E9 211: Adaptive Signal Processing

Kalman Filter

Consider the following nonstationary state space model:

$$\begin{aligned} \mathbf{x}(n) &= \mathbf{A}(n-1)\mathbf{x}(n-1) + \mathbf{w}(n) \\ \mathbf{y}(n) &= \mathbf{C}(n)\mathbf{x}(n) + \mathbf{v}(n) \end{aligned}$$

where $\mathbf{x}(n)$ is the $p \times 1$ state vector, $\mathbf{A}(n-1)$ is the $p \times p$ state transistion matrix, $\mathbf{w}(n)$ is the state noise with $E\{\mathbf{w}(n)\mathbf{w}^{H}(n)\} = \mathbf{Q}_{w}(n)\delta(n-k)$, $\mathbf{y}(n)$ is the $q \times 1$ observation vector, $\mathbf{C}(n)$ is the $q \times p$ observation matrix, $\mathbf{v}(n)$ is the observation noise with $E\{\mathbf{v}(n)\mathbf{v}^{H}(k)\} = \mathbf{Q}_{v}(n)\delta(n-k)$, and the state noise is independent of the observation noise.

We will derive the best linear estimate of $\mathbf{x}(n)$ for observations $\mathbf{y}(n)$ up to n using a weighted least squares formulation.

Weighted least squares

Consider the linear measurement model

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{v}$$

where C is the $q \times p$ observation matrix $(q \ge p)$, x is the $p \times 1$ unknown vector, v is colored noise with $E\{vv^H\} = \mathbf{Q}_v$.

To determine the optimal estimator of \mathbf{x} , i.e., a *minimum variance unbiased* (MVU) estimator, we use a *whitening* approach and transform the above model to

$$\mathbf{Q}_v^{-1/2}\mathbf{y} = \mathbf{Q}_v^{-1/2}\mathbf{C}\mathbf{x} + \mathbf{Q}_v^{-1/2}\mathbf{v}$$

such that the noise will be whitened as $E\{\mathbf{Q}_v^{-1/2}\mathbf{v}\mathbf{v}^H\mathbf{Q}_v^{-1/2}\} = \mathbf{I}$. The MVU estimator of \mathbf{x} is then the usual least squares estimator (based on the transformed model), i.e.,

$$\hat{\mathbf{x}} = \left(\mathbf{Q}_v^{-1/2}\mathbf{C}\right)^{\dagger} \mathbf{Q}_v^{-1/2} \mathbf{y} = \left(\mathbf{C}^H \mathbf{Q}_v^{-1/2} \mathbf{Q}_v^{-1/2} \mathbf{C}\right)^{-1} \mathbf{C}^H \mathbf{Q}_v^{-1/2} \mathbf{Q}_v^{-1/2} \mathbf{y}$$

so that

$$\hat{\mathbf{x}} = \left(\mathbf{C}^H \mathbf{Q}_v^{-1} \mathbf{C}\right)^{-1} \mathbf{C}^H \mathbf{Q}_v^{-1} \mathbf{y}.$$

The discrete Kalman filter

Let us define $\hat{\mathbf{x}}(n|n-1)$ and $\hat{\mathbf{x}}(n|n)$ as the best linear estimate of $\mathbf{x}(n)$ given the observations $\mathbf{y}(n)$ up to time n-1 and n, respectively. Let us denote the corresponding errors as

$$\mathbf{e}(n|n-1) = \mathbf{x}(n) - \hat{\mathbf{x}}(n|n-1)$$
$$\mathbf{e}(n|n) = \mathbf{x}(n) - \hat{\mathbf{x}}(n|n)$$

with covariance matrices

$$\mathbf{P}(n|n-1) = E\{\mathbf{e}(n|n-1)\mathbf{e}^{H}(n|n-1)\}$$
$$\mathbf{P}(n|n) = E\{\mathbf{e}(n|n)\mathbf{e}^{H}(n|n)\}$$

We can now derive the discrete Kalman filter.

Prediction stage

Given the state estimate $\hat{\mathbf{x}}(n-1|n-1)$ at time n-1, we can compute the prediction as

$$\hat{\mathbf{x}}(n|n-1) = \mathbf{A}(n-1)\hat{\mathbf{x}}(n-1|n-1)$$

The prediction error will then be

$$\mathbf{e}(n|n-1) = \mathbf{x}(n) - \hat{\mathbf{x}}(n|n-1) = \mathbf{A}(n-1)\mathbf{x}(n-1) + \mathbf{w}(n) - \mathbf{A}(n-1)\hat{\mathbf{x}}(n-1)$$

= $\mathbf{A}(n-1)[\mathbf{x}(n-1) - \hat{\mathbf{x}}(n-1|n-1)] + \mathbf{w}(n)$
= $\mathbf{A}(n-1)\mathbf{e}(n-1|n-1) + \mathbf{w}(n)$

with the covariance matrix

$$\mathbf{P}(n|n-1) = \mathbf{A}(n-1)\mathbf{P}(n-1|n-1)\mathbf{A}^{H}(n-1) + \mathbf{Q}_{w}(n)$$

