) = µ}.

◮ Further calculations show that this is the same as the expression
given before.



Final remarks for day 2

◮ In order to study large deviations from the fluid limit, we studied a
larger object, empirical measure on path space.

◮ The steps:
◮ Write the density of the interacting measure with respect to a

noninteracting measure via Girsanov formula.
◮ Apply Sanov’s theorem for the noninteracting system.
◮ Apply the Laplace-Varadhan principle for an LDP on the interacting

system.
◮ Contraction principle.

◮ Since we only assumed νN → ν, but otherwise arbitrary initial
conditions, we indeed have a stronger LDP that holds uniformly over
the initial condition.

◮ The selection principle – coming soon via stationary distribution



Some exercises for students

◮ Consider a time-inhomogeneous jump Markov process X (t) on the
finite state space Z with transition rate matrix at time t given by
Λ(t). If the initial state X (0) has distribution µ(0), how does µ(t)
evolve over time? (Derive the forward equation).

◮ Let X be Bernoulli with parameter λ. Try to show that

sup
t≥0

[

t · τ − logE[etX ]
]

= I (τ ||λ).

◮ Suppose P be a Poisson point process on [0,T ] with intensity λ(t).
Let Q be the unit rate Poisson point process on [0,T ]. Try to write
the density of P with respect to Q at a realisation x , i.e., dP

dQ (x).
Take x to be a counting process with points at t1, t2, . . . , tk .
(Hint: Chop [0,T ] into disjoint intervals of duration h, use independent

increments property, and let h ↓ 0).

◮ Try to prove the contraction principle: Let X and Y be Polish
spaces, and f : X → Y a continuous function. Let (XN ,N ≥ 1) be a
sequence of random variables on X that satisfy the LDP with speed
N and good rate function I . Then (f (XN),N ≥ 1) satisfies the LDP
with speed N and good rate function I ′(y) = inf{I (x) | f (x) = y}.
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Recall from Lecture 1

◮ N-particle system with each particle’s state coming from Z, and
with transitions in edge set E .

◮ Transition rates are modulated by the mean-field. Rate matrix is
Λ(µN(t)).

◮ Kurtz’s theorem: Let µN(0) → ν in probability. Then µN(·) → µ(·)
in probability, uniformly over compacts. The fluid limit µ(·) is the
solution to the McKean-Vlasov equation

µ̇(t) = Λ(µ(t))∗µ(t), t ≥ 0

µ(0) = ν.



Standing assumptions

◮ The graph with vertex set Z and edge set E is irreducible
Holds in the our WLAN case

◮ There exist positive constants c > 0 and C < +∞ such that, for
every (i , j) ∈ E , we have

c ≤ λi ,j(·) < C

◮ The mapping µ 7→ λi ,j(µ) is Lipschitz continuous over M1(Z)



Recall from Lecture 3

◮ Theorem: Let µN(0) → ν (deterministic). Fix T . The sequence
(µN(·),N ≥ 1) satisfies the LDP with speed N and good rate
function

S[0,T ](ζ(·)|ν) =

∫

[0,T ]

[

∑

(i ,j)∈E

ζ(t)(i)λi ,j (ζ(t))τ
∗

(

li ,j(t)

λi ,j(ζ(t))
− 1

)

dt
]

where ζ̇(t) = L(t)∗ζ(t).

◮ S[0,T ](ζ(·)|ν) : “resistance”, cost of control L(·), cost of pushing the
system along ζ(·).

◮ The McKean-Vlasov path has cost 0.



Standing assumptions, and more

◮ The graph with vertex set Z and edge set E is irreducible
Holds in the our WLAN case

◮ There exist positive constants c > 0 and C < +∞ such that, for
every (i , j) ∈ E , we have

c ≤ λi ,j(·) < C

◮ The mapping µ 7→ λi ,j(µ) is Lipschitz continuous over M1(Z)

◮ (A) The McKean-Vlasov equation has ξ0 as the globally
asymptotically stable stationary point.

◮ Theorem: Under the above assumptions, µN(∞) → ξ0 in
distribution (and hence in probability).

(..., Stolyar 1989, Anantharam 1991, Anantharam and Benchekroun
1993, Bordenave et al. 2005/2007, Benaim and Le Boudec 2008)



The anticipated rate function

If µN(+∞) is near ξ, then this is most likely due to an excursion that
began at ξ0, worked against the attractor ξ0, and took the lowest cost
path to ξ over all possible time durations.



LDP for the invariant measure (today)

Theorem
Under the same assumptions, (µN(∞),N ≥ 1) satisfies the LDP with
speed N and rate function given as follows.

