
Sundeep Prabhakar Chepuri
Email: spchepuri@iisc.ac.in

Reading: MLPP Ch. 1, UML Ch. 1, HML Ch. 1

E2 236
Lecture 1: Machine Learning Landscape

1

mailto:spchepuri@iisc.ac.in

What is machine learning?

Ø Machine learning is the science (and art) of programming computers so they can learn from data.

Ø Your spam filter is a machine learning program that, given examples of spam emails (e.g., flagged by
users) and examples of regular (nonspam, also called “ham”) emails, can learn to flag spam.

2Figure 1-2. !e Machine Learning approach

Figure 1-3. Automatically adapting to change

Another area where Machine Learning shines is for problems that either are too com!
plex for traditional approaches or have no known algorithm. For example, consider
speech recognition. Say you want to start simple and write a program capable of dis!
tinguishing the words “one” and “two.” You might notice that the word “two” starts
with a high-pitch sound (“T”), so you could hardcode an algorithm that measures
high-pitch sound intensity and use that to distinguish ones and twos—but obviously
this technique will not scale to thousands of words spoken by millions of very differ!
ent people in noisy environments and in dozens of languages. The best solution (at
least today) is to write an algorithm that learns by itself, given many example record!
ings for each word.

Finally, Machine Learning can help humans learn (Figure 1-4). ML algorithms can be
inspected to see what they have learned (although for some algorithms this can be
tricky). For instance, once a spam filter has been trained on enough spam, it can
easily be inspected to reveal the list of words and combinations of words that it
believes are the best predictors of spam. Sometimes this will reveal unsuspected

4 | Chapter 1: The Machine Learning Landscape

1 Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was studying the
fact that the children of tall people tend to be shorter than their parents. Since the children were shorter, he
called this regression to the mean. This name was then applied to the methods he used to analyze correlations
between variables.

Supervised learning
In supervised learning, the training set you feed to the algorithm includes the desired
solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for spam classi!cation (an example of supervised
learning)

A typical supervised learning task is classi!cation. The spam filter is a good example
of this: it is trained with many example emails along with their class (spam or ham),
and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of a car,
given a set of features (mileage, age, brand, etc.) called predictors. This sort of task is
called regression (Figure 1-6).1 To train the system, you need to give it many examples
of cars, including both their predictors and their labels (i.e., their prices).

In Machine Learning an attribute is a data type (e.g., “mileage”),
while a feature has several meanings, depending on the context, but
generally means an attribute plus its value (e.g., “mileage =
15,000”). Many people use the words attribute and feature inter!
changeably.

Note that some regression algorithms can be used for classification as well, and vice
versa. For example, Logistic Regression is commonly used for classification, as it can
output a value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam).

8 | Chapter 1: The Machine Learning Landscape

A formal learning model

3

Ø Domain set: An arbitrary input set or the instance space .

Ø Features, attributes, or covariates: Points from the domain set are instances or examples.

E.g., represented by vectors .

such vectors or examples are used by the learner.

Features are collected in the design matrix

Generally, features can be images, text, time-series, graph etc.

Ø Label set: Each instance may have an associated label from the label space

<latexit sha1_base64="8n3liFIdkSAn50zR+GlHrvBUOi8=">AAAB8nicbVDLSsNAFL3xWeur6tJNsAiuSlKKuiy4cVnBPqANZTKdtEMnM2HmRiihn+HGhSJu/Rp3/o2TNgttPTBwOOde5twTJoIb9LxvZ2Nza3tnt7RX3j84PDqunJx2jEo1ZW2qhNK9kBgmuGRt5ChYL9GMxKFg3XB6l/vdJ6YNV/IRZwkLYjKWPOKUoJX6g5jghBKR9ebDStWreQu468QvSBUKtIaVr8FI0TRmEqkgxvR9L8EgIxo5FWxeHqSGJYROyZj1LZUkZibIFpHn7qVVRm6ktH0S3YX6eyMjsTGzOLSTeUSz6uXif14/xeg2yLhMUmSSLj+KUuGicvP73RHXjKKYWUKo5jarSydEE4q2pbItwV89eZ106jX/utZ4aFSb9aKOEpzDBVyBDzfQhHtoQRsoKHiGV3hz0Hlx3p2P5eiGU+ycwR84nz+RX5Fn</latexit>

X

Learner has access to

<latexit sha1_base64="m8Ifp4zQXtwneUqENa67fjx3G2Y=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiSlqMuCLlxWsQ9oYphMJ+3QySTMTMQSsnLjr7hxoYhbv8Gdf+OkzUJbD1w4nHMv997jx4xKZVnfRmlpeWV1rbxe2djc2t4xd/c6MkoEJm0csUj0fCQJo5y0FVWM9GJBUOgz0vXHF7nfvSdC0ojfqklM3BANOQ0oRkpLnnnohEiN/CB9yDwKHcrhTPDTm+zu0jOrVs2aAi4SuyBVUKDlmV/OIMJJSLjCDEnZt61YuSkSimJGsoqTSBIjPEZD0teUo5BIN52+kcFjrQxgEAldXMGp+nsiRaGUk9DXnfmNct7Lxf+8fqKCczelPE4U4Xi2KEgYVBHMM4EDKghWbKIJwoLqWyEeIYGw0slVdAj2/MuLpFOv2ae1xnWj2qwXcZTBATgCJ8AGZ6AJrkALtAEGj+AZvII348l4Md6Nj1lryShm9sEfGJ8/R3uY9Q==</latexit>

xi → RD

<latexit sha1_base64="zwV18JUSAP6PQQ5N28cX6d+1uTY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp377SdUmsfywUwS9CM6lDzkjBorNe77xZJbdhcg68TLSAky1PvFr94gZmmE0jBBte56bmL8KVWGM4GzQi/VmFA2pkPsWipphNqfLg6dkQurDEgYK1vSkIX6e2JKI60nUWA7I2pGetWbi/953dSEN/6UyyQ1KNlyUZgKYmIy/5oMuEJmxMQSyhS3txI2oooyY7Mp2BC81ZfXSatS9q7K1Ua1VKtkceThDM7hEjy4hhrcQR2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB6SvjMs=</latexit>

N
<latexit sha1_base64="mUeESAKo7vNaw24bSo/C8Z8HFBE=">AAACD3icbVC7TsMwFL0pr1JeAUYWiwrEVCVVBYyVYGBCBdGH1JTKcZ3WquNEtoNURfkDFn6FhQGEWFnZ+BvcxwAtR7J0fM69uvceP+ZMacf5tnJLyyura/n1wsbm1vaOvbvXUFEiCa2TiEey5WNFORO0rpnmtBVLikOf06Y/vBj7zQcqFYvEnR7FtBPivmABI1gbqWsfeyHWAz9IWxnymEDTr5/eZvfpNfI0C6lCl1nXLjolZwK0SNwZKcIMta795fUikoRUaMKxUm3XiXUnxVIzwmlW8BJFY0yGuE/bhgps5nTSyT0ZOjJKDwWRNE9oNFF/d6Q4VGoU+qZyvK6a98bif1470cF5J2UiTjQVZDooSDjSERqHg3pMUqL5yBBMJDO7IjLAEhNtIiyYENz5kxdJo1xyT0uVm0qxWp7FkYcDOIQTcOEMqnAFNagDgUd4hld4s56sF+vd+piW5qxZzz78gfX5A7rnnGs=</latexit>

X → RN→D

<latexit sha1_base64="+h+jJejijWXHoqI1XsFq380JDqw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToRQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iFnC/YiOlAgFo2ilh2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6C/pRqFEzyWamfGp5QNqEj3rNU0Ygbf7o4dUYurDIkYaxtKSQL9ffElEbGZFFgOyOKY7PqzcX/vF6K4Y0/FSpJkSu2XBSmkmBM5n+TodCcocwsoUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd/XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwBgNI3S</latexit>yi
<latexit sha1_base64="4gxifkzkUw3vXWIL5hMpffidylA=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjOlqMuCG5cV7EOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Nvd7T0wbruQDzBIWxGQsecQpASv5g5jAhBKRPc6H1ZpbdxfA68QrSA0VaA+rX4ORomnMJFBBjPE9N4EgIxo4FWxeGaSGJYROyZj5lkoSMxNki8hzfGGVEY6Utk8CXqi/NzISGzOLQzuZRzSrXi7+5/kpRDdBxmWSApN0+VGUCgwK5/fjEdeMgphZQqjmNiumE6IJBdtSxZbgrZ68TrqNundVb943a61GUUcZnaFzdIk8dI1a6A61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHkuSRaA==</latexit>

Y

Machine learning scenarios: supervised learning

4

Predictive or supervised learning

The goal is to learn a predictor, a hypothesis, or a classifier

given a labeled set of input-output pairs or the training set

Ø Classification or pattern recognition: The response variable is categorical from a finite set, such
as or

Ø Binary classification if and multiclass classification if

Ø Multi-label classification: if class labels are not mutually exclusive (email: ham/spam, urgent/not
urgent)

