El 244: Detection and Estimation

Cramer-Rao Lower Bound




Likelihood function

DC level in white Gaussian noise (WGN)

zln] = A+wln], n=0,1,...,N—1. wn]~N(0,0?)

=3,A)
=3,A)

pa(x10]
P2(x10]

For a fixed z[0] = ¢, the PDF p(z[0] = z¢; A) is a function of the
unknown. It is termed as the likelihood function.

For 2[0] = 3, the values of A > 4 are highly unlikely.

The viable values of A are in a much wider interval for large values of o2.



Score function

Score function

s(x;0) = %lnp (x;0)

measures the sensitivity of p (x;6) to changes in 6.

Curvature
_82 Inp (2[0]; A) 1

dA? T o
measures the sharpness of the log-likelihood function.

Example: z[0] ~ N (A, 0?)

_ Olnp (z[0]; A) _ 1 (z[0] — A) and Efs (x;60)] =0

s (x:0) 0A o2

2 .
curvature: — w = i

0A2 o2

Estimator accuracy and curvature increases as o2 decreases.



Theorem: Cramer Rao Lower Bound

Assume that the regularity condition holds:

0
E {89111])@(7 9)} =0, V.

The variance of any unbiased estimator 0 satisfies
1

-E [892 Inp (x; 9)]

An unbiased estimator that attains the bound, i.e., an efficient estimator
may be found iff

var() >

0
g P (x:0) =1(0) (9(x) - 6)

Then the MVU estimator is § = g (x) has a variance I~1(6).
Fisher information has an alternative expression:

(e

2

1) = [092

Inp (x; 9)}




Regularity condition

E [;mp(x;@)] = /%(IUP(X% 0))p(x;0)dx

:/])(;;9)8691)()(; 0)p (x;0) dxz/%p(x;ﬁ)dx

If we are allowed to interchange the [ and 2

B | gpnn )| = 5 [posoyax= 5 —o

Lebnitz’s integration rule: When the limits of the integral is not function
of 6, we may swap [ and %.

Example:
Suppose p (x;0) =U (0,0)

o (1 o (71



Derivation of CRLB

For an unbiased estimator

/.(éfQ)p(x;G)dx:O = %/(é 9) (x:0) dx = 0
/(9 9)889 (X;@)dx:/p(x;&)dx:l

Substituting

— glnp (x;0)p (x;0)

x; 0)dx 50

%p(

we get
A 0
(9 — 9) %hlp (x;0)p (x;0)dx =

[ (6-6) VoTxa gyin (xi0) /b O = 1



Derivation of CRLB

From the Cauchy-Schwartz inequality:

/fQ(x)dx/gg(x)dacz </f(:v)g(x)da:>2
we have

/ (éfa)Qp(X;e)dX/ (aaelnp(X;f)))Qp(X;H)dx >1

Since / (é - 0)21) (x;0) dx = var(6)

A 1
vdl“(ﬁ) > E [((%]np(xé 9))2}




2

10) =~ [ gnp (xi0)| ~

Fisher Information
To show that the Fisher Information
o 2
(aelnp(x7 9)) ]
Let us use the regularity condition
0

E[aaglnp(xaﬁ)} =0 = ae/(;)elnp(xsﬁ))p(xrﬂ)dx=0

/[;mlnp(X;G)p (x;0) + %hlp(x;‘)) 1_ 2p (x;0)p (X;G)] dx =0

2

0
=—-E {erlp(x, 9)} =E




Properties of Fisher information

» Non-negativity

I1(0)=E l(aaelnp(x 9))21 >0

» Additivity for independent observations

N-1
Inp(x;0) =In (Hp > = Inp (z[n]; 0
n=0 n=0
02 = 02
= — [aQQIanQ} Z E{a%p ]9)}

n=0



Suppose the score function admits the factorization

%lnp(x; 0)=1(09) (é - 9)

we want to show that E {é} =0 and var (9) = ﬁ
Unbiasedness:

B | gynp )| =E[10)(9-0)] =10 (£[7] - 0) =0

Efficiency:
% |:886]np(x;9):| - %1(9) (0-6) -1

Taking the negative expected value, —E {g—;lnp (x; 9)} =1(6).
Since

E

(aaelnp(x;ﬂ))Q] _1(9)2E{(é9)2} = var(é) _%
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Example: nonlinear model in additive Gaussian noise

Suppose we are given
x=h@)+w, xeRY w~N(0,C),C:MxM
The log likelihood function
Inp (x;6) = const. — %(x —h(0)"C ' (x—h(h)

O p(x:6) = 20 (®)"C [x— h(0)]

00 00
0? 0P T o) T
0? o) T g

CRLB depends on 6 for a non-linear model. The more h (6) depends
on 6, smaller will be the CRLB.
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Example: linear model in Gaussian noise

For the observations model x = hf/ 4+ w, we have var (9) > 1 — and
nhtc-1n

5P (x:0) = h'"C'[x—hf=h"C 'x—h" C 'h¥

- (th—lh) (h"C~'h)~'h"C~'x —]

1(6) 0
For the IID Case of x = A1 +wwithh=1

C =021, where I: M x M identity matrix

s 1 o
, > - @ _Z
var (9) T N
and
5 T 1) T et 1
6= (n"c'n) h'C7lx = 1% = £ 00 aln)
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Example: Poisson distribution

T . .
Suppose x = [zg, 1,...,2n—1] denote observations of size N from a
Poisson distribution i.e., zg,z1,...,zx_1 are lID observations from a
Poisson(#) distribution with marginal pdf

o,
p(Iiae) = x_'e

s

and E [z;] = 6. Then,
1. Calculate CRLB for the parameter 6
2. Find the MVU estimator for 6.

