
270 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 2, MARCH 2016
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Abstract—The tasks of online data reduction and outlier rejec-
tion are both of high interest when large amounts of data are to be
processed for inference. Rather than performing these tasks sepa-
rately, we propose a joint approach, i.e., robust censoring. We for-
mulate the problem as a non-convex optimization problem based
on the data model for outlier-free data, without requiring prior
model assumptions about the outlier perturbations. Moreover, our
approach is general in that it is not restricted to any specific data
model and does not rely on linearity, uncorrelated measurements,
or additive Gaussian noise. For a given desired compression rate,
the choice of the reduced dataset is optimal in the sense that it
jointly maximizes the likelihood together with the inferred model
parameters. An extension of the problem formulation allows for
taking the average estimation performance into account in a hy-
brid optimality criterion. To solve the problem of robust censoring,
we propose a Metropolis-Hastings sampler method that operates
on small subsets of the data, thus limiting the computational com-
plexity. As a practical example, the problem is specialized to the
application of robust censoring for target localization. Simulation
results confirm the superiority of the proposed method compared
to other approaches.

Index Terms—Big data, censoring, Markov chain Monte Carlo
method, Metropolis-Hastings sampler, outlier rejection, robust-
ness, sparse sensing.

I. INTRODUCTION

I N this era of data deluge, performing analytics on the mas-
sive volumes of data generated by ubiquitous sensors, in-

ternet, power and social networks, is increasingly challenging.
Such prohibitively large volumes of datasets very often include
entries from faulty systems, malicious agents, or entries that are
irrelevant and redundant. The data generated from faulty sys-
tems, for example, may contain outliers that do not obey the
postulated or learnt model [2]–[4]. These outlying entries sig-
nificantly degrade the performance of the underlying inference
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tasks like prediction, estimation, tracking, clustering, and clas-
sification, to list a few. Therefore, the task of mining the most
informative data samples and rejecting possible outliers is of
paramount importance in data analytics.
Data analytics with large-scale data is infeasible without

dimensionality reduction due to the limited computational
capacity. Dimensionality reduction can be achieved by smartly
designing efficient data gathering or sketching techniques
keeping in mind the inference task to be performed, for ex-
ample, through sensor selection or censoring. Sensor selection
is an offline design approach [5]–[8], where the sensing oper-
ation is designed based only on the data model (even before
gathering the data) such that a desired ensemble inference
performance is achieved; hence, we refer to such methods as
model-driven sensing schemes. On the other hand, in contrast
to these offline design schemes, dimensionality reduction
can be done on already acquired data by throwing away, i.e.,
censoring, less informative samples; we refer to such censoring
schemes as data-driven sensing schemes. Censoring in its clas-
sical flavor is typically applied in a distributed setup, where the
uninformative sensors do not transmit their observations to the
fusion center [9], [10], thereby reducing the communications
as well as the processing costs. Here, we do not assume a dis-
tributed setup and focus on the processing costs of subsequent
inference tasks.
Evidently, the model-driven schemes that are agnostic to

data are not robust to outliers. Even though the data-driven
schemes like censoring use the data, existing state-of-the-art
censoring schemes are not designed to be robust to outliers.
On the other hand, existing robust estimators are not devised
specifically for dimensionality reduction. Some well-known
robust estimators are: (i) M-estimators [2], which are max-
imum likelihood-type estimators that replace the likelihood
function with a smooth function introducing robustness, (ii)
least-trimmed-squares (LTS) estimators [11], which remove
outliers from the least-squares fit based on a predetermined
breakdown point that determines the number of outliers, (iii)
random sample consensus (RANSAC) [12], an iterative algo-
rithm that classifies at each iteration a random subset of data as
inliers or outliers, or (iv) sparsity-controlling outlier rejection
(SCOR) [3], [13], [14], which models outliers as additive
perturbations and estimates a sparse vector containing these
perturbations. The above approaches reduce the dimensionality
of the data only in so far as they discard outliers. They do not
provide a meaningful tool for further dimensionality reduc-
tion. Moreover, they are mostly designed for linear Gaussian
problems, without a straightforward generalization to more
complicated non-linear or non-Gaussian estimation problems.
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Fig. 1. Data censoring via sparse sensing, with , , and denoting, re-
spectively, the uncompressed data, the compression matrix, and the compressed
data. A white, black, and colored square represent, respectively, a one, a zero,
and an arbitrary value.

