
Sundeep Prabhakar Chepuri

Office hours: by appointment (SPC: MP 128)

E2 236
Foundations of Machine Learning (FoML)

1

Course information

2

Ø Instructor:
Sundeep Prabhakar Chepuri

Ø Class schedule for Jan-April 2026:

T/Th 8.30-10 am, MP 20, ECE
Last class on 14/4/2026

Ø Teaching assistants:

• Suvam Dey, Indranil Patra, Anatap Mitra, Sonakshi Dua, and hopefully a few more…

Course objective

Introduce theory, methods, and concepts essential for developing programs that
learn from data

3

What is machine learning?

Ø Machine learning is the science (and art) of programming computers so they can learn from data.

Ø Your spam filter is a machine learning program that, given examples of spam emails (e.g., flagged by
users) and examples of regular (nonspam, also called “ham”) emails, can learn to flag spam.

4

2. You would write a detection algorithm for each of the patterns that you noticed,
and your program would flag emails as spam if a number of these patterns were
detected.

3. You would test your program and repeat steps 1 and 2 until it was good enough
to launch.

Figure 1-1. !e traditional approach

Since the problem is difficult, your program will likely become a long list of complex
rules—pretty hard to maintain.

In contrast, a spam filter based on Machine Learning techniques automatically learns
which words and phrases are good predictors of spam by detecting unusually fre!
quent patterns of words in the spam examples compared to the ham examples
(Figure 1-2). The program is much shorter, easier to maintain, and most likely more
accurate.

What if spammers notice that all their emails containing “4U” are blocked? They
might start writing “For U” instead. A spam filter using traditional programming
techniques would need to be updated to flag “For U” emails. If spammers keep work!
ing around your spam filter, you will need to keep writing new rules forever.

In contrast, a spam filter based on Machine Learning techniques automatically noti!
ces that “For U” has become unusually frequent in spam flagged by users, and it starts
flagging them without your intervention (Figure 1-3).

Why Use Machine Learning? | 3

Traditional approach
Figure 1-2. !e Machine Learning approach

Figure 1-3. Automatically adapting to change

Another area where Machine Learning shines is for problems that either are too com!
plex for traditional approaches or have no known algorithm. For example, consider
speech recognition. Say you want to start simple and write a program capable of dis!
tinguishing the words “one” and “two.” You might notice that the word “two” starts
with a high-pitch sound (“T”), so you could hardcode an algorithm that measures
high-pitch sound intensity and use that to distinguish ones and twos—but obviously
this technique will not scale to thousands of words spoken by millions of very differ!
ent people in noisy environments and in dozens of languages. The best solution (at
least today) is to write an algorithm that learns by itself, given many example record!
ings for each word.

Finally, Machine Learning can help humans learn (Figure 1-4). ML algorithms can be
inspected to see what they have learned (although for some algorithms this can be
tricky). For instance, once a spam filter has been trained on enough spam, it can
easily be inspected to reveal the list of words and combinations of words that it
believes are the best predictors of spam. Sometimes this will reveal unsuspected

4 | Chapter 1: The Machine Learning Landscape

Figure 1-2. !e Machine Learning approach

Figure 1-3. Automatically adapting to change

Another area where Machine Learning shines is for problems that either are too com!
plex for traditional approaches or have no known algorithm. For example, consider
speech recognition. Say you want to start simple and write a program capable of dis!
tinguishing the words “one” and “two.” You might notice that the word “two” starts
with a high-pitch sound (“T”), so you could hardcode an algorithm that measures
high-pitch sound intensity and use that to distinguish ones and twos—but obviously
this technique will not scale to thousands of words spoken by millions of very differ!
ent people in noisy environments and in dozens of languages. The best solution (at
least today) is to write an algorithm that learns by itself, given many example record!
ings for each word.