Ø Regression: The response variable is real-valued

<latexit sha1_base64="dmMF23+stHluoCFIUd08kHICgIE=">AAACCHicbVDLSsNAFJ34rPUVdenCwSK4KkkpKq4KblxWsA9pQplMJ83QyUyYmSglZOnGX3HjQhG3foI7/8Zpm4W2HrhwOOde7r0nSBhV2nG+raXlldW19dJGeXNre2fX3ttvK5FKTFpYMCG7AVKEUU5ammpGuokkKA4Y6QSjq4nfuSdSUcFv9TghfoyGnIYUI22kvn0UwUvoYcSybg49SYeRRlKKh5l2l/ftilN1poCLxC1IBRRo9u0vbyBwGhOuMUNK9Vwn0X6GpKaYkbzspYokCI/QkPQM5Sgmys+mj+TwxCgDGAppims4VX9PZChWahwHpjNGOlLz3kT8z+ulOrzwM8qTVBOOZ4vClEEt4CQVOKCSYM3GhiAsqbkV4ghJhLXJrmxCcOdfXiTtWtU9q9Zv6pVGrYijBA7BMTgFLjgHDXANmqAFMHgEz+AVvFlP1ov1bn3MWpesYuYA/IH1+QMPopla</latexit>

h : X → Y
<latexit sha1_base64="2USGV9WQ3ZLWapoJoHLGQVK93Wk=">AAACMXicbVDLSgMxFM3UV62vqks3wSK0UMpMKepGKOiiq1LBPqAzDJlMpg3NPEgyYhnml9z4J+KmC0Xc+hOmD3y0Hgice8693NzjRIwKqesTLbO2vrG5ld3O7ezu7R/kD486Iow5Jm0cspD3HCQIowFpSyoZ6UWcIN9hpOuMrqd+955wQcPgTo4jYvloEFCPYiSVZOcbpo/kECOW3KTwCppJMTEdDz6ktlEe20ap/F1XVV0tlU3shlL8yE0lN0tmaucLekWfAa4SY0EKYIGWnX823RDHPgkkZkiIvqFH0koQlxQzkubMWJAI4REakL6iAfKJsJLZxSk8U4oLvZCrF0g4U39PJMgXYuw7qnN6n1j2puJ/Xj+W3qWV0CCKJQnwfJEXMyhDOI0PupQTLNlYEYQ5VX+FeIg4wlKFnFMhGMsnr5JOtWKcV2q3tUK9uogjC07AKSgCA1yAOmiAFmgDDB7BC3gFb9qTNtHetY95a0ZbzByDP9A+vwAT7qeq</latexit>

D = {(x1, y1), (x2, y2), · · · , (xN , yN)}
<latexit sha1_base64="vLQdatq+oVCSppdsnXMWI/smHNg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz32yltbe/s7pX3KweHR8cn1dOzno4SRWiXRDxSgwBrypmkXcMMp4NYUSwCTvvB/C73+09UaRbJR5PG1Bd4KlnICDa5lI4ZGldrbt1dAm0SryA1KNAZV79Gk4gkgkpDONZ66Lmx8TOsDCOcLiqjRNMYkzme0qGlEguq/Wx56wJdWWWCwkjZkgYt1d8TGRZapyKwnQKbmV73cvE/b5iY8NbPmIwTQyVZLQoTjkyE8sfRhClKDE8twUQxeysiM6wwMTaeig3BW395k/Qada9Vbz40a+1GEUcZLuASrsGDG2jDPXSgCwRm8Ayv8OYI58V5dz5WrSWnmDmHP3A+fwC23Y38</latexit>yi

<latexit sha1_base64="bZ34t6tQaGadQ3T2us60Y4+qomM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVY8OKxgv2AJpTNdtsu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxMpDLrut1PY2Nza3inulvb2Dw6PyscnbROnmvEWi2WsuyE1XArFWyhQ8m6iOY1CyTvh5G7ud564NiJWjzhNeBDRkRJDwShaqeNn7pXnz/rlilt1FyDrxMtJBXI0++UvfxCzNOIKmaTG9Dw3wSCjGgWTfFbyU8MTyiZ0xHuWKhpxE2SLc2fkwioDMoy1LYVkof6eyGhkzDQKbWdEcWxWvbn4n9dLcXgbZEIlKXLFlouGqSQYk/nvZCA0ZyinllCmhb2VsDHVlKFNqGRD8FZfXiftWtW7rtYf6pVGLY+jCGdwDpfgwQ004B6a0AIGE3iGV3hzEufFeXc+lq0FJ585hT9wPn8Ady6O9g==</latexit>

{0, 1}

<latexit sha1_base64="vLQdatq+oVCSppdsnXMWI/smHNg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlu5uwuxFC6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzgpgzbVz32yltbe/s7pX3KweHR8cn1dOzno4SRWiXRDxSgwBrypmkXcMMp4NYUSwCTvvB/C73+09UaRbJR5PG1Bd4KlnICDa5lI4ZGldrbt1dAm0SryA1KNAZV79Gk4gkgkpDONZ66Lmx8TOsDCOcLiqjRNMYkzme0qGlEguq/Wx56wJdWWWCwkjZkgYt1d8TGRZapyKwnQKbmV73cvE/b5iY8NbPmIwTQyVZLQoTjkyE8sfRhClKDE8twUQxeysiM6wwMTaeig3BW395k/Qada9Vbz40a+1GEUcZLuASrsGDG2jDPXSgCwRm8Ayv8OYI58V5dz5WrSWnmDmHP3A+fwC23Y38</latexit>yi

<latexit sha1_base64="xua7GuC+pBdxsb8KUUg+PVkhdtc=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEIHkpJSlGPhV48VrAf0ISy2WzbpZtN2J0INfSXePGgiFd/ijf/jds2B219MPB4b4aZeUEiuAbH+bYKW9s7u3vF/dLB4dFx2T457eo4VZR1aCxi1Q+IZoJL1gEOgvUTxUgUCNYLpq2F33tkSvNYPsAsYX5ExpKPOCVgpKFd9jK36tEwBl3FLW8+tCtOzVkCbxI3JxWUoz20v7wwpmnEJFBBtB64TgJ+RhRwKti85KWaJYROyZgNDJUkYtrPlofP8aVRQjyKlSkJeKn+nshIpPUsCkxnRGCi172F+J83SGF062dcJikwSVeLRqnAEONFCjjkilEQM0MIVdzciumEKELBZFUyIbjrL2+Sbr3mXtca941Ks57HUUTn6AJdIRfdoCa6Q23UQRSl6Bm9ojfryXqx3q2PVWvBymfO0B9Ynz+DYJJP</latexit>

{1, · · · , C}
<latexit sha1_base64="rHfoWi23ahrhuEGY5dniWQIbTsc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUS9CoRePFUwttKFstpt26WYTdidCKf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXphKYdB1v53CxubW9k5xt7S3f3B4VD4+aZsk04z7LJGJ7oTUcCkU91Gg5J1UcxqHkj+G4+bcf3zi2ohEPeAk5UFMh0pEglG0kt8kt6TWL1fcqrsAWSdeTiqQo9Uvf/UGCctirpBJakzXc1MMplSjYJLPSr3M8JSyMR3yrqWKxtwE08WxM3JhlQGJEm1LIVmovyemNDZmEoe2M6Y4MqveXPzP62YY3QRTodIMuWLLRVEmCSZk/jkZCM0ZyokllGlhbyVsRDVlaPMp2RC81ZfXSbtW9a6q9ft6pVHL4yjCGZzDJXhwDQ24gxb4wEDAM7zCm6OcF+fd+Vi2Fpx85hT+wPn8ATL/jZc=</latexit>

C = 2
<latexit sha1_base64="+eGs8d2LNNwDQ5d02dmNZk9LU9Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUU9S6MVjBVMLbSib7aZdutmE3YlQSn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9P2ibJNOM+S2SiOyE1XArFfRQoeSfVnMah5I/huDn3H5+4NiJRDzhJeRDToRKRYBSt5DfJLan1yxW36i5A1omXkwrkaPXLX71BwrKYK2SSGtP13BSDKdUomOSzUi8zPKVsTIe8a6miMTfBdHHsjFxYZUCiRNtSSBbq74kpjY2ZxKHtjCmOzKo3F//zuhlGN8FUqDRDrthyUZRJggmZf04GQnOGcmIJZVrYWwkbUU0Z2nxKNgRv9eV10q5Vvatq/b5eadTyOIpwBudwCR5cQwPuoAU+MBDwDK/w5ijnxXl3PpatBSefOYU/cD5/ADSFjZg=</latexit>

C > 2

Function approximation

Ø Assume some correct labeling function so that, for all

Ø This is unknown to the learner, and is precisely what the learning is trying to figure out to make
predictions as