In this paper, we propose a joint approach for robust
learning and data censoring, i.e., robust censoring. We focus on
non-linear regression problems. The dimensionality reduction
is achieved by linearly compressing the data through a sparse
and deterministic compression matrix, that is, through sparse
sensing [15] as shown in Fig. 1 (cf. [7], [16]).
We extend the existing literature on robust learning/estima-

tion as well as censoring in various aspects:
— The proposed robust censoring theory is general, that is, it

is not limited to an additive Gaussian noise model and can
be applied to any data distribution. Furthermore, the data
can be correlated.

—We do not assume a specific model for the outliers, as in
many practical scenarios this model might not be known.

— In addition to a maximum likelihood robust censoring, we
also propose a robust censoring scheme that includes the
ensemble average estimation performance in its selection
criterion.

We formulate the problem of robust censoring as a joint
optimization problem that comprises compressive parameter
estimation as well as the censoring mechanism. In contrast
to compressive sensing [17], the parameter vector here need
not be sparse. The proposed optimization amounts to selecting
those measurements which fit the model of outlier-free data
best. Since measurements containing outliers typically deviate
from this model most, this approach ensures robustness with
respect to outliers.
The resulting optimization problem is non-convex and non-

linear. To solve it, we propose a method based on the powerful
concept of Metropolis-Hastings (MH) sampling [18]–[22]. Like
other Markov chain Monte Carlo (MCMC) methods [21], [22],
MH sampling is a versatile iterative method capable of solving
a wide range of problems that are too challenging for most clas-
sical estimation methods. It has been used, e.g., for classifica-
tion [23], [24], for model learning [25], for uncertainty manage-
ment [26], for random sampling from networks [27], [28], and
as a complement for particle filters [29]–[31]. The flexibility of
the MH concept requires that its implementation be carefully
designed to ensure convergence within a moderate number of
iterations. We present such a design for the robust censoring
problem and subsequently further specialize it to provide a prac-
tical example.
Outline: This paper is organized as follows. Section II con-

tains the problem formulation for robust censoring and relates

it to existing schemes. In Section III, we present the proposed
method for solving the problem using MH sampling. The
general formulation of the method is subsequently specialized
to the problem of robust censoring for target localization in
Section IV, including numerical experiments to assess the
performance of the proposed method. In Section V, we present
a modification of the proposed robust censoring scheme that al-
lows us to incorporate the average estimation performance into
a hybrid optimality criterion. Our conclusions are summarized
in Section VI.
Notation: The notation used in this paper can be described

as follows. Upper (lower) bold face letters are used for matrices
(column vectors). denotes transposition. refers
to a diagonal matrix with its argument on the main diagonal.

represents a diagonal matrix with the argument on its
diagonal but with the all-zero rows removed. is an identity
matrix. denotes the expectation operation. The -(quasi)
norm of a vector refers to the number of nonzero elements in
, i.e., . The -norm of an

vector is denoted by .

II. PROBLEM MODELING

Consider a general non-linear regression problem, where an
unknown vector is to be estimated from the output
data . The output data are collected in the vector

. We assume that the length- data
vector is possibly contaminated with up to outliers and/or it
contains uninformative elements, where we interpret informa-
tive data as data that have a large likelihood.
Let the uncontaminated data vector, denoted by

, be related to the unknown parameters
through a non-linear model that is

represented by the resulting probability distribution of :

(1)

We assume that this distribution is known for any . However,
due to the presence of outliers, the observed data do not always
obey the above model. For estimating the unknown parameter
, we have access only to the (partly) contaminated data . The
statistical dependence of on or is not assumed to be known.
In other words, we do not assume a specific model for the out-
liers. We only use the implicit characteristic of outlier-contami-
nated measurements that they strongly deviate from the known
model, i.e., they have a very small (or even zero) probability,
given the true .
The dimensionality reduction of the observed data is rep-

resented by the sparse Boolean vector , where
indicates that is considered outlying or is censored,

and . Recall that is also the length of
. Out of the elements of , only are nonzero. Using
, we construct the censoring matrix as

where denotes a diagonal matrix with the argument on
its diagonal, but with the all-zero rows removed. The resulting
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matrix is a fat sparse binary matrix with one nonzero el-
ement in each row and at most one nonzero element in each
column. In Fig. 1, for example, equals with