We can rewrite the estimate $\hat{\mathbf{x}}(n|n-1)$ as follows

$$\hat{\mathbf{x}}(n|n-1) = \mathbf{x}(n) + \mathbf{e}(n|n-1).$$

Augmenting the above system with $\mathbf{y}(n)$ we have

$$\begin{bmatrix} \hat{\mathbf{x}}(n|n-1) \\ \mathbf{y}(n) \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{C}(n) \end{bmatrix} \mathbf{x}(n) + \begin{bmatrix} \mathbf{e}(n|n-1) \\ \mathbf{v}(n) \end{bmatrix},$$

with the covariance matrix of the augmented noise vector being

$$E\left\{ \begin{bmatrix} \mathbf{e}(n|n-1) \\ \mathbf{v}(n) \end{bmatrix} \begin{bmatrix} \mathbf{e}(n|n-1) \\ \mathbf{v}(n) \end{bmatrix}^H \right\} = \begin{bmatrix} \mathbf{P}(n|n-1) & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_v(n) \end{bmatrix}.$$

The estimate $\hat{\mathbf{x}}(n|n)$ can be obtained by solving the augmented system of equations using the weighted least squares approach:

$$\hat{\mathbf{x}}(n|n) = \left(\begin{bmatrix} \mathbf{I} \mid \mathbf{C}^{H}(n) \end{bmatrix} \begin{bmatrix} \mathbf{P}^{-1}(n|n-1) \mid \\ \mathbf{Q}_{v}^{-1}(n) \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{C}(n) \end{bmatrix} \right)^{-1} \\ \times \begin{bmatrix} \mathbf{I} \mid \mathbf{C}^{H}(n) \end{bmatrix} \begin{bmatrix} \mathbf{P}^{-1}(n|n-1) \mid \\ \mathbf{Q}_{v}^{-1}(n) \end{bmatrix} \begin{bmatrix} \hat{\mathbf{x}}(n|n-1) \\ \mathbf{y}(n) \end{bmatrix}$$

$$= \left[\mathbf{P}^{-1}(n|n-1) + \mathbf{C}^{H}(n)\mathbf{Q}_{v}^{-1}(n)\mathbf{C}(n) \right]^{-1} \\ \times \left[\mathbf{P}^{-1}(n|n-1)\hat{\mathbf{x}}(n|n-1) + \mathbf{C}^{H}(n)\mathbf{Q}_{v}^{-1}(n)\mathbf{y}(n) \right]$$

Using the matrix inversion lemma

$$(\mathbf{A} + \mathbf{B}^{H}\mathbf{C}^{-1}\mathbf{B})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}^{H}(\mathbf{C} + \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{H})^{-1}\mathbf{B}\mathbf{A}^{-1}$$

we have

$$\begin{bmatrix} \mathbf{P}^{-1}(n|n-1) + \mathbf{C}(n)^{H} \mathbf{Q}_{v}^{-1}(n) \mathbf{C}(n) \end{bmatrix}^{-1} = \mathbf{P}(n|n-1) - \mathbf{P}(n|n-1) \mathbf{C}^{H}(n) \\ \times (\mathbf{Q}_{v}(n) + \mathbf{C}(n) \mathbf{P}(n|n-1) \mathbf{C}^{H}(n))^{-1} \mathbf{C} \mathbf{P}(n|n-1) \mathbf{C}^{H}(n) \end{bmatrix}$$

and introducing the Kalman gain matrix, $\mathbf{K}(n),$ as

$$\mathbf{K}(n) = \mathbf{P}(n|n-1)\mathbf{C}^{H}(n)[\mathbf{Q}_{v}(n) + \mathbf{C}(n)\mathbf{P}(n|n-1)\mathbf{C}^{H}(n)]^{-1}$$

we can obtain the recursion for computing $\hat{\mathbf{x}}(n|n)$ as

$$\hat{\mathbf{x}}(n|n) = \hat{\mathbf{x}}(n|n-1) + \mathbf{K}(n) \left[\mathbf{y}(n) - \mathbf{C}(n)\hat{\mathbf{x}}(n|n-1)\right]$$
$$= \left[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)\right]\hat{\mathbf{x}}(n|n-1) + \mathbf{K}(n)\mathbf{y}(n)$$

The error at the correction stage will then be

$$\mathbf{e}(n|n) = \mathbf{x}(n) - \hat{\mathbf{x}}(n|n)$$

= $\mathbf{x}(n) - [\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)] \hat{\mathbf{x}}(n|n-1) - \mathbf{K}(n)\mathbf{y}(n).$