5

<latexit sha1_base64="ri5XlgzU55UZt2rz97S4t7PtROA=">AAACCHicbVBNS8NAEJ34WetX1KMHF4vgqSSlqHgqePFYwX5IE8pmu2mXbrJhd6OU0KMX/4oXD4p49Sd489+4bXPQ1gcDj/dmmJkXJJwp7Tjf1tLyyuraemGjuLm1vbNr7+03lUgloQ0iuJDtACvKWUwbmmlO24mkOAo4bQXDq4nfuqdSMRHf6lFC/Qj3YxYygrWRuvZRiC6RRzDP2mPkSdYfaCyleJhpd+OuXXLKzhRokbg5KUGOetf+8nqCpBGNNeFYqY7rJNrPsNSMcDoueqmiCSZD3KcdQ2McUeVn00fG6MQoPRQKaSrWaKr+nshwpNQoCkxnhPVAzXsT8T+vk+rwws9YnKSaxmS2KEw50gJNUkE9JinRfGQIJpKZWxEZYImJNtkVTQju/MuLpFkpu2fl6k21VKvkcRTgEI7hFFw4hxpcQx0aQOARnuEV3qwn68V6tz5mrUtWPnMAf2B9/gAMXplY</latexit>

f : X → Y
<latexit sha1_base64="8VP0/IVDU56QPwB38CRfUSxlad8=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU5INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTXjrZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1Yp3Xak1a+V6NY+jAOdwAVfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AzZuM5g==</latexit>

i

<latexit sha1_base64="UIdYH9BQC/4DME7VwftizJY68qw=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkFPUiFLx4rGBroQ1hs920Szcf7G6kIeSvePGgiFf/iDf/jds2B219MPB4b4aZeV7MmVSW9W2UNja3tnfKu5W9/YPDI/O42pNRIgjtkohHou9hSTkLaVcxxWk/FhQHHqeP3vR27j8+USFZFD6oNKZOgMch8xnBSkuuWU1dhm6QX8+Gno9mucsuXLNmNawF0DqxC1KDAh3X/BqOIpIENFSEYykHthUrJ8NCMcJpXhkmksaYTPGYDjQNcUClky1uz9G5VkbIj4SuUKGF+nsiw4GUaeDpzgCriVz15uJ/3iBR/rWTsTBOFA3JcpGfcKQiNA8CjZigRPFUE0wE07ciMsECE6XjqugQ7NWX10mv2bAvG637Vq3dLOIowymcQR1suII23EEHukBgBs/wCm9GbrwY78bHsrVkFDMn8AfG5w9Og5NJ</latexit>

yi = f(xi)

<latexit sha1_base64="tHCymTdmsY+CNUKaX+Pvkd1TYO0=">AAACFnicbZDLSsNAFIYn9VbrLerSzWAR6sKSlKJuhIIblxXsBZoQJtNJM3RyYWYihpCncOOruHGhiFtx59s4TbPQ1h8GvvnPOcyc340ZFdIwvrXKyura+kZ1s7a1vbO7p+8f9EWUcEx6OGIRH7pIEEZD0pNUMjKMOUGBy8jAnV7P6oN7wgWNwjuZxsQO0CSkHsVIKsvRzywfySzNHQqvYMFe3sgs14MPyjtVpv/r6uh1o2kUgstgllAHpbqO/mWNI5wEJJSYISFGphFLO0NcUsxIXrMSQWKEp2hCRgpDFBBhZ8VaOTxRzhh6EVcnlLBwf09kKBAiDVzVGSDpi8XazPyvNkqkd2lnNIwTSUI8f8hLGJQRnGUEx5QTLFmqAGFO1V8h9hFHWKokayoEc3HlZei3muZ5s33brndaZRxVcASOQQOY4AJ0wA3ogh7A4BE8g1fwpj1pL9q79jFvrWjlzCH4I+3zB1kmnis=</latexit>

ŷi = f̂(xi) = h(xi)

Ø Of course, the goal is to make predictions on novel inputs (unseen instances), aka generalization

Classification example

6

1.2. Supervised learning 3

(a) (b)

Figure 1.1 Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases.
Right: Representing the training data as an N ×D design matrix. Row i represents the feature vector xi.
The last column is the label, yi ∈ {0, 1}. Based on a figure by Leslie Kaelbling.

1.2 Supervised learning

We begin our investigation of machine learning by discussing supervised learning, which is the
form of ML most widely used in practice.

1.2.1 Classification

In this section, we discuss classification. Here the goal is to learn a mapping from inputs x
to outputs y, where y ∈ {1, . . . , C}, with C being the number of classes. If C = 2, this is
called binary classification (in which case we often assume y ∈ {0, 1}); if C > 2, this is called
multiclass classification. If the class labels are not mutually exclusive (e.g., somebody may be
classified as tall and strong), we call it multi-label classification, but this is best viewed as
predicting multiple related binary class labels (a so-called multiple output model). When we
use the term “classification”, we will mean multiclass classification with a single output, unless
we state otherwise.
One way to formalize the problem is as function approximation. We assume y = f(x) for

some unknown function f , and the goal of learning is to estimate the function f given a labeled
training set, and then to make predictions using ŷ = f̂(x). (We use the hat symbol to denote
an estimate.) Our main goal is to make predictions on novel inputs, meaning ones that we have
not seen before (this is called generalization), since predicting the response on the training set
is easy (we can just look up the answer).

1.2.1.1 Example

As a simple toy example of classification, consider the problem illustrated in Figure 1.1(a). We
have two classes of object which correspond to labels 0 and 1. The inputs are colored shapes.
These have been described by a set of D features or attributes, which are stored in an N ×D
design matrix X, shown in Figure 1.1(b). The input features x can be discrete, continuous or a
combination of the two. In addition to the inputs, we have a vector of training labels y.
In Figure 1.1, the test cases are a blue crescent, a yellow circle and a blue arrow. None of

these have been seen before. Thus we are required to generalize beyond the training set. A

1.2. Supervised learning 3

(a) (b)

Figure 1.1 Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases.
Right: Representing the training data as an N ×D design matrix. Row i represents the feature vector xi.
The last column is the label, yi ∈ {0, 1}. Based on a figure by Leslie Kaelbling.

1.2 Supervised learning

We begin our investigation of machine learning by discussing supervised learning, which is the
form of ML most widely used in practice.

1.2.1 Classification

In this section, we discuss classification. Here the goal is to learn a mapping from inputs x
to outputs y, where y ∈ {1, . . . , C}, with C being the number of classes. If C = 2, this is
called binary classification (in which case we often assume y ∈ {0, 1}); if C > 2, this is called
multiclass classification. If the class labels are not mutually exclusive (e.g., somebody may be
classified as tall and strong), we call it multi-label classification, but this is best viewed as
predicting multiple related binary class labels (a so-called multiple output model). When we
use the term “classification”, we will mean multiclass classification with a single output, unless
we state otherwise.
One way to formalize the problem is as function approximation. We assume y = f(x) for

some unknown function f , and the goal of learning is to estimate the function f given a labeled
training set, and then to make predictions using ŷ = f̂(x). (We use the hat symbol to denote
an estimate.) Our main goal is to make predictions on novel inputs, meaning ones that we have
not seen before (this is called generalization), since predicting the response on the training set
is easy (we can just look up the answer).

1.2.1.1 Example

As a simple toy example of classification, consider the problem illustrated in Figure 1.1(a). We
have two classes of object which correspond to labels 0 and 1. The inputs are colored shapes.
These have been described by a set of D features or attributes, which are stored in an N ×D
design matrix X, shown in Figure 1.1(b). The input features x can be discrete, continuous or a
combination of the two. In addition to the inputs, we have a vector of training labels y.
In Figure 1.1, the test cases are a blue crescent, a yellow circle and a blue arrow. None of

these have been seen before. Thus we are required to generalize beyond the training set. A

Cartoon labeled training examples of
colored shapes, along with 3 unlabeled
test cases. Image from MLPP.

As a design matrix and labels. Image from
MLPP.

<latexit sha1_base64="eekYqbnSq+GmGxVAg76bqNp9XVg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzSxBP6JjyUPOqLFSNxsEIenNh+WKW3WXIJvEy0kFcrSG5a/BKGZphNIwQbXue25i/Iwqw5nAeWmQakwom9Ix9i2VNELtZ8tz5+TKKiMSxsqWNGSp/p7IaKT1LApsZ0TNRK97C/E/r5+a8NbPuExSg5KtFoWpICYmi9/JiCtkRswsoUxxeythE6ooMzahkg3BW395k3RqVa9RrT/UK81aHkcRLuASrsGDG2jCPbSgDQym8Ayv8OYkzovz7nysWgtOPnMOf+B8/gD8eY9N</latexit>

X

<latexit sha1_base64="X477qhLcofLF+wNHPayV35djhVY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4rmFZoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKfj6dDcSgWnPr7gJknXgFqUGB9qD61R8mLIu5QiapMT3PTTHIqUbBJJ9V+pnhKWUTOuI9SxWNuQnyxbEzcmGVIYkSbUshWai/J3IaGzONQ9sZUxybVW8u/uf1MoxuglyoNEOu2HJRlEmCCZl/ToZCc4ZyagllWthbCRtTTRnafCo2BG/15XXSadS9q3rzvllrNYo4ynAG53AJHlxDC+6gDT4wEPAMr/DmKOfFeXc+lq0lp5g5hT9wPn8AJWOO3g==</latexit>yi

Predicting test cases requires generalization beyond training set

Blue crescent may be “yes”, but the other two are hard to guess. So, it is desirable to return a
probability.