. By applying the linear compres-
sion operator to the observed data vector , we obtain the
compressed data vector

which is of length . The reduced dimension data
vector is subsequently used to solve the inverse or learning
problem. The corresponding unobserved uncontaminated

follows a known pdf

(2)

which we will use for robust estimation of from .
In this paper, we pose the problem of designing a Boolean

censoring vector (and hence, a censoring matrix ) to jointly
reject the outliers and compress the data in order to reduce the
costs involved in solving the inverse problem. Formally, the ro-
bust censoring problem is stated as follows.
Problem (Robust Censoring): Given the data vector

which is related to the unknown through a known
non-linear data model but possibly contaminated with up to
outliers: (a) design the Boolean censoring vector
that chooses data samples discarding possible outliers
as well as censoring less informative samples (samples with
smaller likelihood) and (b) use this reduced dimension data to
compute an estimate of .
The difference of this formulation from classical censoring

is, evidently, that the presence of outliers is explicitly accounted
for. The difference from classical outlier rejection, on the other
hand, is that may be chosen much smaller than the number
of apparently outlier-free data samples. Choosing a smaller
and working only with -dimensional subvectors of often
leads to significant reductions of the computational cost. More-
over, since in robust censoring is no longer determined by the
number of outliers, the approach requires only very weak as-
sumptions about the actual number of outliers. For large and
small , the postulated indeed allows for a large
range of . No further assumptions about the outliers are made.
Mathematically, the robust censoring problem can be formu-

lated as the following optimization problem

(3)

where

and the pdf is in fact the likelihood function of
as in (2), but with inserted in place of the unobserved .
This means that for a fixed , we are choosing and that fit
the uncontaminated data model best in the maximum likelihood
sense. In particular, fitting optimally to the known data model
of the uncontaminated data is an effective means to ensure ro-
bustness with respect to outliers, sincemeasurements containing

outliers typically deviate from this model the most. We under-
line that the formulation in (3) is general in the sense that it is not
restricted to a specific data model and does not rely on assump-
tions such as linearity, uncorrelated noise, or additive Gaussian
noise.
In many applications, the data vector has some specific

structure; it may, for example, consist of subvectors that cor-
respond to measurements from different sensors. Depending on
the particular setting, it may make sense to make a joint decision
about selecting or rejecting an entire subvector, rather than pro-
cessing each element individually. This can easily be achieved
by adapting the definition of such that it contains only vec-
tors with a suitable structure. The corresponding modifications
of robust censoring algorithms are straight-forward. For ease of
exposition, the rest of this paper considers only the case where
is unstructured.
Relation of (3) to Sparsity-Controlling Outlier Rejec-

tion: Sparsity-controlling outlier rejection (SCOR) [3] is a
state-of-the-art method for outlier rejection in linear Gaussian
problems. In [13], it was shown to outperform random sample
consensus (RANSAC) [12]. Here, we show that for additive
linear Gaussian models our approach to robust censoring
according to (3) in fact amounts to SCOR, up to some modifi-
cations, and to least-trimmed-squares (LTS) [11]. The proposed
approach can thus be interpreted as a generalization of these
state-of-the-art methods.
In the linear Gaussian data model, the relation between the

outlier-free data vector and the unknown parameter vector
is

(4)

with a known matrix and a
noise vector from the distribution , i.e., from a
multivariate Gaussian distribution with mean and covariance
matrix , where is known. In this case, the likelihood func-
tion is given as

and the likelihood function of the reduced dimension data is

(5)

with . We assume that and has
full column rank for all . The proposed approach to
robust censoring (cf. (3)) for this problem is

(6)

which for is equivalent to the LTS approach. More
specifically, if we use the residuals and
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let denote the squared residuals in ascending order (for
some ), we can express from (6) as

which is the classical LTS formulation. The problem formula-
tion for SCOR, on the other hand, is

