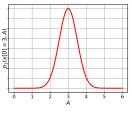
E1 244: Detection and Estimation

Cramer-Rao Lower Bound

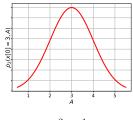
Likelihood function

DC level in white Gaussian noise (WGN)

$$x[n] = A + w[n], \quad n = 0, 1, \dots, N - 1. \quad w[n] \sim \mathcal{N}(0, \sigma^2)$$



$$\sigma^2 = \frac{1}{3}$$



$$\sigma^2 = \frac{1}{3}$$

For a fixed $x[0] = x_0$, the PDF $p(x[0] = x_0; A)$ is a function of the unknown. It is termed as the likelihood function.

For x[0] = 3, the values of A > 4 are highly unlikely.

The viable values of A are in a much wider interval for large values of σ^2 .

Score function

Score function

$$s(\mathbf{x}; \theta) = \frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)$$

measures the sensitivity of $p(\mathbf{x}; \theta)$ to changes in θ .

Curvature

$$-\frac{\partial^2 \ln p\left(x[0];A\right)}{\partial A^2} = \frac{1}{\sigma^2}.$$

measures the sharpness of the log-likelihood function.

Example: $x[0] \sim \mathcal{N}(A, \sigma^2)$

$$s\left(\mathbf{x};\theta\right) = \frac{\partial \ln p\left(x[0];A\right)}{\partial A} = \frac{1}{\sigma^2}\left(x[0] - A\right) \qquad \text{and} \qquad \mathrm{E}\left[s\left(\mathbf{x};\theta\right)\right] = 0$$

curvature:
$$-\frac{\partial^2 \ln p(x[0];A)}{\partial A^2} = \frac{1}{\sigma^2}$$

Estimator accuracy and curvature increases as σ^2 decreases.

Theorem: Cramer Rao Lower Bound

Assume that the *regularity condition* holds:

$$\mathrm{E}\left[\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right] = 0, \ \forall \ \theta.$$

The variance of any unbiased estimator $\hat{\theta}$ satisfies

$$\operatorname{var}(\hat{\theta}) \ge \frac{1}{-\operatorname{E}\left[\frac{\partial^2}{\partial \theta^2} \ln p\left(\mathbf{x}; \theta\right)\right]}$$

An unbiased estimator that attains the bound, i.e., an *efficient estimator* may be found *iff*

$$\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) = I(\theta) (g(\mathbf{x}) - \theta)$$

Then the MVU estimator is $\hat{\theta} = g(\mathbf{x})$ has a variance $I^{-1}(\theta)$.

Fisher information has an alternative expression:

$$I(\theta) = -E\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x}; \theta)\right] = E\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)\right)^{2}\right]$$

Regularity condition

$$E\left[\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x};\theta\right)\right] = \int \frac{\partial}{\partial \theta} \left(\ln p\left(\mathbf{x};\theta\right)\right) p\left(\mathbf{x};\theta\right) d\mathbf{x}$$
$$= \int \frac{1}{p\left(\mathbf{x};\theta\right)} \frac{\partial}{\partial \theta} p\left(\mathbf{x};\theta\right) p\left(\mathbf{x};\theta\right) d\mathbf{x} = \int \frac{\partial}{\partial \theta} p\left(\mathbf{x};\theta\right) d\mathbf{x}$$

If we are allowed to interchange the \int and $\frac{\partial}{\partial \theta}$

$$E\left[\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right] = \frac{\partial}{\partial \theta} \int p\left(\mathbf{x}; \theta\right) d\mathbf{x} = \frac{\partial 1}{\partial \theta} = 0$$

Lebnitz's integration rule: When the limits of the integral is not function of θ , we may swap \int and $\frac{\partial}{\partial \theta}$.

Example:

Suppose
$$p(\mathbf{x}; \theta) = \mathcal{U}(0, \theta)$$

$$\int_0^\theta \frac{\partial}{\partial \theta} \left(\frac{1}{\theta} \right) d\mathbf{x} \neq \frac{\partial}{\partial \theta} \int_0^\theta \frac{1}{\theta} d\mathbf{x}.$$

Derivation of CRLB

For an unbiased estimator $\hat{\theta}$

$$\int (\hat{\theta} - \theta) p(\mathbf{x}; \theta) d\mathbf{x} = 0 \quad \Rightarrow \quad \frac{\partial}{\partial \theta} \int (\hat{\theta} - \theta) p(\mathbf{x}; \theta) d\mathbf{x} = 0$$
$$\int (\hat{\theta} - \theta) \frac{\partial}{\partial \theta} p(\mathbf{x}; \theta) d\mathbf{x} = \int p(\mathbf{x}; \theta) d\mathbf{x} = 1$$