Probabilistic prediction

Ø Denote the probability distribution over possible labels, given the input vector and training data

7

<latexit sha1_base64="2m1d7WyEDEjtDyZ7dRbgu1r5MCs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsN+3SzSbsTsQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+55FrI2L1gNOE+xEdKREKRtFKnawfhORpNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx7oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5r+TodCcoZxaQpkW9lbCxlRThjahkg3BW315nbRrVe+qWr+vVxq1PI4inME5XIIH19CAO2hCCxhM4Ble4c1JnBfn3flYthacfOYU/sD5/AEtKI9t</latexit>x
<latexit sha1_base64="tMfQ7uaNxz+ry3W/9QIt6clGaJU=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FPXisYD+gDWWy3bRLN5uwuxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRVmLxiJW3QA1E1yyluFGsG6iGEaBYJ1gcjv3O09MaR7LRzNNmB/hSPKQUzRW6vQpiuxuNihX3Kq7AFknXk4qkKM5KH/1hzFNIyYNFah1z3MT42eoDKeCzUr9VLME6QRHrGepxIhpP1ucOyMXVhmSMFa2pCEL9fdEhpHW0yiwnRGasV715uJ/Xi814Y2fcZmkhkm6XBSmgpiYzH8nQ64YNWJqCVLF7a2EjlEhNTahkg3BW315nbRrVe+qWn+oVxq1PI4inME5XIIH19CAe2hCCyhM4Ble4c1JnBfn3flYthacfOYU/sD5/AFLcY+B</latexit>

D
<latexit sha1_base64="HY+xoFeg/IYBtz2YiSfOdpBEsxY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxCBSlJKeqyoAuXFewDmlAm00k7dDIJMxMxxuCvuHGhiFv/w51/47TNQlsPXDiccy/33uNFjEplWd9GYWl5ZXWtuF7a2Nza3jF399oyjAUmLRyyUHQ9JAmjnLQUVYx0I0FQ4DHS8caXE79zR4SkIb9VSUTcAA059SlGSkt98yCqJI+p4/nwPjt1MGLpVXbSN8tW1ZoCLhI7J2WQo9k3v5xBiOOAcIUZkrJnW5FyUyQUxYxkJSeWJEJ4jIakpylHAZFuOr0+g8daGUA/FLq4glP190SKAimTwNOdAVIjOe9NxP+8Xqz8CzelPIoV4Xi2yI8ZVCGcRAEHVBCsWKIJwoLqWyEeIYGw0oGVdAj2/MuLpF2r2mfV+k293KjlcRTBITgCFWCDc9AA16AJWgCDB/AMXsGb8WS8GO/Gx6y1YOQz++APjM8f1/GUyg==</latexit>

p(y|x,D)

Ø This is generally a vector of length , but suffices to return a number for binary classification

Ø We can compute our “best guess” as to the true label as the most probable class label

This is called the MAP (maximum a posteriori) estimate.

<latexit sha1_base64="bhWXVfxuX2gLnF3sUGLlzUDYgIE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXDxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Amm9YXfeUKleSQfzCxGP6RjyUecUWOlZn1QLLlldwmySbyMlCBDY1D86g8jloQoDRNU657nxsZPqTKcCZwX+onGmLIpHWPPUklD1H66PHROrqwyJKNI2ZKGLNXfEykNtZ6Fge0MqZnodW8h/uf1EjO681Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2pWyd1OuNqulWiWLIw8XcAnX4MEt1OAeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/lAOMwA==</latexit>

C

<latexit sha1_base64="R7OaXvzYq5mKrzA9u4AwOZvlnlw=">AAACUHicbVFNaxsxFNS6aZO6X25z7EXEBBxYzG4ITS6FQHLoMYU6CVjGvJW1tohWu0hvgxdVP7GX3PI7csmhoZUdF5qPAaHRzHs8aZRVSlpMkuuo9WLt5av1jdftN2/fvf/Q+fjp1Ja14WLAS1Wa8wysUFKLAUpU4rwyAopMibPs4mjhn10KY2Wpf2BTiVEBUy1zyQGDNO5M2QzQNZ5+pbOeY1lO534nHJZy7h9IKObowEwLmPux45RJTZlLY6YmJdr4iHlPWcziqtf8XPXFjINyx35n3Okm/WQJ+pSkK9IlK5yMO1dsUvK6EBq5AmuHaVLhKIxHyZXwbVZbUQG/gKkYBqqhEHbkloF4uh2UCc1LE5ZGulT/73BQWNsUWagsAGf2sbcQn/OGNeYHIyd1VaPQ/H5QXiuKJV2kSyfSCI6qCQS4keGulM/AAMfwB+0QQvr4yU/J6W4//dLf+77XPdxdxbFBPpMt0iMp2SeH5Bs5IQPCyS9yQ36Tu+gquo3+tKL70n872SQP0Gr/BYaLsug=</latexit>

ŷ = h(x) = f̂(x) = argmaxc→{1,...,C} p(y|x,D)

Measure of success, risk, and empirical risk

Ø Let us denote the probability distribution over by

Ø The error of is the probability to draw a random instance such that

8

<latexit sha1_base64="JX9tJJiEsfIVo6U1ogIoyhGC6i0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipOR6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp619Vas1apu3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBy32M4w==</latexit>

h

<latexit sha1_base64="T6Nhmm+2qhsRFF7xLJtw9unL6Ec=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2il7oBRmfXyYbXm1t0FyDrxClKDAq1h9WswilkacYVMUmP6npugn1GNgkmeVwap4QllUzrmfUsVjbjxs8W5ObmwyoiEsbalkCzU3xMZjYyZRYHtjChOzKo3F//z+imGt34mVJIiV2y5KEwlwZjMfycjoTlDObOEMi3srYRNqKYMbUIVG4K3+vI66VzVvet646FRa7pFHGU4g3O4BA9uoAn30II2MJjCM7zCm5M4L86787FsLTnFzCn8gfP5A2k7j5M=</latexit>

X
<latexit sha1_base64="w2waHU/EqF708LMyWgLbS/NVZtA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKnT6jMnuYDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlev1u5rlYabx1GEMziHS/DgGhpwB01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP2Gij44=</latexit>

S
<latexit sha1_base64="AEkTNdjVEJE/l9Qfwbk0NpuiQGg=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgqiRS1GXBjcuK9gFNKJPppB06k4SZiVhD8FfcuFDErf/hzr9x2mahrQcuHM65l3vvCRLOlHacb2tpeWV1bb20Ud7c2t7Ztff2WypOJaFNEvNYdgKsKGcRbWqmOe0kkmIRcNoORlcTv31PpWJxdKfHCfUFHkQsZARrI/Xsw8wLQvSQI08xgTyCeXab9+yKU3WmQIvELUgFCjR69pfXj0kqaKQJx0p1XSfRfoalZoTTvOyliiaYjPCAdg2NsKDKz6bX5+jEKH0UxtJUpNFU/T2RYaHUWASmU2A9VPPeRPzP66Y6vPQzFiWpphGZLQpTjnSMJlGgPpOUaD42BBPJzK2IDLHERJvAyiYEd/7lRdI6q7rn1dpNrVJ3ijhKcATHcAouXEAdrqEBTSDwCM/wCm/Wk/VivVsfs9Ylq5g5gD+wPn8A8FiU2g==</latexit>

x → S
<latexit sha1_base64="u11gMMDqTpmyE75xz1bkclq8PYk=">AAACA3icbVDLSgMxFL1TX7W+Rt3pJliEuikzUtRlwY3LCvYBnVIyaaYNzWTGJCOWoeDGX3HjQhG3/oQ7/8a0HURbD1w4Oedecu/xY86UdpwvK7e0vLK6ll8vbGxube/Yu3sNFSWS0DqJeCRbPlaUM0HrmmlOW7GkOPQ5bfrDy4nfvKNSsUjc6FFMOyHuCxYwgrWRuvbBoJR6foDuxyfIE/QWBT/vrl10ys4UaJG4GSlChlrX/vR6EUlCKjThWKm268S6k2KpGeF0XPASRWNMhrhP24YKHFLVSac3jNGxUXooiKQpodFU/T2R4lCpUeibzhDrgZr3JuJ/XjvRwUUnZSJONBVk9lGQcKQjNAkE9ZikRPORIZhIZnZFZIAlJtrEVjAhuPMnL5LGadk9K1euK8Wqk8WRh0M4ghK4cA5VuIIa1IHAAzzBC7xaj9az9Wa9z1pzVjazD39gfXwD6O2WXg==</latexit>

h(x) →= f(x)