(7)

where represents the additive outlier per-
turbations, and the regularization parameter controls the as-
sumed number of outliers. In (7), the -norm is used to achieve
sparsity of , i.e., as a more practical substitute for -regular-
ization. If we replace the -norm by the -norm, there is some
for which (7) can be written as

(8)

Let us now define the binary vector as

if
else,

which means that

if
else. (9)

Then, (8) can be written as

(10)

As is easily verified using (9), the summands in (10) simplify as
follows:

and thus

which is identical to in (6). Thus, we have shown that if the
-norm in SCOR is replaced by the -norm, there is some for

which SCOR yields the same result as the proposed formulation
of robust censoring.

III. PROPOSED METHOD: METROPOLIS-HASTINGS SAMPLING

Solving the problem of robust censoring as formulated in (3)
is often too complex for direct calculation. In particular, it typi-
cally involves an exhaustive search over , which quickly be-
comes intractable for practical problem dimensions and . In
this section, we present the proposed approach to solving (3)
approximately. The proposed method relies on Bayesian sam-
pling, more specifically Metropolis-Hastings (MH) sampling
[18]–[22], which allows for a general formulation that requires
only weak additional assumptions. To provide a practical ex-
ample, the general formulation of the method in this section
is subsequently specialized to the problem of robust censoring
for target localization in Section IV and compared to other ap-
proaches through numerical experiments.
Straightforward Approach: Before we discuss the proposed

method itself, we briefly sketch a straightforward deterministic
approach to solving (3) approximately, namely by employing
the alternating descent (AD) technique. This will later serve
as a counter-example, motivating the use of the more complex
but much more powerful MH methodology as proposed sub-
sequently. The AD approach to solving (3) amounts to an it-
erative approximation by alternately fixing either or and
maximizing with regard to the respective other pa-
rameter. More specifically, in iteration , we calculate

(11)

(12)

A simple choice for the initialization is to use a that is ran-
domly drawn from a uniform distribution over . As soon as
maximization with respect to or does not change the re-
spective parameter, a local maximum of has been
reached. The algorithm is thus terminated after iteration if

or , returning and
.

Evidently, it depends on the shape of whether the
maxima in (11) and (12) can be calculated (possibly using some
approximations). In general, (12) may again incur combinatorial
complexity, no different from the original joint maximization
in (3). However, in many problems fixing or simplifies the
maximization of with respect to the other parameter
significantly. In particular, this is usually the case for the max-
imization with respect to when the outlier-free observations

are statistically independent of each other (given ), i.e.,
when factorizes as . The main weakness of
AD is that it converges only to a local maximum of
and is thus strongly influenced by the initialization. Simulations
presented in Section IV-C confirm that AD is severely limited
in the estimation performance it can achieve, compared to the
proposed MH method, which will be presented next.
Target Distribution: Markov chain Monte Carlo (MCMC)

methods [21], [22] such as MH sampling are iterative methods
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that are often employed to calculate statistics of some proba-
bility distribution, the so-called target distribution1, which may
often be known only up to a normalization constant. Although
the likelihood function in (3) is not a probability
distribution of and , it is non-negative and can thus be in-
terpreted as a non-normalized probability distribution of and
. We could therefore directly use as the non-nor-

malized target distribution and employ an MCMC method to
maximize it with respect to and . Here, however, we pro-
pose a slightly different approach. Using

(13)

which is either calculated in closed form or obtained through
some approximation, we can rewrite (3) as

(14)

(15)

While and according to (14) and (15) are still the same as in
(3), the advantage over (3) is that the formulation in (14), (15)
allows us to use the target distribution

(16)

which only needs to be maximized with respect to rather than
.MCMCmaximization over is often simpler and faster

than MCMC maximization over . After obtaining
according to (14) by means of an MCMC method, we can cal-
culate using (15).
Maximizing the target distribution according to the