Finally, Machine Learning can help humans learn (Figure 1-4). ML algorithms can be
inspected to see what they have learned (although for some algorithms this can be
tricky). For instance, once a spam filter has been trained on enough spam, it can
easily be inspected to reveal the list of words and combinations of words that it
believes are the best predictors of spam. Sometimes this will reveal unsuspected

4 | Chapter 1: The Machine Learning Landscape

Machine learning approach

Images from HML

Schedule

5

Lecture number Topic Lab and Project
0 Introduction and logistics
1 Machine Learning landscape
2 Classification
3 Classification Lab 1
4 Classification
5 Regression
6 Regression Lab 2
7 Regression
8 Optimization Lab 3
9 Optimization

10 PAC learning framework Assignment 1
11 PAC learning framework
12 Kernel methods
13 Gaussian Processes Lab 3
14 SVMs Lab 4
15 PCA and CCA Lab 5
16 Clustering Lab 6
17 Clustering Assignment 2
18 EM method Project
19 Ensemble learning
20 Multilayer perceptron
21 Multilayer perceptron Lab 7
22 RNN and its variants Lab 8
23 CNNs Lab 9
24 Autoencoders Assignment 3/ Lab 10
25 GANs Lab 11
26 Transformers Lab 12
27 Graph ML
28 Graph ML Lab 13

ML landscape

6

Figure 1-7. An unlabeled training set for unsupervised learning

Here are some of the most important unsupervised learning algorithms (most of
these are covered in Chapters 8 and 9):

• Clustering
— K-Means
— DBSCAN
— Hierarchical Cluster Analysis (HCA)

• Anomaly detection and novelty detection
— One-class SVM
— Isolation Forest

• Visualization and dimensionality reduction
— Principal Component Analysis (PCA)
— Kernel PCA
— Locally Linear Embedding (LLE)
— t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Association rule learning
— Apriori
— Eclat

For example, say you have a lot of data about your blog’s visitors. You may want to
run a clustering algorithm to try to detect groups of similar visitors (Figure 1-8). At
no point do you tell the algorithm which group a visitor belongs to: it finds those
connections without your help. For example, it might notice that 40% of your visitors
are males who love comic books and generally read your blog in the evening, while
20% are young sci-fi lovers who visit during the weekends. If you use a hierarchical
clustering algorithm, it may also subdivide each group into smaller groups. This may
help you target your posts for each group.

10 | Chapter 1: The Machine Learning Landscape

1 Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was studying the
fact that the children of tall people tend to be shorter than their parents. Since the children were shorter, he
called this regression to the mean. This name was then applied to the methods he used to analyze correlations
between variables.

Supervised learning
In supervised learning, the training set you feed to the algorithm includes the desired
solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for spam classi!cation (an example of supervised
learning)

A typical supervised learning task is classi!cation. The spam filter is a good example
of this: it is trained with many example emails along with their class (spam or ham),
and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of a car,
given a set of features (mileage, age, brand, etc.) called predictors. This sort of task is
called regression (Figure 1-6).1 To train the system, you need to give it many examples
of cars, including both their predictors and their labels (i.e., their prices).

In Machine Learning an attribute is a data type (e.g., “mileage”),
while a feature has several meanings, depending on the context, but
generally means an attribute plus its value (e.g., “mileage =
15,000”). Many people use the words attribute and feature inter!
changeably.

Note that some regression algorithms can be used for classification as well, and vice
versa. For example, Logistic Regression is commonly used for classification, as it can
output a value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam).

8 | Chapter 1: The Machine Learning Landscape

Reinforcement Learning
Reinforcement Learning is a very different beast. The learning system, called an agent
in this context, can observe the environment, select and perform actions, and get
rewards in return (or penalties in the form of negative rewards, as shown in
Figure 1-12). It must then learn by itself what is the best strategy, called a policy, to get
the most reward over time. A policy defines what action the agent should choose
when it is in a given situation.

