
E9 211: Adaptive Signal Processing

Kalman Filter



The discrete Kalman filter

Consider the following nonstationary state space model:

x(n) = A(n− 1)x(n− 1) +w(n)

y(n) = C(n)x(n) + v(n)

where x(n) is the p× 1 state vector, A(n− 1) is the p× p state
transistion matrix, w(n) is the state noise with
E{w(n)wH(n)} = Qw(n)δ(n− k), y(n) is the q × 1 observation vector,
C(n) is the q × p observation matrix, v(n) is the observation noise with
E{v(n)vH(k)} = Qv(n)δ(n− k), and the state noise is independent of
the observation noise.

We will derive the best linear estimate of x(n) for observations y(n) up
to n using a weighted least squares formulation.
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Weighted least squares

Consider the linear measurement model

y = Cx+ v

where C is the q × p observation matrix (q ≥ p), x is the p× 1 unknown
vector, v is colored noise with E{vvH} = Qv.
To determine the optimal estimator of x, i.e., a minimum variance
unbiased (MVU) estimator, we use a whitening approach and transform
the above model to

Q−1/2v y = Q−1/2v Cx+Q−1/2v v

such that the noise will be whitened as E{Q−1/2v vvHQ
−1/2
v } = I.

The MVU estimator of x is then the usual least squares estimator (based
on the transformed model), i.e.,

x̂ =
(
Q−1/2v C

)†
Q−1/2v y =

(
CHQ−1/2v Q−1/2v C

)−1
CHQ−1/2v Q−1/2v y

so that
x̂ =

(
CHQ−1v C

)−1
CHQ−1v y.
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The discrete Kalman filter

Let us define x̂(n|n− 1) and x̂(n|n) as the best linear estimate of x(n)
given the observations y(n) up to time n− 1 and n, respectively.
Let us denote the corresponding errors as

e(n|n− 1) = x(n)− x̂(n|n− 1)

e(n|n) = x(n)− x̂(n|n)

with covariance matrices

P(n|n− 1) = E{e(n|n− 1)eH(n|n− 1)}
P(n|n) = E{e(n|n)eH(n|n)}

We can now derive the discrete Kalman filter.
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Prediction stage

Given the state estimate x̂(n− 1|n− 1) at time n− 1, we can compute
the prediction as

x̂(n|n− 1) = A(n− 1)x̂(n− 1|n− 1)

The prediction error will then be

e(n|n− 1) = x(n)− x̂(n|n− 1) = A(n− 1)x(n− 1) +w(n)−A(n− 1)x̂(n− 1|n− 1)

= A(n− 1) [x(n− 1)− x̂(n− 1|n− 1)] +w(n)

= A(n− 1)e(n− 1|n− 1) +w(n)

with the covariance matrix

P(n|n− 1) = A(n− 1)P(n− 1|n− 1)AH(n− 1) +Qw(n).
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Correction stage

We can rewrite the estimate x̂(n|n− 1) as follows

x̂(n|n− 1) = x(n) + e(n|n− 1).

Augmenting the above system with y(n) we have[
x̂(n|n− 1)

y(n)

]
=

[
I

C(n)

]
x(n) +

[
e(n|n− 1)

v(n)

]
,

with the covariance matrix of the augmented noise vector being

E

{[
e(n|n− 1)

v(n)

] [
e(n|n− 1)

v(n)

]H}
=

[
P(n|n− 1) 0

0 Qv(n)

]
.
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Correction stage

The estimate x̂(n|n) can be obtained by solving the augmented system
of equations using the weighted least squares approach:

x̂(n|n) =
([

I CH(n)
] [ P−1(n|n− 1)

Q−1v (n)

] [
I

C(n)

])−1
×
[
I CH(n)

] [ P−1(n|n− 1)
Q−1v (n)

] [
x̂(n|n− 1)

y(n)

]

=
[
P−1(n|n− 1) +CH(n)Q−1v (n)C(n)

]−1
×
[
P−1(n|n− 1)x̂(n|n− 1) +CH(n)Q−1v (n)y(n)

]
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Correction stage

Using the matrix inversion lemma

(A+BHC−1B)−1 = A−1 −A−1BH(C+BA−1BH)−1BA−1

we have[
P−1(n|n− 1) +C(n)HQ−1v (n)C(n)