This is called the generalization error, risk or true error of
<latexit sha1_base64="JX9tJJiEsfIVo6U1ogIoyhGC6i0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipOR6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp619Vas1apu3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBy32M4w==</latexit>

h

<latexit sha1_base64="ubqBpCVgbR7hPjTCjnrSMWM6020=">AAACPHicbVDNS8MwHE39dn5VPXoJDmGCjFZERRAGXjx4mMy5QVtKmqUuLE1rkoqj9A/z4h/hzZMXD4p49Ww6q/j1IPDy3u9H8l6QMCqVZd0bY+MTk1PTM7OVufmFxSVzeeVcxqnApI1jFotugCRhlJO2ooqRbiIIigJGOsHgqPA7V0RIGvMzNUyIF6ELTkOKkdKSb7ZO/CxzMWJZK8+3QpjX+pvw4BC6EVL9IMiaeeEHIbzOXUmjz0no9GulvAldTi5h+HX3fLNq1a0R4F9il6QKSjR9887txTiNCFeYISkd20qUlyGhKGYkr7ipJAnCA3RBHE05ioj0slH4HG5opQfDWOjDFRyp3zcyFEk5jAI9WWSSv71C/M9zUhXuexnlSaoIxx8PhSmDKoZFk7BHBcGKDTVBWFD9V4j7SCCsdN8VXYL9O/Jfcr5dt3frO6c71YZV1jED1sA6qAEb7IEGOAZN0AYY3IAH8ASejVvj0XgxXj9Gx4xyZxX8gPH2DoBwrZ0=</latexit>

LS,f (h) := Px→S [h(x) →= f(x)]

Since the learner does not know or , learner cannot calculate the true error. But can compute
the error incurred over the training set

<latexit sha1_base64="w2waHU/EqF708LMyWgLbS/NVZtA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKnT6jMnuYDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlev1u5rlYabx1GEMziHS/DgGhpwB01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP2Gij44=</latexit>

S
<latexit sha1_base64="fZLWzifGhUXsrZamsqF6/DlliIA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavU3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyHWM4Q==</latexit>

f

<latexit sha1_base64="fUMpaU0m5KA3d5iMixHqw442kXM=">AAACKnicbVBNSwMxEM36bf2qevQyWIR6KbsiKoKg6MGDiIJVoVmWbJq1odnsmmTFEvb3ePGvePGgiFd/iGntwa8HA4/3ZpiZF+eCa+P7b97I6Nj4xOTUdGVmdm5+obq4dKmzQlHWpJnI1HVMNBNcsqbhRrDrXDGSxoJdxd3Dvn91x5TmmbwwvZyFKbmRPOGUGCdF1YOTyGJKhD0qy3pnHXb3ACeKUIstB8wltE5D2IVO3eI4gfsy4uuAJbuFXsRxWdrTMqrW/IY/APwlwZDU0BBnUfUZtzNapEwaKojWrcDPTWiJMpwKVlZwoVlOaJfcsJajkqRMh3bwaglrTmlDkilX0sBA/T5hSap1L41dZ0pMR//2+uJ/XqswyU5oucwLwyT9WpQUAkwG/dygzRWjRvQcIVRxdyvQDnFJGZduxYUQ/H75L7ncaARbjc3zzdq+P4xjCq2gVVRHAdpG++gYnaEmougBPaEX9Oo9es/em/f+1TriDWeW0Q94H5+/NqWf</latexit>

LD(h) :=
{i → [N] : h(xi) ↑= yi}

N

<latexit sha1_base64="t9/9ULDq5jgKG/bPcZjYJ5OwLCc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FPXisYD+gDWWz3bRLN5uwOxFK6I/w4kERr/4eb/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrdfqMyuxuNihX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx7oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uwxs/EypJkSu2XBSmkmBM5r+TodCcoZxaQpkW9lbCxlRThjahkg3BW315nbSvql69WnuoVRpuHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gBK149/</latexit>

D

This is called the empirical error or empirical risk of
<latexit sha1_base64="JX9tJJiEsfIVo6U1ogIoyhGC6i0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipOR6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp619Vas1apu3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBy32M4w==</latexit>

h

Overfitting or memorizing the training samples

9

36 A Gentle Start

predict the taste of a papaya on the basis of its softness and color. Consider a
sample as depicted in the following:

Assume that the probability distribution D is such that instances are distributed
uniformly within the gray square and the labeling function, f , determines the
label to be 1 if the instance is within the inner blue square, and 0 otherwise. The
area of the gray square in the picture is 2 and the area of the blue square is 1.
Consider the following predictor:

hS(x) =

(
yi if 9i 2 [m] s.t. xi = x

0 otherwise.
(2.3)

While this predictor might seem rather artificial, in Exercise 1 we show a natural
representation of it using polynomials. Clearly, no matter what the sample is,
LS(hS) = 0, and therefore this predictor may be chosen by an ERM algorithm (it
is one of the empirical-minimum-cost hypotheses; no classifier can have smaller
error). On the other hand, the true error of any classifier that predicts the label
1 only on a finite number of instances is, in this case, 1/2. Thus, LD(hS) = 1/2.
We have found a predictor whose performance on the training set is excellent,
yet its performance on the true “world” is very poor. This phenomenon is called
overfitting. Intuitively, overfitting occurs when our hypothesis fits the training
data “too well” (perhaps like the everyday experience that a person who provides
a perfect detailed explanation for each of his single actions may raise suspicion).

2.3 Empirical Risk Minimization with Inductive Bias

We have just demonstrated that the ERM rule might lead to overfitting. Rather
than giving up on the ERM paradigm, we will look for ways to rectify it. We will
search for conditions under which there is a guarantee that ERM does not overfit,
namely, conditions under which when the ERM predictor has good performance
with respect to the training data, it is also highly likely to perform well over the
underlying data distribution.

A common solution is to apply the ERM learning rule over a restricted search
space. Formally, the learner should choose in advance (before seeing the data) a
set of predictors. This set is called a hypothesis class and is denoted by H. Each
h 2 H is a function mapping from X to Y. For a given class H, and a training
sample, S, the ERMH learner uses the ERM rule to choose a predictor h 2 H,

Ø Probability distribution is such that instances are distributed
uniformly within the gray square

Ø Labeling function, , determines the label to be 1 if the instance
is within the inner blue square, and 0 otherwise.

<latexit sha1_base64="w2waHU/EqF708LMyWgLbS/NVZtA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKnT6jMnuYDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOyMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+e9kKDRnKKeWUKaFvZWwMdWUoU2oZEPwVl9eJ+2rqlev1u5rlYabx1GEMziHS/DgGhpwB01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP2Gij44=</latexit>

S

<latexit sha1_base64="fZLWzifGhUXsrZamsqF6/DlliIA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavU3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyHWM4Q==</latexit>

f

<latexit sha1_base64="7Uk4kzU8katAj7AE6y++gptTGW0=">AAACcXicbVFda9RAFJ3Erxo/un68iCiXLkrFEpJStC+Fgj74WMFtCzshTGZvdodOJmFmUrMMeff3+dY/4Yt/wNltFG29MHA45547d84UjRTGJslFEN64eev2nY270b37Dx5ujh49PjZ1qzlOeC1rfVowg1IonFhhJZ42GllVSDwpzj6s9JNz1EbU6otdNphVbK5EKTiznspH36JF7hzlTLqPfd9vO1qU0PVvDiJa4Fwox/1w00fLXMBroBY760QJPVDs/HYGBFChYFpldFBNbGOvd95wAN0OpVEC8Mdb2wXqr8JgH0cU1ez3/CgfjZM4WRdcB+kAxmSoo3z0nc5q3laoLJfMmGmaNDZzTFvBJfYRbQ02jJ+xOU49VKxCk7l1Yj288swMylr7oyys2b8djlXGLKvCd1bMLsxVbUX+T5u2ttzPnFBNa1Hxy4vKVoKtYRU/zIRGbuXSA8a18LsCXzDNuPWftAohvfrk6+B4N07fxXuf98aHyRDHBnlOtsg2Scl7ckg+kSMyIZz8CJ4GL4KXwc/wWQjh1mVrGAyeJ+SfCt/+AppEuhY=</latexit>

hD(x) =

{
yi if →i ↑ [m] s.t. xi = x,

0 otherwise.

<latexit sha1_base64="PX9RwqXwKNAcVtj46giaB4iibaY=">AAACVHicbVFPS8MwHE07/1adVY9eokOYIKMdQ70IAy8ePEx0OljHSLN0C0vTmqTiCP2QehD8JF48mM4h6vYg8Hjv/Uh+L2HKqFSe927ZpaXlldW1dWdjc6u87e7s3sskE5i0ccIS0QmRJIxy0lZUMdJJBUFxyMhDOL4s/IcnIiRN+J2apKQXoyGnEcVIGanvjp3rvg5ipEYYMX2bn0R5dXTsXMCpFoa6lQcHQUiH1VH1+Tjg5BFGBTHKwlRhXvg/diQQ1n6u63nNcfpuxat5U8B54s9IBczQ6ruvwSDBWUy4wgxJ2fW9VPU0EopiRnInyCRJER6jIekaylFMZE9PS8nhkVEGMEqEOVzBqfp7QqNYykkcmmSxhPzvFeIir5up6LynKU8zRTj+vijKGFQJLBqGAyoIVmxiCMKCmrdCPEKmCGX+oSjB/7/yPLmv1/zTWuOmUWl6szrWwD44BFXggzPQBFegBdoAgxfwYQHLst6sT7tkL39HbWs2swf+wC5/AffVrsU=</latexit>

LS,f (h) = P
(
h(x) →= f(x)

)
= P

(
f(x) = 1

)
=

1

2
.