Figure 1-12. Reinforcement Learning

For example, many robots implement Reinforcement Learning algorithms to learn
how to walk. DeepMind’s AlphaGo program is also a good example of Reinforcement
Learning: it made the headlines in May 2017 when it beat the world champion Ke Jie
at the game of Go. It learned its winning policy by analyzing millions of games, and
then playing many games against itself. Note that learning was turned off during the
games against the champion; AlphaGo was just applying the policy it had learned.

Batch and Online Learning
Another criterion used to classify Machine Learning systems is whether or not the
system can learn incrementally from a stream of incoming data.

14 | Chapter 1: The Machine Learning Landscape

Supervised learning Unsupervised learning

Reinforcement learning

Images from HML

Classification and regression

7

1 Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was studying the
fact that the children of tall people tend to be shorter than their parents. Since the children were shorter, he
called this regression to the mean. This name was then applied to the methods he used to analyze correlations
between variables.

Supervised learning
In supervised learning, the training set you feed to the algorithm includes the desired
solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for spam classi!cation (an example of supervised
learning)

A typical supervised learning task is classi!cation. The spam filter is a good example
of this: it is trained with many example emails along with their class (spam or ham),
and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of a car,
given a set of features (mileage, age, brand, etc.) called predictors. This sort of task is
called regression (Figure 1-6).1 To train the system, you need to give it many examples
of cars, including both their predictors and their labels (i.e., their prices).

In Machine Learning an attribute is a data type (e.g., “mileage”),
while a feature has several meanings, depending on the context, but
generally means an attribute plus its value (e.g., “mileage =
15,000”). Many people use the words attribute and feature inter!
changeably.

Note that some regression algorithms can be used for classification as well, and vice
versa. For example, Logistic Regression is commonly used for classification, as it can
output a value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam).

8 | Chapter 1: The Machine Learning Landscape

Classification

• Multiclass and multilabel
• generative and discriminative models
• SVMs
• Neural networks

2 Some neural network architectures can be unsupervised, such as autoencoders and restricted Boltzmann
machines. They can also be semisupervised, such as in deep belief networks and unsupervised pretraining.

Figure 1-6. A regression problem: predict a value, given an input feature (there are usu‐
ally multiple input features, and sometimes multiple output values)

Here are some of the most important supervised learning algorithms (covered in this
book):

• k-Nearest Neighbors
• Linear Regression
• Logistic Regression
• Support Vector Machines (SVMs)
• Decision Trees and Random Forests
• Neural networks2

Unsupervised learning
In unsupervised learning, as you might guess, the training data is unlabeled
(Figure 1-7). The system tries to learn without a teacher.

Types of Machine Learning Systems | 9

Regression

• Linear regression
• Bayesian linear regression
• Regularization (Lasso, ridge, elastic-net)

Images from HML

Optimization

8

from sklearn.linear_model import SGDRegressor
sgd_reg = SGDRegressor(max_iter=1000, tol=1e-3, penalty=None, eta0=0.1)
sgd_reg.fit(X, y.ravel())

Once again, you find a solution quite close to the one returned by the Normal
Equation:

>>> sgd_reg.intercept_, sgd_reg.coef_
(array([4.24365286]), array([2.8250878]))

Mini-batch Gradient Descent
The last Gradient Descent algorithm we will look at is called Mini-batch Gradient
Descent. It is simple to understand once you know Batch and Stochastic Gradient
Descent: at each step, instead of computing the gradients based on the full training set
(as in Batch GD) or based on just one instance (as in Stochastic GD), Mini-batch GD
computes the gradients on small random sets of instances called mini-batches. The
main advantage of Mini-batch GD over Stochastic GD is that you can get a perfor‐
mance boost from hardware optimization of matrix operations, especially when using
GPUs.