]−1
= P(n|n− 1)−P(n|n− 1)CH(n)

× (Qv(n) +C(n)P(n|n− 1)CH(n))−1CP(n|n− 1),

and introducing the Kalman gain matrix, K(n), as

K(n) = P(n|n− 1)CH(n)[Qv(n) +C(n)P(n|n− 1)CH(n)]−1

we can obtain the recursion for computing x̂(n|n) as

x̂(n|n) = x̂(n|n− 1) +K(n) [y(n)−C(n)x̂(n|n− 1)]

= [I−K(n)C(n)] x̂(n|n− 1) +K(n)y(n)
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Correction stage

The error at the correction stage will then be

e(n|n) = x(n)− x̂(n|n)
= x(n)− [I−K(n)C(n)] x̂(n|n− 1)−K(n)y(n).

Substituting the expression for y(n) we get

e(n|n) = x(n)− [I−K(n)C(n)] x̂(n|n− 1)−K(n) [C(n)x(n) + v(n)]

= [I−K(n)C(n)] (x(n)− x̂(n|n− 1))−K(n)v(n)

= [I−K(n)C(n)] e(n|n− 1)−K(n)v(n).
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Correction stage

The error covariance matrix P(n|n) can be computed as

P(n|n) = [I−K(n)C(n)]P(n|n− 1) [I−K(n)C(n)]
H
+K(n)Qv(n)K

H(n)

= [I−K(n)C(n)]P(n|n− 1)−
[
[I−K(n)C(n)]P(n|n− 1)CH(n)

+K(n)Qv(n)]K
H(n).

By multiplying both sides of the Kalman gain matrix

K(n) = P(n|n− 1)CH(n)[Qv(n) +C(n)P(n|n− 1)CH(n)]−1

with [Qv(n) +C(n)P(n|n− 1)CH(n]KH(n), it is easy to see that[
[I−K(n)C(n)]P(n|n− 1)CH(n) +K(n)Qv(n)

]
KH(n) = 0.

So the error covariance matrix P(n|n) can be recursively updated using

P(n|n) = [I−K(n)C(n)]P(n|n− 1).
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The discrete Kalman filter

Initializing the recursion with

x̂(0|0) = E{x(0)} and P̂(0|0) = E{x(0)xH(0)}

we obtain the following optimal recursion for n = 1, 2, . . . at the
Prediction stage:

x̂(n|n− 1) = A(n− 1)x̂(n− 1|n− 1)

P(n|n− 1) = A(n− 1)P(n− 1|n− 1)AH(n− 1) +Qw(n)

Correction stage:

K(n) = P(n|n− 1)CH(n)[Qv(n) +C(n)P(n|n− 1)CH(n)]−1

x̂(n|n) = x̂(n|n− 1) +K(n) [y(n)−C(n)x̂(n|n− 1)]

P(n|n) = [I−K(n)C(n)]P(n|n− 1)

Note that P(n|n− 1), K(n), and P(n|n) are independent of the
observations y(n) and thus can be computed off-line prior to any filtering.
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Filtering example

We consider the following noisy measurement model

y(n) = x(n) + v(n)

where v(n) is white noise with variance σ2
v = 0.1. Suppose x(n) is an

AR(1) process given by

x(n) = 0.8x(n− 1) + w(n)

where w(n) is white noise with variance σ2
w = 0.36. Thus, with

A(n) = 0.8, C(n) = 1, Qw = 0.36, and Qv = 0.1, the Kalman filter
state estimation equation is

x̂(n|n) = 0.8x̂(n− 1|n− 1) +K(n)[y(n)− 0.8x̂(n− 1|n− 1)].

For the scalar state, the equations for updating the error covariance
matrices are

P (n|n− 1) = (0.8)2P (n− 1|n− 1) + 0.36

K(n) = P (n|n− 1)[P (n|n− 1) + 0.1]−1

P (n|n) = [1−K(n)]P (n|n− 1).
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Filtering example

With x̂(0|0) = 0 and P (0|0) = 1
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◦ denotes the prediction error and + denotes the correction error.
The prediction stage increases the error, while the correction stage
decreases it. After a few iterations the error settles down into its steady
state. 13