Suppose we use a predictor with

The true error with finite instances is,

<latexit sha1_base64="HF7JsEND4AqBgQ7Tjwrhhrrih+Q=">AAACAnicbVDLSsNAFJ3UV42vqCtxM1iEuimJFHUjFHThwkUF+4A2hMl00g6dTMLMRCghuPFX3LhQxK1f4c6/cdJmoa0HLhzOuZd77/FjRqWy7W+jtLS8srpWXjc3Nre2d6zdvbaMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/PFV7nceiJA04vdqEhM3RENOA4qR0pJnHZi3XtoPkRphxNLrLKuOTuAltE3Tsyp2zZ4CLhKnIBVQoOlZX/1BhJOQcIUZkrLn2LFyUyQUxYxkZj+RJEZ4jIakpylHIZFuOn0hg8daGcAgErq4glP190SKQiknoa8782PlvJeL/3m9RAUXbkp5nCjC8WxRkDCoIpjnAQdUEKzYRBOEBdW3QjxCAmGlU8tDcOZfXiTt05pzVqvf1SsNu4ijDA7BEagCB5yDBrgBTdACGDyCZ/AK3own48V4Nz5mrSWjmNkHf2B8/gALcJU1</latexit>

LD(h) = 0

Areas of the gray square has area 2 and
the inner blue square has area 1

Classification examples

Ø Iris flowers: Setosa, Versicolor, and virginica

10

6 Chapter 1. Introduction

(a) (b) (c)

Figure 1.3 Three types of iris flowers: setosa, versicolor and virginica. Source: http://www.statlab.u
ni-heidelberg.de/data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.

se
pa

l le
ng

th

sepal length

se
pa

l w
idt

h
pe

ta
l le

ng
th

pe
ta

l w
idt

h

sepal width petal length petal width

Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The o! diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three di!erent kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but di"cult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length

Images from MLPP

6 Chapter 1. Introduction

(a) (b) (c)

Figure 1.3 Three types of iris flowers: setosa, versicolor and virginica. Source: http://www.statlab.u
ni-heidelberg.de/data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.

se
pa

l le
ng

th

sepal length

se
pa

l w
idt

h
pe

tal
 le

ng
th

pe
tal

 w
idt

h

sepal width petal length petal width

Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The o! diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three di!erent kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but di"cult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length

Feature extraction:
Features chosen by humans

• 4 features and 3 class labels
• Assume, binary (0/1) features, we get

2^4 = 16 feature combinations and
3^16, i.e., about 430k potential
combination of rules. This is the
hypothesis space.

Hypothesis space:

Classification example

MNIST digits

11

1.2. Supervised learning 7

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(a)

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(b)

Figure 1.5 (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted
randomly. Classification performance is identical on both versions of the data (assuming the training data
is permuted in an identical way). Figure generated by shuffledDigitsDemo.

or width is below some threshold. However, distinguishing versicolor from virginica is slightly
harder; any decision will need to be based on at least two features. (It is always a good idea
to perform exploratory data analysis, such as plotting the data, before applying a machine
learning method.)

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not pre-
processed the data. We might want to classify the image as a whole, e.g., is it an indoors or
outdoors scene? is it a horizontal or vertical photo? does it contain a dog or not? This is called
image classification.
In the special case that the images consist of isolated handwritten letters and digits, for

example, in a postal or ZIP code on a letter, we can use classification to perform handwriting
recognition. A standard dataset used in this area is known as MNIST, which stands for “Modified
National Institute of Standards”5. (The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains
60,000 training images and 10,000 test images of the digits 0 to 9, as written by various people.
The images are size 28× 28 and have grayscale values in the range 0 : 255. See Figure 1.5(a) for
some example images.
Many generic classification methods ignore any structure in the input features, such as spatial

layout. Consequently, they can also just as easily handle data that looks like Figure 1.5(b), which
is the same data except we have randomly permuted the order of all the features. (You will
verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

5. Available from http://yann.lecun.com/exdb/mnist/.

1.2. Supervised learning 7

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(a)

true class = 7 true class = 2 true class = 1

true class = 0 true class = 4 true class = 1

true class = 4 true class = 9 true class = 5

(b)

Figure 1.5 (a) First 9 test MNIST gray-scale images. (b) Same as (a), but with the features permuted
randomly. Classification performance is identical on both versions of the data (assuming the training data
is permuted in an identical way). Figure generated by shuffledDigitsDemo.

or width is below some threshold. However, distinguishing versicolor from virginica is slightly
harder; any decision will need to be based on at least two features. (It is always a good idea
to perform exploratory data analysis, such as plotting the data, before applying a machine
learning method.)

Image classification and handwriting recognition

Now consider the harder problem of classifying images directly, where a human has not pre-
processed the data. We might want to classify the image as a whole, e.g., is it an indoors or
outdoors scene? is it a horizontal or vertical photo? does it contain a dog or not? This is called
image classification.

In the special case that the images consist of isolated handwritten letters and digits, for
example, in a postal or ZIP code on a letter, we can use classification to perform handwriting
recognition. A standard dataset used in this area is known as MNIST, which stands for “Modified
National Institute of Standards”5. (The term “modified” is used because the images have been
preprocessed to ensure the digits are mostly in the center of the image.) This dataset contains
60,000 training images and 10,000 test images of the digits 0 to 9, as written by various people.
The images are size 28× 28 and have grayscale values in the range 0 : 255. See Figure 1.5(a) for
some example images.

Many generic classification methods ignore any structure in the input features, such as spatial
layout. Consequently, they can also just as easily handle data that looks like Figure 1.5(b), which
is the same data except we have randomly permuted the order of all the features. (You will
verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

5. Available from http://yann.lecun.com/exdb/mnist/.

Features: 28×28 grayscale values in the range 0:255 features permuted randomly

Generic classification methods ignore any structure in the input features, such as spatial
Layout. Consequently, they can easily handle data that looks like picture in the right

Regression example

12

For example, suppose you want to know if money makes people happy, so you down!
load the Better Life Index data from the OECD’s website and stats about gross domes!
tic product (GDP) per capita from the IMF’s website. Then you join the tables and
sort by GDP per capita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?
Country GDP per capita (USD) Life satisfaction
Hungary 12,240 4.9
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 7.3
United States 55,805 7.2

Let’s plot the data for these countries (Figure 1-17).

Figure 1-17. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random), it
looks like life satisfaction goes up more or less linearly as the country’s GDP per cap!
ita increases. So you decide to model life satisfaction as a linear function of GDP per
capita. This step is called model selection: you selected a linear model of life satisfac!
tion with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model
life_satisfaction = θ0 + θ1 " GDP_per_capita

Types of Machine Learning Systems | 19

For example, suppose you want to know if money makes people happy, so you down!
load the Better Life Index data from the OECD’s website and stats about gross domes!
tic product (GDP) per capita from the IMF’s website. Then you join the tables and
sort by GDP per capita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?
Country GDP per capita (USD) Life satisfaction
Hungary 12,240 4.9
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 7.3
United States 55,805 7.2

Let’s plot the data for these countries (Figure 1-17).

Figure 1-17. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random), it
looks like life satisfaction goes up more or less linearly as the country’s GDP per cap!
ita increases. So you decide to model life satisfaction as a linear function of GDP per
capita. This step is called model selection: you selected a linear model of life satisfac!
tion with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model
life_satisfaction = θ0 + θ1 " GDP_per_capita

Types of Machine Learning Systems | 19

For example, suppose you want to know if money makes people happy, so you down!
load the Better Life Index data from the OECD’s website and stats about gross domes!
tic product (GDP) per capita from the IMF’s website. Then you join the tables and
sort by GDP per capita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?
Country GDP per capita (USD) Life satisfaction
Hungary 12,240 4.9
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 7.3
United States 55,805 7.2

Let’s plot the data for these countries (Figure 1-17).

Figure 1-17. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random), it
looks like life satisfaction goes up more or less linearly as the country’s GDP per cap!
ita increases. So you decide to model life satisfaction as a linear function of GDP per
capita. This step is called model selection: you selected a linear model of life satisfac!
tion with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model
life_satisfaction = θ0 + θ1 " GDP_per_capita

Types of Machine Learning Systems | 19

Simple linear model:

5 By convention, the Greek letter θ (theta) is frequently used to represent model parameters.

This model has two model parameters, θ0 and θ1.5 By tweaking these parameters, you
can make your model represent any linear function, as shown in Figure 1-18.

Figure 1-18. A few possible linear models

Before you can use your model, you need to define the parameter values θ0 and θ1.
How can you know which values will make your model perform best? To answer this
question, you need to specify a performance measure. You can either define a utility
function (or !tness function) that measures how good your model is, or you can define
a cost function that measures how bad it is. For Linear Regression problems, people
typically use a cost function that measures the distance between the linear model’s
predictions and the training examples; the objective is to minimize this distance.

This is where the Linear Regression algorithm comes in: you feed it your training
examples, and it finds the parameters that make the linear model fit best to your data.
This is called training the model. In our case, the algorithm finds that the optimal
parameter values are θ0 = 4.85 and θ1 = 4.91 ! 10–5.