The algorithm’s progress in parameter space is less erratic than with Stochastic GD,
especially with fairly large mini-batches. As a result, Mini-batch GD will end up walk‐
ing around a bit closer to the minimum than Stochastic GD—but it may be harder for
it to escape from local minima (in the case of problems that suffer from local minima,
unlike Linear Regression). Figure 4-11 shows the paths taken by the three Gradient
Descent algorithms in parameter space during training. They all end up near the
minimum, but Batch GD’s path actually stops at the minimum, while both Stochastic
GD and Mini-batch GD continue to walk around. However, don’t forget that Batch
GD takes a lot of time to take each step, and Stochastic GD and Mini-batch GD
would also reach the minimum if you used a good learning schedule.

Figure 4-11. Gradient Descent paths in parameter space

Gradient Descent | 127

Figure 11-8. Learning curves for various learning rates η

As we discussed in Chapter 10, you can find a good learning rate by training the
model for a few hundred iterations, exponentially increasing the learning rate from a
very small value to a very large value, and then looking at the learning curve and
picking a learning rate slightly lower than the one at which the learning curve starts
shooting back up. You can then reinitialize your model and train it with that learning
rate.

But you can do better than a constant learning rate: if you start with a large learning
rate and then reduce it once training stops making fast progress, you can reach a
good solution faster than with the optimal constant learning rate. There are many dif‐
ferent strategies to reduce the learning rate during training. It can also be beneficial to
start with a low learning rate, increase it, then drop it again. These strategies are
called learning schedules (we briefly introduced this concept in Chapter 4). These are
the most commonly used learning schedules:

Power scheduling
Set the learning rate to a function of the iteration number t: η(t) = η0 / (1 + t/s)c.
The initial learning rate η0, the power c (typically set to 1), and the steps s are
hyperparameters. The learning rate drops at each step. After s steps, it is down to
η0 / 2. After s more steps, it is down to η0 / 3, then it goes down to η0 / 4, then η0 /
5, and so on. As you can see, this schedule first drops quickly, then more and
more slowly. Of course, power scheduling requires tuning η0 and s (and possibly
c).

Exponential scheduling
Set the learning rate to η(t) = η0 0.1t/s. The learning rate will gradually drop by a
factor of 10 every s steps. While power scheduling reduces the learning rate more
and more slowly, exponential scheduling keeps slashing it by a factor of 10 every
s steps.

360 | Chapter 11: Training Deep Neural Networks

Ø Convex and nonconvex functions
Ø Stochastic gradient descent, autodiff, backprop
Ø Adam optimizer

Training Sparse Models
All the optimization algorithms just presented produce dense models, meaning that
most parameters will be nonzero. If you need a blazingly fast model at runtime, or if
you need it to take up less memory, you may prefer to end up with a sparse model
instead.

One easy way to achieve this is to train the model as usual, then get rid of the tiny
weights (set them to zero). Note that this will typically not lead to a very sparse
model, and it may degrade the model’s performance.

A better option is to apply strong ℓ1 regularization during training (we will see how
later in this chapter), as it pushes the optimizer to zero out as many weights as it can
(as discussed in “Lasso Regression” on page 137 in Chapter 4).

If these techniques remain insufficient, check out the TensorFlow Model Optimiza‐
tion Toolkit (TF-MOT), which provides a pruning API capable of iteratively remov‐
ing connections during training based on their magnitude.

Table 11-2 compares all the optimizers we’ve discussed so far (* is bad, ** is average,
and *** is good).

Table 11-2. Optimizer comparison
Class Convergence speed Convergence quality
SGD * ***

SGD(momentum=...) ** ***

SGD(momentum=..., nesterov=True) ** ***

Adagrad *** * (stops too early)

RMSprop *** ** or ***

Adam *** ** or ***

Nadam *** ** or ***

AdaMax *** ** or ***

Learning Rate Scheduling
Finding a good learning rate is very important. If you set it much too high, training
may diverge (as we discussed in “Gradient Descent” on page 118). If you set it too
low, training will eventually converge to the optimum, but it will take a very long
time. If you set it slightly too high, it will make progress very quickly at first, but it
will end up dancing around the optimum, never really settling down. If you have a
limited computing budget, you may have to interrupt training before it has converged
properly, yielding a suboptimal solution (see Figure 11-8).

