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Question 1 (10 points)

In decision-directed feedback equalization using Viterbi decoder, the desired signal and thus
the error is not available until a number of samples later. Suppose the signal x(k) is real-
valued, we consider an LMS algorithm with the update equation

wk+1 = wk + µe(k − 1)x(k − 1)

where the error signal is given by

e(k − 1) = d(k − 1)− y(k − 1) = d(k − 1)−wT
k−1x(k − 1).

Here, d(k) is the desired signal. This LMS algorithm works with signals delayed by one
sample. Without any delay, this would be the conventional LMS algorithm.

(5pts) (a) Find the values of µ for which this LMS algorithm converges in the mean.

Hint: The solution of a second-order difference equation converges to zero when the
roots associated with its characteristic equation lie within the unit circle.

(5pts) (b) Determine the slowest decaying mode when the eigenvalues of Rx = E{x(k)x(k)} are
all one and we choose µ = 0.5. Find the time constant for the LMS algorithm.

Solutions

(a) Taking the expected value of the update equation, we have

E{wk+1} = E{wk} − µRxE{wk−1}+ µrxd

where we assume that the weight vector wk is uncorrelated with the data vector x(k).
Therefore the expected value of the weight vector (thus the error vector) satisfies a
second-order difference equation. On diagonalizing the autocorrelation matrix, the co-
efficients of the transformed vector can be written as

E{vk+1(n)} = E{vk(n)} − µλnE{vk−1(n)}+ µrxd(n)



where λn is the nth eigenvalue of Rx.

The characteristic equation for E{vk(n)} is given by

1− z−1 + µλnz
−2 = 0.

For E{vk(n)} to converge in the mean, the roots of the characteristic equation must lie
inside the unit circle. Since the roots are at

zn = 0.5± 0.5
√

1− 4µλn,

the delayed LMS algorithm converges in the mean provided

0 < µ < λ−1
max.

(b) With λn = 1 and µ = 0.5, the roots of the characteristic equation are

zn = 0.5± 0.5j.

Thus the envelope of all the modes behave as 0.5k/2 where k is the iteration index. The
time constant τ is obtained as

0.5τ/2 = 1/e⇒ τ = 2.885 (time steps).
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Question 2 (10 points)

An autoregressive process of order 1 is described by the difference equation

x(n) = 0.5x(n− 1) + w(n)

where w(n) is zero-mean white noise with a variance σ2w = 0.64. The observed process y(n)
is described by

y(n) = x(n) + v(n)

where v(n) is zero-mean white noise with a variance of σ2v = 1.

(2pts) (a) Write the Kalman filtering equations to find the minimum mean-square estimate, x̂(n|n),
of x(n) given the observations y(i), i = 1, . . . , n. The initial conditions are x̂(0|0) = 0
and E{|x(0)− x̂(0|0)|2} = 1.

(3pts) (b) Assuming that the filter reaches a steady state solution, find the steady state covariance
and the steady state Kalman gain. In the steady state, P (n+ 1|n+ 1) = P (n|n). Find
the steady state estimation equation for x̂(n|n).

(5pts) (c) Now consider the autoregressive moving average ARMA(1,1) process

y(n) + ay(n− 1) = w(n) + bw(n− 1).

Give the state-space model for the ARMA process and write the Kalman filtering equa-
tions.

Solutions

(a) For the state-space model

x(n) = 0.5x(n− 1) + w(n)

y(n) = x(n) + v(n)

with A = 0.5 and C = 1, the Kalman filtering algorithm initialized with x̂(0) = 0,
P (0|0) = 1, is

(a) x̂(n|n− 1) = 0.5x̂(n− 1|n− 1)

(b) P (n|n− 1) = 0.25P (n− 1|n− 1) + 0.64

(c) K(n) = P (n|n− 1)[P (n|n− 1) + 1]−1

(d) P (n|n) = [1−K(n)]P (n|n− 1)

(e) x̂(n|n) = x̂(n|n− 1) +K(n)[y(n)− x̂(n|n− 1)]

(b) We have

P (n|n) = [1−K(n)]P (n|n− 1) = [1− P (n|n− 1)[P (n|n− 1) + 1]−1]P (n|n− 1)

=
P (n|n− 1)

1 + P (n|n− 1)
.
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Thus

P (n|n) =
0.25P (n− 1|n− 1) + 0.64

0.25P (n− 1|n− 1) + 1.64

Since in the steady state, we have P (n+ 1|n+ 1) = P (n|n), we have

P (n|n) =
0.25P (n|n) + 0.64

0.25P (n|n) + 1.64
.

This simplifies to 0.25P 2(n|n) + 1.39P (n|n) − 0.64 = 0, which has a positive root
P (n|n) = 0.4276. Therefore,

x̂(n) = 0.5x̂(n− 1) + 0.4276[y(n)− 0.5x̂(n− 1)].

(c) Let

x(n) =

[
x1(n)
x2(n)

]
.

Then [
x1(n)
x2(n)

]
=

[
−a 1
0 0

] [
x1(n− 1)
x2(n− 1)

]
+

[
1
b

]
w(n)

and
y(n) = [1 0]x(n)

is the state-space representation for the ARMA(1,1) process. Here Qv = 0 and

Qw = σ2w

[
1 b
b b2

]
.

Given the above state-space model, the Kalman filtering equations are standard.
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