Confusingly, the same word “model” can refer to a type of model
(e.g., Linear Regression), to a fully speci!ed model architecture (e.g.,
Linear Regression with one input and one output), or to the !nal
trained model ready to be used for predictions (e.g., Linear Regres"
sion with one input and one output, using θ0 = 4.85 and θ1 = 4.91 !
10–5). Model selection consists in choosing the type of model and
fully specifying its architecture. Training a model means running
an algorithm to find the model parameters that will make it best fit
the training data (and hopefully make good predictions on new
data).

20 | Chapter 1: The Machine Learning Landscape

Many possible linear models

6 The prepare_country_stats() function’s definition is not shown here (see this chapter’s Jupyter notebook if
you want all the gory details). It’s just boring pandas code that joins the life satisfaction data from the OECD
with the GDP per capita data from the IMF.

7 It’s OK if you don’t understand all the code yet; we will present Scikit-Learn in the following chapters.

Now the model fits the training data as closely as possible (for a linear model), as you
can see in Figure 1-19.

Figure 1-19. !e linear model that "ts the training data best

You are finally ready to run the model to make predictions. For example, say you
want to know how happy Cypriots are, and the OECD data does not have the answer.
Fortunately, you can use your model to make a good prediction: you look up Cyprus’s
GDP per capita, find $22,587, and then apply your model and find that life satisfac!
tion is likely to be somewhere around 4.85 + 22,587 " 4.91 " 10-5 = 5.96.

To whet your appetite, Example 1-1 shows the Python code that loads the data, pre!
pares it,6 creates a scatterplot for visualization, and then trains a linear model and
makes a prediction.7

Example 1-1. Training and running a linear model using Scikit-Learn

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.linear_model

Load the data
oecd_bli = pd.read_csv("oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv("gdp_per_capita.csv",thousands=',',delimiter='\t',
 encoding='latin1', na_values="n/a")

Types of Machine Learning Systems | 21

Model that fits the training data the best

IMF data

Another regression example

Ø House price prediction

13

2 The original dataset appeared in R. Kelley Pace and Ronald Barry, “Sparse Spatial Autoregressions,” Statistics
& Probability Letters 33, no. 3 (1997): 291–297.

• Popular open data repositories
— UC Irvine Machine Learning Repository
— Kaggle datasets
— Amazon’s AWS datasets

• Meta portals (they list open data repositories)
— Data Portals
— OpenDataMonitor
— Quandl

• Other pages listing many popular open data repositories
— Wikipedia’s list of Machine Learning datasets
— Quora.com
— The datasets subreddit

In this chapter we’ll use the California Housing Prices dataset from the StatLib repos!
itory2 (see Figure 2-1). This dataset is based on data from the 1990 California census.
It is not exactly recent (a nice house in the Bay Area was still affordable at the time),
but it has many qualities for learning, so we will pretend it is recent data. For teaching
purposes I’ve added a categorical attribute and removed a few features.

Figure 2-1. California housing prices

36 | Chapter 2: End-to-End Machine Learning Project

Figure 2-6. Housing info

There are 20,640 instances in the dataset, which means that it is fairly small by
Machine Learning standards, but it’s perfect to get started. Notice that the total_bed
rooms attribute has only 20,433 nonnull values, meaning that 207 districts are missing
this feature. We will need to take care of this later.

All attributes are numerical, except the ocean_proximity field. Its type is object, so it
could hold any kind of Python object. But since you loaded this data from a CSV file,
you know that it must be a text attribute. When you looked at the top five rows, you
probably noticed that the values in the ocean_proximity column were repetitive,
which means that it is probably a categorical attribute. You can find out what cate!
gories exist and how many districts belong to each category by using the
value_counts() method:

>>> housing["ocean_proximity"].value_counts()
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64

Let’s look at the other fields. The describe() method shows a summary of the
numerical attributes (Figure 2-7).

48 | Chapter 2: End-to-End Machine Learning Project

Now let’s load the data using pandas. Once again, you should write a small function
to load the data:

import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
 csv_path = os.path.join(housing_path, "housing.csv")
 return pd.read_csv(csv_path)

This function returns a pandas DataFrame object containing all the data.

Take a Quick Look at the Data Structure
Let’s take a look at the top five rows using the DataFrame’s head() method (see
Figure 2-5).

Figure 2-5. Top !ve rows in the dataset

Each row represents one district. There are 10 attributes (you can see the first 6 in the
screenshot): longitude, latitude, housing_median_age, total_rooms, total_bed
rooms, population, households, median_income, median_house_value, and
ocean_proximity.

The info() method is useful to get a quick description of the data, in particular the
total number of rows, each attribute’s type, and the number of nonnull values (see
Figure 2-6).

Get the Data | 47

Parametric models

Polynomial curve fitting

Model selection:

14

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

!1

0

1

detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN)T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN)T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
⎛t of the target variable for some new value ⎛x of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given ⎛x
there is uncertainty as to the appropriate value for ⎛t. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M⎜

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N⎜

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the

Parametric model:

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
⎛t of the target variable for some new value ⎛x of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given ⎛x
there is uncertainty as to the appropriate value for ⎛t. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M⎜

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N⎜

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the

Error function:

1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

!1

0

1

x

t

M = 1

0 1

!1

0

1

x

t

M = 3

0 1

!1

0

1

x

t

M = 9

0 1

!1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

⎛
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

!1

0

1

x

t

M = 1

0 1

!1

0

1

x

t

M = 3

0 1

!1

0

1

x

t

M = 9

0 1

!1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

⎛
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

!1

0

1

x

t

M = 1

0 1

!1

0

1

x

t

M = 3

0 1

!1

0

1

x

t

M = 9

0 1

!1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

⎛
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

overfittingunderfitting
Images from PRML

Irrelevant Features
As the saying goes: garbage in, garbage out. Your system will only be capable of learn!
ing if the training data contains enough relevant features and not too many irrelevant
ones. A critical part of the success of a Machine Learning project is coming up with a
good set of features to train on. This process, called feature engineering, involves the
following steps:

• Feature selection (selecting the most useful features to train on among existing
features)

• Feature extraction (combining existing features to produce a more useful one—as
we saw earlier, dimensionality reduction algorithms can help)

• Creating new features by gathering new data

Now that we have looked at many examples of bad data, let’s look at a couple of exam!
ples of bad algorithms.

Over!tting the Training Data
Say you are visiting a foreign country and the taxi driver rips you off. You might be
tempted to say that all taxi drivers in that country are thieves. Overgeneralizing is
something that we humans do all too often, and unfortunately machines can fall into
the same trap if we are not careful. In Machine Learning this is called over!tting: it
means that the model performs well on the training data, but it does not generalize
well.

Figure 1-22 shows an example of a high-degree polynomial life satisfaction model
that strongly overfits the training data. Even though it performs much better on the
training data than the simple linear model, would you really trust its predictions?

Figure 1-22. Over!tting the training data

Main Challenges of Machine Learning | 27

Hyperparameter tuning and model selection

Ø How do you select the model parameters?

– best hyperparameter value that produces a model with the lowest generalization error

Ø Holdout validation and Validation set:
– hold out part of the training set to evaluate several candidate models and select the best one
– validation set is too small, then model evaluations will be imprecise:

• you may end up selecting a suboptimal model by mistake
– validation set is too large, then the remaining training set will be much smaller than the full

training set
Ø Cross-validation: Use many small validation sets and average out all model evaluations.

– Disadvantage: multiple training needed

15

ML pipeline for supervised learning

16

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 7

In classification, we define the hypothesis function as

h : X ! Y, (2)

where X = Rm and Y = {1, ..., k} with class labels k. in the special case of binary classifi-
cation, we have Y = {0, 1} (or Y = {�1, 1}).

And in regression, the task is to learn a function

h : Rm
! R. (3)

Given a training set
D = {< x[i], y[i] >, i = 1, . . . , n}, (4)

we denote the ith training example as < x[i], y[i] >. Please note that the superscript [i] is
unrelated to exponentiation, and we choose this rather unconvential notational convention
for reasons that will become apparent later in this lecture. Note that a critical assumption
for (most) machine learning theory is that the training examples are i.i.d. (independent and
indentically distributed).

Machine Learning
Algorithm

New Data Predictive Model Prediction

Labels

Training Data

Figure 8: Rough overview of the supervised learning process.

Labels

Raw
Data

Training Dataset

Test Dataset

Labels

New Data

Labels

Learning
Algorithm

Preprocessing Learning Evaluation Prediction

Final Model

Feature Extraction and Scaling
Feature Selection
Dimensionality Reduction
Sampling

Model Selection
Cross-Validation
Performance Metrics
Hyperparameter Optimization

Figure 9: More detailed ilustration of the supervised learning process.