Faster Optimizers | 359

Images from HML

Unsupervised learning

9

3 Notice how animals are rather well separated from vehicles and how horses are close to deer but far from
birds. Figure reproduced with permission from Richard Socher et al., “Zero-Shot Learning Through Cross-
Modal Transfer,” Proceedings of the 26th International Conference on Neural Information Processing Systems 1
(2013): 935–943.

Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning algorithms:
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D rep!
resentation of your data that can easily be plotted (Figure 1-9). These algorithms try
to preserve as much structure as they can (e.g., trying to keep separate clusters in the
input space from overlapping in the visualization) so that you can understand how
the data is organized and perhaps identify unsuspected patterns.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters3

Types of Machine Learning Systems | 11

Ø K-means, spectral clustering

Clustering

4 Karl Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,” !e London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2, no. 11 (1901): 559-572, https://homl.info/pca.

Figure 8-7. Selecting the subspace to project on

It seems reasonable to select the axis that preserves the maximum amount of var!
iance, as it will most likely lose less information than the other projections. Another
way to justify this choice is that it is the axis that minimizes the mean squared dis!
tance between the original dataset and its projection onto that axis. This is the rather
simple idea behind PCA.4

Principal Components
PCA identifies the axis that accounts for the largest amount of variance in the train!
ing set. In Figure 8-7, it is the solid line. It also finds a second axis, orthogonal to the
first one, that accounts for the largest amount of remaining variance. In this 2D
example there is no choice: it is the dotted line. If it were a higher-dimensional data!
set, PCA would also find a third axis, orthogonal to both previous axes, and a fourth,
a fifth, and so on—as many axes as the number of dimensions in the dataset.

The ith axis is called the ith principal component (PC) of the data. In Figure 8-7, the
first PC is the axis on which vector c1 lies, and the second PC is the axis on which
vector c2 lies. In Figure 8-2 the first two PCs are the orthogonal axes on which the
two arrows lie, on the plane, and the third PC is the axis orthogonal to that plane.

220 | Chapter 8: Dimensionality Reduction

Principal component analysis, and CCA 3 Notice how animals are rather well separated from vehicles and how horses are close to deer but far from
birds. Figure reproduced with permission from Richard Socher et al., “Zero-Shot Learning Through Cross-
Modal Transfer,” Proceedings of the 26th International Conference on Neural Information Processing Systems 1
(2013): 935–943.

Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning algorithms:
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D rep!
resentation of your data that can easily be plotted (Figure 1-9). These algorithms try
to preserve as much structure as they can (e.g., trying to keep separate clusters in the
input space from overlapping in the visualization) so that you can understand how
the data is organized and perhaps identify unsuspected patterns.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters3

Types of Machine Learning Systems | 11

t-sne

Images from HML

Neural networks (MLP, CNN, RNNs, transformers, GNNs)

10

9
In the 1990s, an ANN with m

ore than two hidden layers was considered deep. Nowadays, it is com
m

on to see
ANNs with dozens of layers, or even hundreds, so the definition of “deep” is quite fuzzy.

The Multilayer Perceptron and Backpropagation
An M

LP is composed of one (passthrough) input layer, one or m
ore layers of TLUs,

called hidden layers, and one final layer of TLUs called the output layer (see
Figure 10-7). The layers close to the input layer are usually called the lower layers, and
the ones close to the outputs are usually called the upper layers. Every layer except the
output layer includes a bias neuron and is fully connected to the next layer.

Figure 10-7. Architecture of a M
ultilayer Perceptron with two inputs, one hidden layer of

four neurons, and three output neurons (the bias neurons are shown here, but usually
they are implicit)The signal flows only in one direction (from

 the inputs to the out‐
puts), so this architecture is an example of a feedforward neural net‐
work (FNN).