Substituting

$$\frac{\partial}{\partial \theta} p(\mathbf{x}; \theta) d\mathbf{x} = \frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) p(\mathbf{x}; \theta)$$

we get

$$\int \left(\hat{\theta} - \theta\right) \frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) p(\mathbf{x}; \theta) d\mathbf{x} = 1$$

$$\int \left(\hat{\theta} - \theta\right) \sqrt{p(\mathbf{x}; \theta)} \frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) \sqrt{p(\mathbf{x}; \theta)} d\mathbf{x} = 1$$

Derivation of CRLB

From the Cauchy-Schwartz inequality:

$$\int f^{2}(x) dx \int g^{2}(x) dx \ge \left(\int f(x) g(x) dx \right)^{2}$$

we have

$$\int \left(\hat{\theta} - \theta\right)^{2} p\left(\mathbf{x}; \theta\right) d\mathbf{x} \int \left(\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right)^{2} p\left(\mathbf{x}; \theta\right) d\mathbf{x} \ge 1$$

Since
$$\int (\hat{\theta} - \theta)^2 p(\mathbf{x}; \theta) d\mathbf{x} = \operatorname{var}(\hat{\theta})$$

$$\operatorname{var}(\hat{\theta}) \ge \frac{1}{\operatorname{E}\left[\left(\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right)^{2}\right]}$$

Fisher Information

To show that the Fisher Information

$$I(\theta) = -E\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p(\mathbf{x}; \theta)\right] = E\left[\left(\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta)\right)^{2}\right]$$

Let us use the regularity condition

$$\mathrm{E}\left[\frac{\partial}{\partial\theta}\ln p\left(\mathbf{x};\theta\right)\right] = 0 \quad \Rightarrow \quad \frac{\partial}{\partial\theta}\int\left(\frac{\partial}{\partial\theta}\ln p\left(\mathbf{x};\theta\right)\right)p\left(\mathbf{x};\theta\right)d\mathbf{x} = 0$$

$$\int \left[\frac{\partial^2}{\partial \theta^2} \ln p\left(\mathbf{x};\theta\right) p\left(\mathbf{x};\theta\right) + \frac{\partial}{\partial \theta} \ln p\left(\mathbf{x};\theta\right) \right. \\ \left. \frac{1}{p\left(\mathbf{x};\theta\right)} \frac{\partial}{\partial \theta} p\left(\mathbf{x};\theta\right) p\left(\mathbf{x};\theta\right) \right] d\mathbf{x} = 0$$

$$\Rightarrow -\operatorname{E}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln p\left(\mathbf{x};\theta\right)\right] = \operatorname{E}\left[\left(\frac{\partial}{\partial\theta}\ln p\left(\mathbf{x};\theta\right)\right)^{2}\right]$$

Properties of Fisher information

► Non-negativity

$$I(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right)^{2}\right] \ge 0$$

► Additivity for independent observations

$$\begin{split} \ln p\left(\mathbf{x};\theta\right) &= \ln \left(\prod_{n=0}^{N-1} p\left(x[n];\theta\right)\right) = \sum_{n=0}^{N-1} \ln p\left(x[n];\theta\right) \\ \Rightarrow &- \mathrm{E}\left[\frac{\partial^2}{\partial \theta^2} \ln p\left(\mathbf{x};\theta\right)\right] = \sum_{n=0}^{N-1} - \mathrm{E}\left[\frac{\partial^2}{\partial \theta^2} p\left(x[n];\theta\right)\right] \end{split}$$

Efficiency

Suppose the score function admits the factorization

$$\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) = I(\theta) \left(\hat{\theta} - \theta \right)$$

we want to show that $\mathrm{E}\left[\hat{\theta}\right]=\theta$ and $\mathrm{var}\left(\hat{\theta}\right)=\frac{1}{I(\theta)}.$

Unbiasedness:

$$\mathrm{E}\left[\frac{\partial}{\partial\theta}\ln p\left(\mathbf{x};\theta\right)\right] = \mathrm{E}\left[I\left(\theta\right)\left(\hat{\theta}-\theta\right)\right] = I\left(\theta\right)\left(\mathrm{E}\left[\hat{\theta}\right]-\theta\right) = 0$$

