Deptartment of Electrical Communication Engineering Indian Institute of Science

E9 211 Adaptive Signal Processing 4 December 2019, 14:00–17:00, Final Exam

This exam has three questions (50 points).

One A4 cheat sheet is allowed. No other materials will be allowed.

You need to submit **Homework 3 by the deadline 10 December 2019** and should have already submitted Homeworks 1 and 2 to pass this course. If you have not yet submitted Homeworks 1 and 2, do it before 8 December 2019.

Question 1 (15 points)

Consider a filter **w**, which is applied to \mathbf{x}_k to estimate the desired signal d_k as

$$\hat{d}_k = \mathbf{w}^H \mathbf{x}_k.$$

Assume that the desired signal has unit power, i.e., $E\{|d_k|^2\} = 1$. In this problem, we will find the filter by optimizing the following cost functions:

$$J(\mathbf{w}) = E\{|d_k - \mathbf{w}^H \mathbf{x}_k|^2\}$$

and

$$J'(\mathbf{w}) = E\{|d_k - \mathbf{w}^H \mathbf{x}_k|^2\} + \beta \|\mathbf{w}\|_2^2,$$

where $\beta > 0$. To answer this question, use the following definitions $E\{\mathbf{x}_k \mathbf{x}_k^H\} = \mathbf{R}_x$ and $E\{\mathbf{x}_k \bar{d}_k\} = \mathbf{r}_{xd}$.

- (2 pts) (a) Find the optimal filter that minimizes the cost $J(\mathbf{w})$. Compute the resulting minimum cost $J(\mathbf{w}_{opt})$.
- (4 pts) (b) Find the optimal filter that minimizes the cost $J'(\mathbf{w})$. Compute the resulting minimum cost $J'(\mathbf{w}_{opt})$.
- (2 pts) (c) Show that $J'(\mathbf{w}_{opt}) > J(\mathbf{w}_{opt})$.
- (2 pts) (d) Give the steepest-descent update equations to find the minimizer of $J(\mathbf{w})$. What is the maximum step size μ that can be used so that the steepest-descent algorithm converges?
- (4 pts) (e) Derive the steepest-descent algorithm for minimizing $J'(\mathbf{w})$ and determine the condition on the step size so that the iterations converge.
- (1 pts) (f) When is the algorithm in (e) more useful that the algorithm in (d)?

Question 2 (15 points)

Let us consider the problem of estimating an unknown constant x given measurements that are corrupted by uncorrelated, zero mean noise v(n) that has a variance σ_v^2 . The measurement equation is

$$y(n) = x(n) + v(n)$$

Since the value of x does not change with time n, we have

$$x(n) = x(n-1).$$

- (2 pts) (a) Assume that we are at time step N and gathered all the measurements $\{y(1), y(2), \dots, y(N)\}$. Compute the least squares solution for x.
- (5 pts) (b) Give the recursive least squares (RLS) update equations assuming that the observations arrive sequentially.
- (5 pts) (c) Derive now the Kalman filter update equations.
- (3 pts) (d) Let us denote P(n-1|n-1) = P(n-1). Show that

$$P(n) = \frac{P(0)\sigma_v^2}{nP(0) + \sigma_v^2}$$

Question 3 (20 points)

In many signal processing applications, it is important to design a filter with *linear phase* without which the phase distortion introduced by the filter might severely degrade the estimated signal. Therefore, we would like to design an adaptive linear phase filter $\mathbf{w}_k = [w_k(0), w_k(1), \ldots, w_k(P)]^T$ whose weights at each time k satisfy the following symmetry constraint

$$w_k(n) = w_k(P - n), \quad n = 0, 1, \dots, P.$$

- (3 pts) (a) Formulate the symmetry constraint as a linear equality constraint $\mathbf{C}^{H}\mathbf{w}_{k} = \mathbf{f}$. What will be \mathbf{C} and \mathbf{f} for the special case with P = 2?
- (6 pts) (b) Find the optimal solution to the constrained optimization problem

ninimize
$$E\{|d_k - \mathbf{w}^H \mathbf{x}_k|^2\}$$
 subject to $\mathbf{c}^H \mathbf{w} = f$.

Notice that \mathbf{c} is a vector and f is a scalar.

r

(6 pts) (c) Derive a linearly constrained adaptive LMS filter \mathbf{w}_k that approximates the optimal solution in (b) by minimizing the instantaneous error as

minimize
$$|d_k - \mathbf{w}_k^H \mathbf{x}_k|^2$$
 subject to $\mathbf{c}^H \mathbf{w}_k = f$.

Hint: Use the extended cost function with a Lagrange multiplier and enforce the condition that each successive weight vector, including the initial condition, satisfies the linear equality constraint.

(5 pts) (d) It is possible to eliminate the equality constraint by modifying the input signal \mathbf{x}_k to \mathbf{z}_k . The vector \mathbf{z}_k will be of smaller length as compared to \mathbf{x}_k . For P = 2, what is \mathbf{z}_k ? Give the standard (unconstrained) LMS update equations for computing the adaptive filter $\tilde{\mathbf{w}}_k$ that will be applied on \mathbf{z}_k to estimate the desired signal as $\tilde{\mathbf{w}}_k^H \mathbf{z}_k$.