W
hen an ANN contains a deep stack of hidden layers, 9 it is called a deep neural net‐

work (DNN). The field of Deep Learning studies DNNs, and m
ore generally m

odels
containing deep stacks of computations. Even so, m

any people talk about Deep
Learning whenever neural networks are involved (even shallow ones).

For m
any years researchers struggled to find a way to train M

LPs, without success.
But in 1986, David Rum

elhart, Geoffrey Hinton, and Ronald W
illiam

s published a

From Biological to Arti!cial Neurons
|

289

9 However, they are estimated during training, based on the training data, so arguably they are trainable. In
Keras, “non-trainable” really means “untouched by backpropagation.”

model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=[28, 28]),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"),
 keras.layers.BatchNormalization(),
 keras.layers.Dense(10, activation="softmax")
])

That’s all! In this tiny example with just two hidden layers, it’s unlikely that Batch
Normalization will have a very positive impact; but for deeper networks it can make a
tremendous difference.

Let’s display the model summary:
>>> model.summary()
Model: "sequential_3"

Layer (type) Output Shape Param #
===
flatten_3 (Flatten) (None, 784) 0

batch_normalization_v2 (Batc (None, 784) 3136

dense_50 (Dense) (None, 300) 235500

batch_normalization_v2_1 (Ba (None, 300) 1200

dense_51 (Dense) (None, 100) 30100

batch_normalization_v2_2 (Ba (None, 100) 400

dense_52 (Dense) (None, 10) 1010
===
Total params: 271,346
Trainable params: 268,978
Non-trainable params: 2,368

As you can see, each BN layer adds four parameters per input: γ, β, μ, and σ (for
example, the first BN layer adds 3,136 parameters, which is 4 × 784). The last two
parameters, μ and σ, are the moving averages; they are not affected by backpropaga‐
tion, so Keras calls them “non-trainable”9 (if you count the total number of BN
parameters, 3,136 + 1,200 + 400, and divide by 2, you get 2,368, which is the total
number of non-trainable parameters in this model).

342 | Chapter 11: Training Deep Neural Networks

unstructured

fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g., a
softmax layer that outputs estimated class probabilities).

Figure 14-11. Typical CNN architecture

A common mistake is to use convolution kernels that are too large.
For example, instead of using a convolutional layer with a 5 × 5
kernel, stack two layers with 3 × 3 kernels: it will use fewer parame‐
ters and require fewer computations, and it will usually perform
better. One exception is for the first convolutional layer: it can typi‐
cally have a large kernel (e.g., 5 × 5), usually with a stride of 2 or
more: this will reduce the spatial dimension of the image without
losing too much information, and since the input image only has
three channels in general, it will not be too costly.

Here is how you can implement a simple CNN to tackle the Fashion MNIST dataset
(introduced in Chapter 10):

model = keras.models.Sequential([
 keras.layers.Conv2D(64, 7, activation="relu", padding="same",
 input_shape=[28, 28, 1]),
 keras.layers.MaxPooling2D(2),
 keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
 keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
 keras.layers.MaxPooling2D(2),
 keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
 keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
 keras.layers.MaxPooling2D(2),
 keras.layers.Flatten(),
 keras.layers.Dense(128, activation="relu"),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(64, activation="relu"),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(10, activation="softmax")
])

CNN Architectures | 461

fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g., a
softmax layer that outputs estimated class probabilities).

Figure 14-11. Typical CNN architecture

A common mistake is to use convolution kernels that are too large.
For example, instead of using a convolutional layer with a 5 × 5
kernel, stack two layers with 3 × 3 kernels: it will use fewer parame‐
ters and require fewer computations, and it will usually perform
better. One exception is for the first convolutional layer: it can typi‐
cally have a large kernel (e.g., 5 × 5), usually with a stride of 2 or
more: this will reduce the spatial dimension of the image without
losing too much information, and since the input image only has
three channels in general, it will not be too costly.