Since the observations are i.i.d., we have

9K N-1
p(x;0) = ———e N where K = Tiy
Hiziolxi! Z

=0
and hence we have the score function %lnp(xw‘)) —N+ 5 27 B L1,
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Example: Poisson distribution

Further, 692 1np(x 0) = 92 ZZ o ! 2, and since E [z;] = 0, we have

1) = - [(f;mp(x 0=

N 0
Hence, from the CRLB var <9) > —. Further, writing the score function

N
as 1(0) (g (x)—0):

0 1=
%hlpxﬁ ég
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Transformation of parameters

The CRLB of a transformed parameter a = g(0) is

(Z9(0))°

var (04) 2 _E [%lnp (X§ 9)]

Example:
For the DC in WGN model, z[n] = A 4+ w[n], the CRLB for
a=g(A) = A% (power of the signal) in terms of the CRLB for A:

o 214)2
2\ > ( — AA2,2
var (A ) > 7]\7/02 4A%c° /N
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Transformation of parameters

Given that A = 7 = % Zfif)l is an efficient estimator of A, is 2 an
efficient estimator of A2?

Note that Z ~ A (4,0?%/N)

> Biased: E [7?] = A% + 02 /N # A?

» Does not attain CRLB: var(z?) = # + %\%4
Efficiency is NOT maintained under non-linear transformations
However, as N — oo

> Uniased: E [72] 25 42

» Attains CRLB: var(z?) RN #

Thus Z2 is an asymptotically efficient estimator of A2.
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Affine transformations

Efficiency of an estimator is maintained under an affine transformation

If § is an estimator of @ and a = af + b, the estimator
A =ab+b
is efficient

» Unbiased: E[&] =af +b =«
» CRLB: a2/1 (0) = var (&) = var(af + b) = a®var (é)
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Vector parameters

Assume that the pdf of the observation x parametrized by
0 =101,0o,... ,9p_1}T satisfies the following regularity constraint

L% (x; 9)] =0,V6.

Then the covariance matrix of any unbiased estimator 0 satisfies
Cé —-1(6)>0,V80,

where > 0 means that the matrix is positive semi-definite. The Fisher
matrix I(0) is given by
Pp (x; 0)]

Since the diagonal elements of a positive semi-definite matrix are
non-negative var (HAZ) > [1(0)]; ;-

Further, an unbiased estimator that attains the CRLB can be found if
and only if

0
20 (x0) =1(0)(g(x)—0).
06" g o



Transformations of vector parameters

Suppose we want to estimate a function
a=g(0), aeR"

The covariance matrix satisfies the following condition

T
98(0)] 1-1p) [ 98(6)

O > 0.
Ls { 00 }L @16 | =0
rxr ——— pXp N ——

rxp pxr

Affine transformation: Suppose cv = g (6) = A0 + b and the estimator
& = A6 + b, then

E[6] =A0+b=a

08 (0) -1 08" (0)

~ ~ T: 71 T:
Cg=AC;AT = AT (9) A 6 0) =55

0
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Estimate parameters A, o2 given observations
z[n] = A+ wn], wn] ~N (0,0%), n=1,2,...,N — 1,
T
then x ~ N (A1,0%I), and 0 = [A,0?] , p=2.

-E {aa—;lnp(x;e)} -E [(Mai;ozlnp(x; 0)}

1(0)=
-E {afjaAlnp (x; 0)] -E [%lnp (x; 0)}
Use lnp(x;0) = —F In2r — S Ino? — 5L 7]1\7;01 (z[n] — A)? to
compute

1(6) = {N{)UQ N/(ga‘l)} :

Hence we have that var (/i) > 02/N and var ((;2) > 202 /N. Knowing

A does not influence the estimator for o2
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Now suppose we want to estimate

A2
o= —
0-2

T
from the same observations. Then we have 6 = [4,0?] " and

69(9)

a=g(0)= %. Compute — = for this model as

[0 o] 214

Use this to get the CRLB for covariance of the estimate as

[8699 (0)} 11 (6) |:8809T (0)} _ %.
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Linear model with vector parameters

Suppose we have the observations
x =HO+w, 0:pxl, H:Nxp and w ~ N (0,5°1).

Then we have

1
Inp(x;0) = const. — 292 [x — HO]T [x —HO].
1
— const. — —— {xTx —0"H"x — x"Ho + eTHTHG} .
202
T T
Using 8309 =b and % = 2A0, we have
T
0 a1 T T B (H H) Tor\ ' gy T
Sglnp(x:0) = 5 [H x—H HO} = (H H) H'x—0].
Further
?lp(x;0) H'H
0000" o?
so that the Fisher matrix
H'H
L(6) = — 22