MCMC concept amounts to generating and processing a large
population of realizations from . In the following, we
will discuss how is estimated from the population and how
the realizations are generated (since we cannot directly draw
samples from ).
Sample-Based Estimation: Let be the total number of

realizations used for maximizing , and let
denote the number of realizations that are equal to the
respective value of , normalized by . Then, as increases,

tends to approximate more and more closely,
as can easily be shown. The sample-based approximation of
(14) is thus given by . However,
as discussed in [32], [33] in more detail, for moderate sample
sizes this approximation may be exceedingly coarse, which
often makes the following widely-used alternative approach
(see, e.g., [34]) preferable:

(17)

1Contrary to the typical use of MCMC methods for Bayesian estimation,
where the target distribution is a posterior probability distribution, we will not
assign such a notion to the target distribution here. Nevertheless, our optimiza-
tion problem according to (3) could in fact also be interpreted from a Bayesian
perspective, namely as a maximum a posteriori (MAP) estimation with nonin-
formative uniform priors on and . The MH sampler that will be proposed
in this section solves (3) and would thus perform MAP estimation, even though
the target distribution will not be the corresponding posterior but merely have
the same maximum as the posterior.

This approximation of is obtained by calculating for
all and picking the maximum. This approach is particularly
well matched to the iterative nature of MCMC methods, where
each iteration generates a new realization . By contrast to

, finding does not require storing the entire population;
instead, we can simply compare each new realization to
the realization that previously maximized the target distribution.
Thus, throughout the entire algorithm only one realization needs
to be stored.Moreover, inMHmethods such as the one proposed
here, is typically already calculated in the process of
generating , which means that no further computations are
needed for the comparison with the previous maximum.
In principle, (17) would not require that the realizations are

generated from . Any distribution could be used for gen-
erating the realizations, as long as its domain includes the maxi-
mizer of within (which is according to (14)). Since
we do not assume any prior information on which elements of

may be more likely or less likely to maximize , another
intuitive choice would be to generate the realizations simply
from a uniform distribution over . However, generating the
realizations from ensures that a realization is more
likely to be equal to than to any other . Assuming
the ideal case that the realizations are independent from each
other, it can easily be shown that this increases the probability
that even a moderate-sized set of realizations contains , com-
pared to the choice of a uniform distribution.
MH Sampling: As mentioned above, each MCMC iter-

ation generates—if we ignore the transient influence of the
initialization—one new random realization from the
target distribution . This randomness is a fundamental
difference between MCMC methods and other widely used
estimation methods such as the expectation-maximization [35]
or belief propagation [36] algorithms. The MCMC method that
we propose to use here is MH sampling, which amounts to the
following procedure. At iteration , we first generate a proposal

from some proposal distribution , whose shape
depends on the realization from the previous iteration, i.e.,

. Then, the new realization is obtained as

with probability
with probability , (18)

where

(19)

Note that iterations where do not influence the
estimate and thus constitute a futile computational over-
head. It is therefore advantageous if can be designed such
that is typically large, thus reducing the number of such fu-
tile iterations.
Since there is no simple relation between the number of it-

erations and the estimation performance, we propose to pre-
determine the number of iterations based on training. Other
approaches for choosing include, e.g., assessing when the dis-
tribution of the realizations has converged to a stationary distri-
bution [37]. Evidently, a smaller is sufficient if we are mostly
interested in outlier rejection and less in optimality, whereas a
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larger is needed to find the exact maximum likelihood solu-
tion of (3). With a smaller , the algorithm is less likely to use
all observations; instead, it typically uses only a smaller part
of them. This may be a desired effect of complexity reduction
when optimality is less important.
Compared to the widely used method of Gibbs sampling

[21], [38], [39], MH sampling is more general, since the pro-
posal distribution is not specified by the MH concept but
can be chosen freely, under some mild conditions. In Gibbs
sampling (and its variations such as the recently proposed par-
tially collapsed Gibbs sampling [40]–[42]), the proposal vector

at some iteration is determined to be equal to in
some of its elements while other elements are randomly chosen
using particular distributions. These distributions are derived
from and entail that is always 1, which is potentially
advantageous, as explained above. The main reason why we
choose MH sampling rather than Gibbs sampling here is the
following. According to the Gibbs sampling concept, the set of
elements of that are randomly sampled—which is typically
only one element—is chosen based only on (in a periodic
manner) but not on . In MH sampling, we can choose
the set smartly using , which may reduce the number
of iterations needed by the algorithm, especially when is
large. Furthermore, in the most straight-forward Gibbs sampler
implementation, the distribution for sampling some elements
of is defined on , where is the number of those
elements. This may very often lead to a new realization that is
not an element of and is thus not considered in (17). More
sophisticated Gibbs sampler designs can avoid this effect, but
they are typically computationally complex. In MH sampling,
we can easily design such that is always within .
As shown in the previous paragraph, the design of influ-