Here is how you can implement a simple CNN to tackle the Fashion MNIST dataset
(introduced in Chapter 10):

model = keras.models.Sequential([
 keras.layers.Conv2D(64, 7, activation="relu", padding="same",
 input_shape=[28, 28, 1]),
 keras.layers.MaxPooling2D(2),
 keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
 keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
 keras.layers.MaxPooling2D(2),
 keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
 keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
 keras.layers.MaxPooling2D(2),
 keras.layers.Flatten(),
 keras.layers.Dense(128, activation="relu"),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(64, activation="relu"),
 keras.layers.Dropout(0.5),
 keras.layers.Dense(10, activation="softmax")
])

CNN Architectures | 461

structured

sequences

LSTM cell as a black box, it can be used very much like a basic cell, except it will per‐
form much better; training will converge faster, and it will detect long-term depen‐
dencies in the data. In Keras, you can simply use the LSTM layer instead of the
SimpleRNN layer:

model = keras.models.Sequential([
 keras.layers.LSTM(20, return_sequences=True, input_shape=[None, 1]),
 keras.layers.LSTM(20, return_sequences=True),
 keras.layers.TimeDistributed(keras.layers.Dense(10))
])

Alternatively, you could use the general-purpose keras.layers.RNN layer, giving it an
LSTMCell as an argument:

model = keras.models.Sequential([
 keras.layers.RNN(keras.layers.LSTMCell(20), return_sequences=True,
 input_shape=[None, 1]),
 keras.layers.RNN(keras.layers.LSTMCell(20), return_sequences=True),
 keras.layers.TimeDistributed(keras.layers.Dense(10))
])

However, the LSTM layer uses an optimized implementation when running on a GPU
(see Chapter 19), so in general it is preferable to use it (the RNN layer is mostly useful
when you define custom cells, as we did earlier).

So how does an LSTM cell work? Its architecture is shown in Figure 15-9.

If you don’t look at what’s inside the box, the LSTM cell looks exactly like a regular
cell, except that its state is split into two vectors: h(t) and c(t) (“c” stands for “cell”). You
can think of h(t) as the short-term state and c(t) as the long-term state.

Handling Long Sequences | 515

Figure 15-3. A cell’s hidden state and its output may be di!erent

Input and Output Sequences
An RNN can simultaneously take a sequence of inputs and produce a sequence of
outputs (see the top-left network in Figure 15-4). This type of sequence-to-sequence
network is useful for predicting time series such as stock prices: you feed it the prices
over the last N days, and it must output the prices shifted by one day into the future
(i.e., from N – 1 days ago to tomorrow).

Alternatively, you could feed the network a sequence of inputs and ignore all outputs
except for the last one (see the top-right network in Figure 15-4). In other words, this
is a sequence-to-vector network. For example, you could feed the network a sequence
of words corresponding to a movie review, and the network would output a senti‐
ment score (e.g., from –1 [hate] to +1 [love]).

Conversely, you could feed the network the same input vector over and over again at
each time step and let it output a sequence (see the bottom-left network of
Figure 15-4). This is a vector-to-sequence network. For example, the input could be an
image (or the output of a CNN), and the output could be a caption for that image.

Lastly, you could have a sequence-to-vector network, called an encoder, followed by a
vector-to-sequence network, called a decoder (see the bottom-right network of
Figure 15-4). For example, this could be used for translating a sentence from one lan‐
guage to another. You would feed the network a sentence in one language, the
encoder would convert this sentence into a single vector representation, and then the
decoder would decode this vector into a sentence in another language. This two-step
model, called an Encoder–Decoder, works much better than trying to translate on the
fly with a single sequence-to-sequence RNN (like the one represented at the top left):
the last words of a sentence can affect the first words of the translation, so you need
to wait until you have seen the whole sentence before translating it. We will see how
to implement an Encoder–Decoder in Chapter 16 (as we will see, it is a bit more com‐
plex than in Figure 15-4 suggests).