Looking backwards in time, consider the dynamics

˙̂µ(t) = −L̂(t)∗µ̂(t), t ≥ 0

with µ̂(0) = ξ, limt→+∞ µ̂(t) = ξ0, L̂(t) is some family of rate matrices,
and µ̂(t) ∈ M1(Z). The rate function is

s(ξ) = inf
µ̂

∫

[0,+∞)

[

∑

(i ,j)∈E

(µ̂(t)(i))λi ,j (µ̂(t)) τ
∗

(

l̂i ,j(t)

λi ,j(µ̂(t))
− 1

)

]

dt.

◮ We can also say, w.h.p., how the system arrived near ξ.



Generalisation: Freidlin-Wentzell theory

◮ Assumption (B): There exist a finite number of sets K1,K2, . . . ,Kl

(each compact) such that every ω-limit set of the McKean-Vlasov
equation is a subset of one of the Ki .

Theorem
Under assumption (B), (µN(∞),N ≥ 1) satisfies the LDP with speed N
and rate function

s(ξ) = inf
i
inf
µ̂



si +

∫

[0,+∞)

[

∑

(i,j)∈E

(µ̂(t)(i))λi,j (µ̂(t)) τ
∗

(

l̂i,j (t)

λi,j(µ̂(t))
− 1

)

]

dt





where the second infimum is over all µ̂ that are solutions to
˙̂µ = −L̂(t)∗µ̂(t) for some family of rate matrices, initial condition
µ̂(0) = ξ, terminal condition µ̂(t) → Ki , and µ̂(t) ∈ M1(Z) for all t ≥ 0.
The constants s1, . . . , sl are uniquely specified in terms of “resistances”
to move between pairs of the compact sets.



Some general remarks

◮ The selection criterion. If there is a unique point at which s attains
its minimum, then µN(∞) tends to that point.

◮ Design system parameters to have a unique desired minimum point.



Proof steps (globally asymptotically stable equilibrium)

◮ Given νN → ν, extract LDP for the laws for terminal state (finite
T ), via contraction principle, with rate function

ST (ξ|ν) = inf {S[0,T ](µ|ν) | µ(0) = ν, µ(T ) = ξ}

◮ If the laws for initial states satisfy the LDP with a good rate
function s(ν), argue that joint laws for initial and terminal states
satisfy the LDP with a good rate function s(ν) + ST (ξ|ν). Then
apply contraction principle to get that the laws for the terminal
states satisfy the LDP with good rate function

inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}

◮ The invariant measures (℘(N),N ≥ 1) live on a compact space. So,
given any subsequence, there is a further subsequential LDP with
appropriate speed, and with rate function s(ξ) that satisfies

s(ξ) = inf
ν∈M1(Z)

{s(ν) + ST (ξ|ν)}



Proof steps continued

◮ By the assumption that ξ0 is a unique equilibrium that is globally
stable, we can show s(ξ0) = 0.

◮ Extract a single infinite duration path µ̂(·) that is optimal, i.e., it
attains the infimum for each duration [0,mT ], µ̂(0) = ξ, and
satisfies

s(ξ) = s(µ̂(mT )) + SmT (ξ|ν), ∀m ≥ 1

= s(µ̂(mT )) +

∫

[0,mT ]

[· · · ] dt

◮ The integrand in the second term is nonnegative; the second term
increases with m, and so the first term s(µ̂(mT )) decreases with m.
Since s(·) is bounded below by 0, s(µ̂(mT )) must converge to a
constant as m → +∞



Proof steps continued even further

◮ So the increment
∫ mT+T

mT
[· · · ]dt → 0 in the second term, and in the

limit, integrand must be 0 a.e., which is a McKean-Vlasov path in
reversed time.
More precisely, µ̂(·) has an ω-limit set that is positively invariant to
(McKean-Vlasov dynamics in reversed time)

µ̂(t) = −Λ(µ̂(t))∗µ̂(t), t ≥ 0

◮ This limit set is also invariant to McKean-Vlasov dynamics. It is
further compact and bounded within M1(Z). The only such set
invariant set is {ξ0}. So µ̂(mT ) → ξ0.

◮ Taking limit as m → +∞,

s(ξ) = s(ξ0) +

∫

[0,+∞)

[· · · ] dt = 0 +

∫

[0,+∞)

[· · · ] dt

This expression is the same regardless of the initial subsequence

◮ Thus every subsequence has a further subsequence that satisfies the
LDP with appropriate speed and the same rate function s(·).



Summary

◮ Mean-field model for a WLAN, and its fluid limit.

◮ A finite duration LDP for the measure-valued process.

◮ When there is a globally stable equilibrium ξ0 for the
McKean-Vlasov equation, the invariant measure satisfies the LDP.
The rate function s(ξ) is characterised by the cost of an optimal
control that moves the system from ξ to ξ0 in reversed time.

◮ Extension to cases with multiple stable points, and a selection
criterion.
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