Efficiency:

$$\frac{\partial}{\partial \theta} \left[\frac{\partial}{\partial \theta} \ln p \left(\mathbf{x}; \theta \right) \right] = \frac{\partial}{\partial \theta} I \left(\theta \right) \left(\hat{\theta} - \theta \right) - I \left(\theta \right)$$

Taking the negative expected value, $-\mathrm{E}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln p\left(\mathbf{x};\theta\right)\right]=I\left(\theta\right)$. Since

$$E\left[\left(\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x}; \theta\right)\right)^{2}\right] = I\left(\theta\right)^{2} E\left[\left(\hat{\theta} - \theta\right)^{2}\right] \quad \Rightarrow \quad \operatorname{var}\left(\hat{\theta}\right) = \frac{1}{I\left(\theta\right)}$$

Example: nonlinear model in additive Gaussian noise

Suppose we are given

$$\mathbf{x} = \mathbf{h}(\theta) + \mathbf{w}, \quad \mathbf{x} \in \mathbb{R}^{M}, \, \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \, \mathbf{C} : M \times M$$

The log likelihood function

$$\ln p\left(\mathbf{x};\theta\right) = \text{const.} - \frac{1}{2}(\mathbf{x} - \mathbf{h}\left(\theta\right))^{\mathrm{T}} \mathbf{C}^{-1}(\mathbf{x} - \mathbf{h}\left(\theta\right))$$

$$\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x};\theta\right) = \frac{\partial}{\partial \theta} \mathbf{h}\left(\theta\right)^{\mathrm{T}} \mathbf{C}^{-1}\left[\mathbf{x} - \mathbf{h}\left(\theta\right)\right]$$

$$\frac{\partial^{2}}{\partial \theta^{2}} \ln p\left(\mathbf{x};\theta\right) = \frac{\partial^{2}}{\partial \theta^{2}} \mathbf{h}\left(\theta\right)^{\mathrm{T}} \mathbf{C}^{-1}\left[\mathbf{x} - \mathbf{h}\left(\theta\right)\right] - \frac{\partial}{\partial \theta} \mathbf{h}\left(\theta\right)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\left(\theta\right)$$

$$\Rightarrow \mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln p\left(\mathbf{x};\theta\right)\right] = -\frac{\partial}{\partial \theta} \mathbf{h}\left(\theta\right)^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\left(\theta\right)$$

CRLB depends on θ for a non-linear model. The more $\mathbf{h}\left(\theta\right)$ depends on θ , smaller will be the CRLB.

Example: linear model in Gaussian noise

For the observations model $\mathbf{x} = \mathbf{h}\theta + \mathbf{w}$, we have $\operatorname{var}\left(\hat{\theta}\right) \geq \frac{1}{\mathbf{h}^{\mathrm{T}}\mathbf{C}^{-1}\mathbf{h}}$ and

$$\begin{split} \frac{\partial}{\partial \theta} p\left(\mathbf{x}; \theta\right) &= \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \left[\mathbf{x} - \mathbf{h} \theta\right] = \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x} - \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h} \theta \\ &= \underbrace{\left(\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\right)}_{I(\theta)} [\underbrace{\left(\mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}}_{\hat{\theta}} - \theta] \end{split}$$

For the IID Case of x = A1 + w with h = 1

 $\mathbf{C} = \sigma^2 \mathbf{I}$, where $\mathbf{I} : M \times M$ identity matrix

$$\operatorname{var}\left(\hat{\theta}\right) \geq \frac{1}{\mathbf{1}^{\mathrm{T}}(\sigma^{2}\mathbf{I})^{-1}\mathbf{1}} = \frac{\sigma^{2}}{N}$$

and

$$\hat{\theta} = \left(\mathbf{h}^{\mathrm{T}} C^{-1} \mathbf{h}\right)^{-1} \mathbf{h}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x} = \frac{1}{N} \mathbf{1}^{\mathrm{T}} \mathbf{x} = \frac{1}{N} \sum_{n=1}^{N-1} x[n]$$

Example: Poisson distribution

Suppose $\mathbf{x} = \left[x_0, x_1, \dots, x_{N-1}\right]^{\mathrm{T}}$ denote observations of size N from a Poisson distribution i.e., x_0, x_1, \dots, x_{N-1} are IID observations from a Poisson (θ) distribution with marginal pdf

$$p(x_i; \theta) = \frac{\theta^{x_i}}{x_i!} e^{-\theta}$$

and $E[x_i] = \theta$. Then,

- 1. Calculate CRLB for the parameter θ ,
- 2. Find the MVU estimator for θ .

