Indian Institute of Science
Department of Electrical Communication Engineering

E9 211: Adaptive Signal Processing
October 2020 - January 2021

Final project (deadline 1 Feb. 2021)

This project consists of two parts on implementing and studying adaptive filters for adaptive
noise cancellation: (a) using single-channel microphone recordings and (b) using multi-channel
microphone recordings.

1. Make a short report containing the required Matlab/Python files, plots, explanations,
and answers, and turn it in by the deadline using Microsoft Teams under your name.

2. Include a .zip file containing “9 audio files” named in the format:
firstname_lastname_part_funcname.wav, e.g., sundeep_chepuri_A_lms.wav

3. Create an MS Teams meeting with yourself to record a “5 min presentation” explaining
your code, observations, and outputs related to each question. Don’t forget to share
the computer audio while creating the MS teams meeting so that the outputs are also
recorded.

Part A: Adaptive interference cancellation using a single-channel micro-
phone

In this section, we perform adaptive interference cancellation using LMS. We are interested
in removing a background interference while recording a class room lecture. Using a single
isotropic microphone, we record the desired speech along with other sources (e.g., someone
talking in audience or outside the classroom).
Let d(t) denote the output of the microphone that records the desired signal s(¢) and an
interference v(t). We have
d(t) = as(t) + po(t) + n(t), (1)

where «, 8 € R are the unknown channel gains and n(¢) denote the additive white Gaussian
noise with variance o2. For convenience, let us assume that the signal, noise, and interference
are mutually uncorrelated.

We are now interested in suppressing the interference in d(¢). To do so, we have access to
recordings from a secondary microphone that is placed closer to the audience or outside the
classroom and away from the desired speaker. That is, the secondary microphone picks up
only the interference. Let the output of the secondary mic be given by z(t) = v(t).

For Part A of the project, we will be using the dataset data_partA.mat, which contains
two variables x and d. Both are 32000 x 1 vectors corresponding to a 4 second recording at
the primary and secondary microphones recorded at a sampling rate of Fy = 8 kHz.

Consider a M tap LMS filter with a coefficient vector wy : M x 1 and regressor vector
]T

xp = [z[k] z[k—1] ... z[k— M +1] M x 1,

where x(t) = v(t) is the interference term.

1. Explain how to suppress the interference in d(k) using wy.

2. Load the file data_partA.mat and listen the variables x and d as audio. In Matlab,
you can listen using soundsc(x,Fs). Make sure that x corresponds to a laughter and
d is a mix of laughter and the desired signal, which goes like “the discrete Fourier
transform...”.

3. Make a function to implement LMS to perform interference reduction
[s wl=1lms(x,d,M,w_init,mu)

4. Derive and create a function to implement the sign-error LMS algorithm to perform
interference reduction

[s wl=sgnlms(x,d,M,w_init,mu)

5. Derive and create a function to implement the normalized LMS algorithm to perform
interference reduction

[s wl=nlms(x,d,M,w_init,mu)

6. For all the LMS variants above, use w_init=0. Choose an appropriate step size to
ensure convergence. Which choice of M leads to a better performance and why? Is the
interference suppressed for M = 17 What is the structure in w for different values of
M, and why does it have this structure? Can we infer the value of 8 in (1)? Play the
output s and verify if the interference (i.e., laughter) is suppressed. Comment on the
performance of the different LMS algorithms. Which one would you prefer and why?

Part B: Multi-channel interference cancellation

In this part, we use a uniform linear array (ULA) with N = 10 microphones to perform
interference cancellation by exploiting the spatial signature of different sources. We consider
the same scenario as before to suppress the interference.

We assume that the desired signal (lecture in this case) and the interference (laughter from
audience) are arising from different directions relative to the array. Let s(¢) be the desired
signal and v(t) be the interference. Let §; and 02 denote the directions from which the signals
arrive at the ULA. Let the inter-element spacing in the ULA be § and the speed of sound
be c. Let z;(t) denote the signal received at the i-th antenna at time ¢. Then the output of
the ULA at time ¢t can be written as

s(t) + v (t)

x(t) = sté=m) + vt =) +n(t): Nxl1

s(t— (M = 1)m1) + v(t — (M — 1)73)

where 71 = 0sin(f1)/c and 7o = Jsin(62)/c are the delays, and n(t) is the noise vector. Since
the speech signal is not narrowband, we cannot use the approximation s(t — 7T') ~ s(t) that
we have used in the previous assignments so far. Therefore, we split the signal into subbands
such the narrowband condition holds.