Stat 479, UWM, Sebastian Raschka

Machine learning scenarios: unsupervised learning

17

Descriptive or unsupervised learning

The goal is to find interesting patterns in data given inputs

Ø Less well-defined as problem as oftentimes it what kind of patterns we are looking for is unclear

• Clustering
Image from HML

• Dimensionality reduction (PCA, CCA)

<latexit sha1_base64="mqfYR/KSsfF6+h9B1r80bh/++uk=">AAACH3icbVDLSsNAFJ3UV62vqEs3g0VwUUpSSnUjFHThSirYBzQhTKaTdujkwcxELCF/4sZfceNCEXHXv3HSRtHWAwOHc+7lzjluxKiQhjHVCiura+sbxc3S1vbO7p6+f9ARYcwxaeOQhbznIkEYDUhbUslIL+IE+S4jXXd8mfnde8IFDYM7OYmI7aNhQD2KkVSSozcsH8kRRiy5SuEFtJLEcj34kDpm5ZvVKhYehFL8CDdW6uhlo2rMAJeJmZMyyNFy9E9rEOLYJ4HEDAnRN41I2gnikmJG0pIVCxIhPEZD0lc0QD4RdjLLl8ITpQygF3L1Agln6u+NBPlCTHxXTWZpxKKXif95/Vh653ZCgyiWJMDzQ17MoAxhVhYcUE6wZBNFEOZU/RXiEeIIS1VpSZVgLkZeJp1a1WxU67f1crOW11EER+AYnAITnIEmuAYt0AYYPIJn8AretCftRXvXPuajBS3fOQR/oE2/APalokY=</latexit>

D = {x1,x2, · · · ,xN}

Figure 1-7. An unlabeled training set for unsupervised learning

Here are some of the most important unsupervised learning algorithms (most of
these are covered in Chapters 8 and 9):

• Clustering
— K-Means
— DBSCAN
— Hierarchical Cluster Analysis (HCA)

• Anomaly detection and novelty detection
— One-class SVM
— Isolation Forest

• Visualization and dimensionality reduction
— Principal Component Analysis (PCA)
— Kernel PCA
— Locally Linear Embedding (LLE)
— t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Association rule learning
— Apriori
— Eclat

For example, say you have a lot of data about your blog’s visitors. You may want to
run a clustering algorithm to try to detect groups of similar visitors (Figure 1-8). At
no point do you tell the algorithm which group a visitor belongs to: it finds those
connections without your help. For example, it might notice that 40% of your visitors
are males who love comic books and generally read your blog in the evening, while
20% are young sci-fi lovers who visit during the weekends. If you use a hierarchical
clustering algorithm, it may also subdivide each group into smaller groups. This may
help you target your posts for each group.

10 | Chapter 1: The Machine Learning Landscape

12 Chapter 1. Introduction

(a) (b)

Figure 1.10 a) 25 randomly chosen 64 × 64 pixel images from the Olivetti face database. (b) The mean
and the first three principal component basis vectors (eigenfaces). Figure generated by pcaImageDemo.

When used as input to other statistical models, such low dimensional representations often
result in better predictive accuracy, because they focus on the “essence” of the object, filtering
out inessential features. Also, low dimensional representations are useful for enabling fast
nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components
analysis or PCA. This can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y, but not the low-dimensional
“cause” z. Thus the model has the form z → y; we have to “invert the arrow”, and infer the
latent low-dimensional z from the observed high-dimensional y. See Section 12.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many di!erent areas.
Some examples include the following:

• In biology, it is common to use PCA to interpret gene microarray data, to account for the
fact that each measurement is usually the result of many genes which are correlated in their
behavior by the fact that they belong to di!erent biological pathways.

• In natural language processing, it is common to use a variant of PCA called latent semantic
analysis for document retrieval (see Section 27.2.2).

• In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a
variant of PCA) to separate signals into their di!erent sources (see Section 12.6).

• In computer graphics, it is common to project motion capture data to a low dimensional
space, and use it to create animations. See Section 15.5 for one way to tackle such problems.

12 Chapter 1. Introduction

(a) (b)

Figure 1.10 a) 25 randomly chosen 64 × 64 pixel images from the Olivetti face database. (b) The mean
and the first three principal component basis vectors (eigenfaces). Figure generated by pcaImageDemo.

When used as input to other statistical models, such low dimensional representations often
result in better predictive accuracy, because they focus on the “essence” of the object, filtering
out inessential features. Also, low dimensional representations are useful for enabling fast
nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components
analysis or PCA. This can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y, but not the low-dimensional
“cause” z. Thus the model has the form z → y; we have to “invert the arrow”, and infer the
latent low-dimensional z from the observed high-dimensional y. See Section 12.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many di!erent areas.
Some examples include the following:

• In biology, it is common to use PCA to interpret gene microarray data, to account for the
fact that each measurement is usually the result of many genes which are correlated in their
behavior by the fact that they belong to di!erent biological pathways.

• In natural language processing, it is common to use a variant of PCA called latent semantic
analysis for document retrieval (see Section 27.2.2).

• In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a
variant of PCA) to separate signals into their di!erent sources (see Section 12.6).

• In computer graphics, it is common to project motion capture data to a low dimensional
space, and use it to create animations. See Section 15.5 for one way to tackle such problems.

Left: 25 randomly chosen 64 ×64 pixel images from the
Olivetti face database.
Right: The mean and the first three principal component
basis vectors (eigenfaces).
Image from MLPP

Matrix completion or collaborative filtering

18

1.3. Unsupervised learning 15

��XVHUV

PRYLHV

� � " � � "

" � � � � �

� � � � � "

Figure 1.13 Example of movie-rating data. Training data is in red, test data is denoted by ?, empty cells
are unknown.

(say an integer between 1 and 5, where 1 is dislike and 5 is like) by user u of movie m. Note
that most of the entries in X will be missing or unknown, since most users will not have rated
most movies. Hence we only observe a tiny subset of the X matrix, and we want to predict
a di!erent subset. In particular, for any given user u, we might want to predict which of the
unrated movies he/she is most likely to want to watch.

In order to encourage research in this area, the DVD rental company Netflix created a com-
petition, launched in 2006, with a $1M USD prize (see http://netflixprize.com/). In
particular, they provided a large matrix of ratings, on a scale of 1 to 5, for ∼ 18k movies
created by ∼ 500k users. The full matrix would have ∼ 9 × 109 entries, but only about 1%
of the entries are observed, so the matrix is extremely sparse. A subset of these are used for
training, and the rest for testing, as shown in Figure 1.13. The goal of the competition was to
predict more accurately than Netflix’s existing system. On 21 September 2009, the prize was
awarded to a team of researchers known as “BellKor’s Pragmatic Chaos”. Section 27.6.2 discusses
some of their methodology. Further details on the teams and their methods can be found at
http://www.netflixprize.com/community/viewtopic.php?id=1537.

1.3.4.3 Market basket analysis

In commercial data mining, there is much interest in a task called market basket analysis. The
data consists of a (typically very large but sparse) binary matrix, where each column represents
an item or product, and each row represents a transaction. We set xij = 1 if item j was
purchased on the i’th transaction. Many items are purchased together (e.g., bread and butter),
so there will be correlations amongst the bits. Given a new partially observed bit vector,
representing a subset of items that the consumer has bought, the goal is to predict which other
bits are likely to turn on, representing other items the consumer might be likely to buy. (Unlike
collaborative filtering, we often assume there is no missing data in the training data, since we
know the past shopping behavior of each customer.)

This task arises in other domains besides modeling purchasing patterns. For example, similar
techniques can be used to model dependencies between files in complex software systems. In
this case, the task is to predict, given a subset of files that have been changed, which other ones
need to be updated to ensure consistency (see e.g., (Hu et al. 2010)).

It is common to solve such tasks using frequent itemset mining, which create association
rules (see e.g., (Hastie et al. 2009, sec 14.2) for details). Alternatively, we can adopt a probabilistic
approach, and fit a joint density model p(x1, . . . , xD) to the bit vectors, see e.g., (Hu et al.

Imputation problem: Predicting which movies people will want to watch based
on how they, and other people, have rated movies which they have already
seen.

Mini batch vs. full-batch learning

19

Figure 1-14. Using online learning to handle huge datasets

A big challenge with online learning is that if bad data is fed to the system, the sys!
tem’s performance will gradually decline. If it’s a live system, your clients will notice.
For example, bad data could come from a malfunctioning sensor on a robot, or from
someone spamming a search engine to try to rank high in search results. To reduce
this risk, you need to monitor your system closely and promptly switch learning off
(and possibly revert to a previously working state) if you detect a drop in perfor!
mance. You may also want to monitor the input data and react to abnormal data (e.g.,
using an anomaly detection algorithm).

Instance-Based Versus Model-Based Learning
One more way to categorize Machine Learning systems is by how they generalize.
Most Machine Learning tasks are about making predictions. This means that given a
number of training examples, the system needs to be able to make good predictions
for (generalize to) examples it has never seen before. Having a good performance
measure on the training data is good, but insufficient; the true goal is to perform well
on new instances.

There are two main approaches to generalization: instance-based learning and
model-based learning.

Instance-based learning
Possibly the most trivial form of learning is simply to learn by heart. If you were to
create a spam filter this way, it would just flag all emails that are identical to emails
that have already been flagged by users—not the worst solution, but certainly not the
best.

Types of Machine Learning Systems | 17

Images from HML