Since the observations are i.i.d., we have

$$p\left(\mathbf{x};\theta\right) = \frac{\theta^K}{\prod_{i=0}^{N-1} x_i!} e^{-N\theta}, \text{ where } K = \sum_{i=0}^{N-1} x_i,$$

and hence we have the score function $\frac{\partial}{\partial \theta} \ln p\left(\mathbf{x};\theta\right) = -N + \frac{1}{\theta} \sum_{i=0}^{N-1} x_i.$

Example: Poisson distribution

Further, $\frac{\partial^2}{\partial \theta^2} \ln p(\mathbf{x}; \theta) = \frac{1}{\theta^2} \sum_{i=0}^{N-1} x_i$ and since $\mathrm{E}[x_i] = \theta$, we have

$$I\left(\theta\right) = -\mathrm{E}\left[\frac{\partial^{2}}{\partial\theta^{2}}\ln p\left(\mathbf{x};\theta\right)\right] = \frac{N}{\theta}$$

Hence, from the CRLB $\operatorname{var}\left(\hat{\theta}\right) \geq \frac{\theta}{N}$. Further, writing the score function as $I\left(\theta\right)\left(g\left(\mathbf{x}\right) - \theta\right)$:

$$\frac{\partial}{\partial \theta} \ln p(\mathbf{x}; \theta) = \frac{1}{\theta} \sum_{i=1}^{N-1} x_i - N,$$

$$= \underbrace{\frac{N}{\theta}}_{I(\theta)} \underbrace{\left[\frac{1}{N} \sum_{i=0}^{N-1} x_i - \theta\right]}_{g(\mathbf{x})} - \theta.$$

Transformation of parameters

The CRLB of a transformed parameter $\alpha = g(\theta)$ is

$$\operatorname{var}(\hat{\alpha}) \ge \frac{\left(\frac{\partial}{\partial \theta} g(\theta)\right)^2}{-\operatorname{E}\left[\frac{\partial^2}{\partial \theta^2} \ln p\left(\mathbf{x};\theta\right)\right]}$$

Example:

For the DC in WGN model, x[n]=A+w[n], the CRLB for $\alpha=g\left(A\right)=A^2$ (power of the signal) in terms of the CRLB for A:

$$\operatorname{var}\left(\hat{A}^{2}\right) \ge \frac{(2A)^{2}}{N/\sigma^{2}} = 4A^{2}\sigma^{2}/N$$

Transformation of parameters

Given that $\hat{A}=\bar{x}=\frac{1}{N}\sum_{i=0}^{N-1}$ is an efficient estimator of A, is \bar{x}^2 an efficient estimator of A^2 ?

Note that $\bar{x} \sim \mathcal{N}\left(A, \sigma^2/N\right)$

- ▶ Biased: $E[\bar{x}^2] = A^2 + \sigma^2/N \neq A^2$
- ▶ Does not attain CRLB: $var(\bar{x}^2) = \frac{4A^2\sigma^2}{N} + \frac{2\sigma^4}{N^2}$

Efficiency is NOT maintained under non-linear transformations

However, as $N \to \infty$

- ▶ Uniased: $\mathbf{E}\left[\bar{x}^2\right] \xrightarrow{N\uparrow} A^2$
- ► Attains CRLB: $var(\bar{x}^2) \xrightarrow{N\uparrow} \frac{4A^2\sigma^2}{N}$

Thus \bar{x}^2 is an asymptotically efficient estimator of A^2 .

Affine transformations

Efficiency of an estimator is maintained under an affine transformation If $\hat{\theta}$ is an estimator of θ and $\alpha=a\theta+b$, the estimator

$$\hat{\alpha} = a\hat{\theta} + b$$

is efficient

- ▶ Unbiased: $E[\hat{\alpha}] = a\theta + b = \alpha$
- ► CRLB: $a^2/I\left(\theta\right) = \text{var}\left(\hat{a}\right) = \text{var}(a\hat{\theta} + b) = a^2 \text{var}\left(\hat{\theta}\right)$

Vector parameters

Assume that the pdf of the observation $\mathbf x$ parametrized by $\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_{p-1}]^T$ satisfies the following regularity constraint

$$\mathrm{E}\left[\frac{\partial}{\partial \boldsymbol{\theta}} p\left(\mathbf{x}; \boldsymbol{\theta}\right)\right] = 0, \ \forall \, \boldsymbol{\theta}.$$