To do so, let us split P samples of data into K frames such that each frame has L = L%j
samples. The signal at microphone ¢ corresponding to frame k can then be written as

x} = [wilk, 1], 2k, 2], ... 2k, L]+ 1x L.
We denote the Fourier transform (obtained using an L-point FFT) XZI as
%1y = [@ilk, 1], &k, 2], ..., &k, L]+ 1x L,

where each entry corresponding to a frequency f; can now be treated as a narrowband signal
and a delay of a narrowband signal Z;[k,[] can now be treated as a phase shift. Specifically,
we can write the array output at frame k£ and frequency f; as

%lk] = [a(01) au(6)] [z[[i ;H k],

where a;(0) is the array response vector of the ULA towards the direction 6 at frequency f;,
and is given by
1
o—i2r @,

a;(0) = , . Nx1. (2)
e—i(M—1)27 &) j,

We are required to design a beamformer w; for each frequency f; to suppress the inter-
ference and recover the desired signal (i.e., lecture) as §lk,!] = wi’%;[k]. Finally, the desired
time-domain signal of the kth frame, denoted by y[k] : L x 1, is computed using an L-point
IFEFT of y[k] = [g]k, 1], 9[k,2], ..., g[k, L]]T.

Load the data-set data_partB.mat, which contains a single variable X_time. This dataset
contains 4 second audio recording recorded at a sampling rate of F; = 8 kHz. X_time is a 3D
tensor of size 10 x 64 x 500 containing the output of a ULA with N = 10 elements having an
inter-element spacing of 6 = 5 cm. We have K = 500 frames with L = 64 samples in each
frame.

1.

Extract the recording related to the first microphone of the ULA. Play (the real part)
recording at microphone 1 as an audio file. Verify that it is a mix of laughter and
lecture, which goes like “the discrete Fourier transform...”.

. Create a function to generate the frequency domain array response vector a;(#) given

in (2)
function a_l = gen_a_wideband(M,delta,theta,f_1)

Use speed of sound, ¢ = 340 m/s.

The source (speech) originates from an angle of theta_sig = #; = 5° and the interfer-
ence (laughter) from theta_inter= 3 = 30°. Design a matched filter beamformer for
each bin and obtain the output of the matched filter beamformer

y = mf(X_time,F_s,theta_sig)

Use F_s = 8 kHz. Play y as an audio file and comment on the output.

Derive a LCMV beamformer which produces a distortionless response towards theta_sig
and places a null at theta_inter. Formulate and solve the optimization problem for
each bin separately and mention the parameters of the equality constraint C and f
for each bin. Also explain how can we compute the desired covariance matrices using
X_time. Write a program to implement LCMV beamformer

y = lcmv(X_time,F_s,theta_sig,theta_inter)

Use F_s = 8 kHz. Play y as an audio file and comment on the output. Compare the
performance to that of matched filter beamformer.

Derive an LMS variant of the LCMV beamformer that is referred to as Frost LMS.
Note that we will be having L different beamformers corresponding to each bin. The
beamformers for different bins are to be updated as we proceed from one frame to the
next using an update equation of the form

w ™ = fiw?) + wi

where that k is the iteration/frame index, [is the frequency bin index, fi(-) is the
function that you need to compute, and wj is the minimum norm solution. Give f;(-)
and w}. Write a program to implement the frost LMS beamformer

y = frost_lms(X_time,F_s,theta_sig,theta_inter,mu)

Use F_s = 8 kHz and an appropriate mu. Play y as an audio file and comment on the
output. Compare the performance to that of the matched filter and LCMV beamformer.

. Now assume that we made an error in estimating the true angles of the desired source.
Compute the outputs of the matched filter, LCMV, and Frost LMS beamfomers with a
mismatched angle theta_sig = 8° (instead of 5°) and comment on the performance.