Substituting the expression for $\mathbf{y}(n)$ we get

$$\begin{aligned} \mathbf{e}(n|n) &= \mathbf{x}(n) - \left[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)\right] \hat{\mathbf{x}}(n|n-1) - \mathbf{K}(n) \left[\mathbf{C}(n)\mathbf{x}(n) + \mathbf{v}(n)\right] \\ &= \left[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)\right] \left(\mathbf{x}(n) - \hat{\mathbf{x}}(n|n-1)\right) - \mathbf{K}(n)\mathbf{v}(n) \\ &= \left[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)\right] \mathbf{e}(n|n-1) - \mathbf{K}(n)\mathbf{v}(n). \end{aligned}$$

The error covariance matrix $\mathbf{P}(n|n)$ can be computed as

$$\mathbf{P}(n|n) = [\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)] \mathbf{P}(n|n-1) [\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)]^{H} + \mathbf{K}(n)\mathbf{Q}_{v}(n)\mathbf{K}^{H}(n)$$

= $[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)] \mathbf{P}(n|n-1) - [[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)] \mathbf{P}(n|n-1)\mathbf{C}^{H}(n)$
+ $\mathbf{K}(n)\mathbf{Q}_{v}(n)] \mathbf{K}^{H}(n).$

By multiplying both sides of the Kalman gain matrix

$$\mathbf{K}(n) = \mathbf{P}(n|n-1)\mathbf{C}^{H}(n)[\mathbf{Q}_{v}(n) + \mathbf{C}(n)\mathbf{P}(n|n-1)\mathbf{C}^{H}(n)]^{-1}$$

with $[\mathbf{Q}_{v}(n) + \mathbf{C}(n)\mathbf{P}(n|n-1)\mathbf{C}^{H}(n]\mathbf{K}^{H}(n)$, it is easy to see that
 $[[\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)]\mathbf{P}(n|n-1)\mathbf{C}^{H}(n) + \mathbf{K}(n)\mathbf{Q}_{v}(n)]\mathbf{K}^{H}(n) = \mathbf{0}.$

So the error covariance matrix $\mathbf{P}(n|n)$ can be recursively updated using

$$\mathbf{P}(n|n) = [\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)]\mathbf{P}(n|n-1).$$

The discrete Kalman filter

Initializing the recursion with

$$\hat{\mathbf{x}}(0|0) = E\{\mathbf{x}(0)\} \text{ and } \hat{\mathbf{P}}(0|0) = E\{\mathbf{x}(0)\mathbf{x}^{H}(0)\}$$

we obtain the following optimal recursion for $n = 1, 2, \ldots$ at the Prediction stage:

$$\hat{\mathbf{x}}(n|n-1) = \mathbf{A}(n-1)\hat{\mathbf{x}}(n-1|n-1) \mathbf{P}(n|n-1) = \mathbf{A}(n-1)\mathbf{P}(n-1|n-1)\mathbf{A}^{H}(n-1) + \mathbf{Q}_{w}(n)$$

Correction stage:

$$\mathbf{K}(n) = \mathbf{P}(n|n-1)\mathbf{C}^{H}(n)[\mathbf{Q}_{v}(n) + \mathbf{C}(n)\mathbf{P}(n|n-1)\mathbf{C}^{H}(n)]^{-1}$$
$$\hat{\mathbf{x}}(n|n) = \hat{\mathbf{x}}(n|n-1) + \mathbf{K}(n)[\mathbf{y}(n) - \mathbf{C}(n)\hat{\mathbf{x}}(n|n-1)]$$
$$\mathbf{P}(n|n) = [\mathbf{I} - \mathbf{K}(n)\mathbf{C}(n)]\mathbf{P}(n|n-1)$$

Note that $\mathbf{P}(n|n-1)$, $\mathbf{K}(n)$, and $\mathbf{P}(n|n)$ are independent of the observations $\mathbf{y}(n)$ and thus can be computed off-line prior to any filtering.

Filtering example

We consider the following noisy measurement model

$$y(n) = x(n) + v(n)$$

where v(n) is white noise with variance $\sigma_v^2 = 0.1$. Suppose x(n) is an AR(1) process given by

$$x(n) = 0.8x(n-1) + w(n)$$

where w(n) is white noise with variance $\sigma_w^2 = 0.36$. Thus, with $\mathbf{A}(n) = 0.8$, $\mathbf{C}(n) = 1$, $\mathbf{Q}_w = 0.36$, and $\mathbf{Q}_v = 0.1$, the Kalman filter state estimation equation is

$$\hat{x}(n|n) = 0.8\hat{x}(n-1|n-1) + K(n)[y(n) - 0.8\hat{x}(n-1|n-1)].$$

For the scalar state, the equations for updating the error covariance matrices are

$$P(n|n-1) = (0.8)^2 P(n-1|n-1) + 0.36$$

$$K(n) = P(n|n-1)[P(n|n-1) + 0.1]^{-1}$$

$$P(n|n) = [1 - K(n)]P(n|n-1).$$

Filtering example

With $\hat{x}(0|0) = 0$ and P(0|0) = 1

 \circ denotes the prediction error and + denotes the correction error. The prediction stage increases the error, while the correction stage decreases it. After a few iterations the error settles down into its steady state.