Then the covariance matrix of any unbiased estimator $\hat{ heta}$ satisfies

$$\mathbf{C}_{\boldsymbol{\hat{\boldsymbol{\theta}}}}-\mathbf{I}\left(\boldsymbol{\boldsymbol{\theta}}\right)\geq\mathbf{0},\ \forall\,\boldsymbol{\boldsymbol{\theta}},$$

where ≥ 0 means that the matrix is positive semi-definite. The Fisher matrix $\mathbf{I}\left(\boldsymbol{\theta}\right)$ is given by

$$\left[\mathbf{I}\left(\boldsymbol{\theta}\right)\right]_{i,j} = -\mathrm{E}\left[\frac{\partial^{2} p\left(\mathbf{x};\boldsymbol{\theta}\right)}{\partial \theta_{i} \partial \theta_{j}}\right]$$

Since the diagonal elements of a positive semi-definite matrix are non-negative $\operatorname{var}\left(\hat{\theta}_i\right) \geq \left[\mathbf{I}\left(\boldsymbol{\theta}\right)\right]_{i,i}$.

Further, an unbiased estimator that attains the CRLB can be found if and only if

$$\frac{\partial}{\partial \boldsymbol{\theta}} p(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{I}(\boldsymbol{\theta}) (\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta}).$$

Transformations of vector parameters

Suppose we want to estimate a function

$$\alpha = \mathbf{g}(\boldsymbol{\theta}), \ \boldsymbol{\alpha} \in \mathbb{R}^r$$

The covariance matrix satisfies the following condition

$$\underbrace{\mathbf{C}_{\hat{\alpha}}}_{\text{rxr}} - \underbrace{\left[\frac{\partial \mathbf{g}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}\right]}_{\text{rxp}} \underbrace{\mathbf{I}^{-1}\left(\boldsymbol{\theta}\right)}_{\text{pxp}} \underbrace{\left[\frac{\partial \mathbf{g}\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}\right]^{T}}_{\text{pxr}} \geq \mathbf{0}.$$

Affine transformation: Suppose $\alpha=\mathbf{g}\left(\theta\right)=\mathbf{A}\theta+\mathbf{b}$ and the estimator $\hat{\alpha}=\mathbf{A}\hat{\theta}+\mathbf{b}$, then

$$\mathrm{E}\left[\hat{\boldsymbol{\alpha}}\right] = \mathbf{A}\boldsymbol{\theta} + \mathbf{b} = \boldsymbol{\alpha}$$

$$\mathbf{C}_{\hat{\boldsymbol{\alpha}}} = \mathbf{A} \mathbf{C}_{\hat{\boldsymbol{\theta}}} \mathbf{A}^{\mathrm{T}} = \mathbf{A} \mathbf{I}^{-1} \left(\boldsymbol{\theta} \right) \mathbf{A}^{\mathrm{T}} = \frac{\partial \mathbf{g} \left(\boldsymbol{\theta} \right)}{\partial \boldsymbol{\theta}} \mathbf{I}^{-1} \left(\boldsymbol{\theta} \right) \frac{\partial \mathbf{g}^{\mathrm{T}} \left(\boldsymbol{\theta} \right)}{\partial \boldsymbol{\theta}}$$

Example

Estimate parameters A, σ^2 given observations

$$x[n] = A + w[n], w[n] \sim \mathcal{N}(0, \sigma^2), n = 1, 2, \dots, N - 1,$$

then $\mathbf{x} \sim \mathcal{N}\left(A\mathbf{1}, \sigma^2\mathbf{I}\right)$, and $\boldsymbol{\theta} = \left[A, \sigma^2\right]^T$, p = 2.