Recurrent Neurons and Layers | 501

Figure 15-7. Deep RNN (le!) unrolled through time (right)

Implementing a deep RNN with tf.keras is quite simple: just stack recurrent layers. In
this example, we use three SimpleRNN layers (but we could add any other type of
recurrent layer, such as an LSTM layer or a GRU layer, which we will discuss shortly):

model = keras.models.Sequential([
 keras.layers.SimpleRNN(20, return_sequences=True, input_shape=[None, 1]),
 keras.layers.SimpleRNN(20, return_sequences=True),
 keras.layers.SimpleRNN(1)
])

Make sure to set return_sequences=True for all recurrent layers
(except the last one, if you only care about the last output). If you
don’t, they will output a 2D array (containing only the output of
the last time step) instead of a 3D array (containing outputs for all
time steps), and the next recurrent layer will complain that you are
not feeding it sequences in the expected 3D format.

If you compile, fit, and evaluate this model, you will find that it reaches an MSE of
0.003. We finally managed to beat the linear model!

Note that the last layer is not ideal: it must have a single unit because we want to fore‐
cast a univariate time series, and this means we must have a single output value per
time step. However, having a single unit means that the hidden state is just a single
number. That’s really not much, and it’s probably not that useful; presumably, the
RNN will mostly use the hidden states of the other recurrent layers to carry over all
the information it needs from time step to time step, and it will not use the final lay‐
er’s hidden state very much. Moreover, since a SimpleRNN layer uses the tanh activa‐
tion function by default, the predicted values must lie within the range –1 to 1. But
what if you want to use another activation function? For both these reasons, it might
be preferable to replace the output layer with a Dense layer: it would run slightly

Forecasting a Time Series | 507

Relational data Images from HML/internet

Generative AI

11

GANs

8 Variational autoencoders are actually more general; the codings are not limited to Gaussian distributions.

Figure 17-12. Variational autoencoder (le!) and an instance going through it (right)

As you can see in the diagram, although the inputs may have a very convoluted distri‐
bution, a variational autoencoder tends to produce codings that look as though they
were sampled from a simple Gaussian distribution:8 during training, the cost function
(discussed next) pushes the codings to gradually migrate within the coding space
(also called the latent space) to end up looking like a cloud of Gaussian points. One
great consequence is that after training a variational autoencoder, you can very easily
generate a new instance: just sample a random coding from the Gaussian distribu‐
tion, decode it, and voilà!

Now, let’s look at the cost function. It is composed of two parts. The first is the usual
reconstruction loss that pushes the autoencoder to reproduce its inputs (we can use
cross entropy for this, as discussed earlier). The second is the latent loss that pushes
the autoencoder to have codings that look as though they were sampled from a simple
Gaussian distribution: it is the KL divergence between the target distribution (i.e., the
Gaussian distribution) and the actual distribution of the codings. The math is a bit
more complex than with the sparse autoencoder, in particular because of the Gaus‐
sian noise, which limits the amount of information that can be transmitted to the
coding layer (thus pushing the autoencoder to learn useful features). Luckily, the

Variational Autoencoders | 587

Variational autoencoders

Images from HML/internet

Books

12

PRML UML MLPP

DL

HML

Grading and course requirements
Ø Prerequistite: Basic linear algebra and Python (Google CoLab) for assignments and project.

Ø This is a 3:1 course

Ø Final Exams will be CLOSED book exam

Ø Projects can be done in a group of N (to be defined) members

Ø Assignments to be done individually

Ø Course page: https://ece.iisc.ac.in/~spchepuri/e2236.html

13

Grading %
Three assignments (10 pts
each) 30
Project 20
Final Exam 50
Total 100

Teams code:
1a77qjo