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} -E \left[\frac{\partial^2}{\partial A^2} \ln p(\mathbf{x}; \boldsymbol{\theta}) \right] & -E \left[\frac{\partial^2}{\partial A \partial \sigma^2} \ln p(\mathbf{x}; \boldsymbol{\theta}) \right] \\ -E \left[\frac{\partial^2}{\partial \sigma^2 \partial A} \ln p(\mathbf{x}; \boldsymbol{\theta}) \right] & -E \left[\frac{\partial^2}{\partial \sigma^{22}} \ln p(\mathbf{x}; \boldsymbol{\theta}) \right] \end{bmatrix}$$

Use $\ln p\left(\mathbf{x};\boldsymbol{\theta}\right)=-\frac{N}{2}\ln 2\pi-\frac{N}{2}\ln \sigma^2-\frac{1}{2\sigma^2}\sum_{n=0}^{N-1}\left(x[n]-A\right)^2$ to compute

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} N/\sigma^2 & 0\\ 0 & N/(2\sigma^4) \end{bmatrix}.$$

Hence we have that $\operatorname{var}\left(\hat{A}\right) \geq \sigma^2/N$ and $\operatorname{var}\left(\hat{\sigma^2}\right) \geq 2\sigma^2/N$. Knowing A does not influence the estimator for σ^2

Example

Now suppose we want to estimate

$$\alpha = \frac{A^2}{\sigma^2}$$

from the same observations. Then we have $\boldsymbol{\theta} = \left[A,\sigma^2\right]^T$ and $\alpha = g\left(\boldsymbol{\theta}\right) = \frac{\theta_1^2}{\theta_2}$. Compute $\frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$ for this model as

$$\frac{\partial}{\partial \boldsymbol{\theta}} g\left(\boldsymbol{\theta}\right) = \left[\frac{\partial g\left(\boldsymbol{\theta}\right)}{\partial A}, \frac{\partial g\left(\boldsymbol{\theta}\right)}{\partial \sigma^{2}}\right]^{\mathrm{T}} = \left[\frac{2A}{\sigma^{2}}, \frac{A}{\sigma^{4}}\right]^{\mathrm{T}}$$

Use this to get the CRLB for covariance of the estimate as

$$\left[\frac{\partial}{\partial \boldsymbol{\theta}} g\left(\boldsymbol{\theta}\right)\right] \mathbf{I}^{-1}\left(\boldsymbol{\theta}\right) \left[\frac{\partial}{\partial \boldsymbol{\theta}} g^{\mathrm{T}}\left(\boldsymbol{\theta}\right)\right] = \frac{4A + 2\sigma^{2}}{N}.$$

Linear model with vector parameters

Suppose we have the observations

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}, \ \theta : \mathsf{px1}, \ \mathbf{H} : \mathsf{Nxp} \ \mathsf{and} \ \mathbf{w} \sim \mathcal{N}\left(0, \sigma^2 \mathbf{I}\right).$$

Then we have

$$\ln p(\mathbf{x}; \boldsymbol{\theta}) = \text{const.} - \frac{1}{2\sigma^2} [\mathbf{x} - \mathbf{H}\boldsymbol{\theta}]^{\mathrm{T}} [\mathbf{x} - \mathbf{H}\boldsymbol{\theta}].$$
$$= \text{const.} - \frac{1}{2\sigma^2} [\mathbf{x}^{\mathrm{T}} \mathbf{x} - \boldsymbol{\theta}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{x} - \mathbf{x}^{\mathrm{T}} \mathbf{H}\boldsymbol{\theta} + \boldsymbol{\theta}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{H}\boldsymbol{\theta}].$$

Using $\frac{\partial \mathbf{b}^{\mathrm{T}} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = \mathbf{b}$ and $\frac{\partial \boldsymbol{\theta}^{\mathrm{T}} \mathbf{A} \boldsymbol{\theta}}{\partial \boldsymbol{\theta}} = 2 \mathbf{A} \boldsymbol{\theta}$, we have

$$\frac{\partial}{\partial \boldsymbol{\theta}} \ln p\left(\mathbf{x}; \boldsymbol{\theta}\right) = \frac{1}{2\sigma^2} \left[\mathbf{H}^{\mathrm{T}} \mathbf{x} - \mathbf{H}^{\mathrm{T}} \mathbf{H} \boldsymbol{\theta} \right] = \frac{\left(\mathbf{H}^{\mathrm{T}} \mathbf{H} \right)}{2\sigma^2} \left[\left(\mathbf{H}^{\mathrm{T}} \mathbf{H} \right)^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{x} - \boldsymbol{\theta} \right].$$

Further

$$\frac{\partial^{2} \ln p\left(\mathbf{x};\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathrm{T}}} = -\frac{\mathbf{H}^{\mathrm{T}} \mathbf{H}}{\sigma^{2}}$$

so that the Fisher matrix

$$\mathbf{I}(\boldsymbol{\theta}) = \frac{\mathbf{H}^{\mathrm{T}}\mathbf{H}}{\sigma^2}$$