ences the number of iterations needed by the algorithm. In fact,
critically determines the rate at which the estimators im-

prove with increasing numbers of iterations. If is
concentrated around too strongly, for example, the esti-
mators may improve steadily but very slowly, and the algorithm
may spend many iterations around local maxima of the target
distribution. On the other hand, if is completely
independent of , it typically produces many proposals
that correspond to small values of and thus fail to improve
the estimators because of (18).
Proposed Implementation: In view of the trade-off discussed

in the previous paragraph, we use two different types of pro-
posals, which we call “small-step” proposals and “large-step”
proposals (cf., e.g., [23]). In each sampler iteration, we decide to
make either, with some fixed small probability , a “large-step”
proposal or, with probability , a “small-step” proposal. We
can thus express as

(20)

“Small-step” proposals introduce small variations based on the
respective previous realization . Since the probability
distribution of is , the proposal is also generally
likely to be in a region where is large. Furthermore, we

may be able to exploit the local shape of around to
make proposals that are likely to improve . “Large-step”
proposals, on the other hand, are intended to reduce the risk of
finding only a local maximum of the target distribution. To this
end, they are chosen independently of . Beyond these
considerations, our particular choices for the “small-step” and
“large-step” proposal distributions are rather arbitrary.
A “small-step” proposal is obtained from by

changing the -th element from 0 to 1 and the -th
element from 1 to 0, where and are randomly
picked. We can thus write

(21)

for all that differ from in two elements, and 0 for
all other . As a straight-forward choice, we propose to draw

from a uniform distribution over all the zero elements
of :

(22)

for any of the indices such that
. The analogous distribution for would be

for any of the indices such that
. However, we can reduce the number of iterations needed
by the algorithm if we instead design such
that the probability of obtaining a with higher is in-
creased. The design of such a more advantageous distribution

depends on the specific shape of in a
given problem. If, for example, some simplifying approxima-
tions allow us to factorize

such that each factor depends only on one element ,
then we can simply choose

(23)

for any of the indices such that
. Here, is some normalized decreasing func-

tion. Indeed, it is easily verified that choosing among
the indices with smaller leads to a larger (ap-
proximate) . Two examples for this approach will be
given in Sections IV-C and V-B. Note that, following the same
rationale, we can also choose as an increasing
function of . However, in view of the much larger
domain of (comprising elements rather
than ) we prefer the simpler uniform distribution (22) here.
“Large-step” proposals are chosen from a uniform distri-

bution over , independently of or :

(24)
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Inserting (20)–(22) and (24) into (19) and using

we obtain

(25)
if differs from in two elements—where we
denote the index of the new nonzero element by and the
index of the new zero element by —and

(26)

for all other .
The MH sampler for robust censoring is summarized as

Algorithm 1.

Algorithm 1 MH sampler for robust censoring

1: Initialize with any from ,
2: Iterate for :
3: With probability (e.g., ):
4: Generate from (24) (“large-step”)
5: In the converse case:
6: Generate from (22) and from (23)

and calculate (“small-step”)
7: Calculate according to (25), (26)
8: With probability
9: In the converse case:
10: If
11:

IV. EXAMPLE: ROBUST CENSORING FOR
TARGET LOCALIZATION

In this section, we apply the proposed method to the problem
of target localization as a practical example for non-linear
inverse problems where robust censoring can be useful.
Sections IV-A and IV-B contain the signal model and the
formulation of the proposed MH method for this problem, re-
spectively. Section IV-C presents numerical results that assess
the performance of the method.

A. Signal Model
We assume a setting where a large number of sensors at

known positions attempt to localize several targets using noisy
distance measurements [43]–[45]. The distance measurements
are potentially contaminated with outliers. In the absence of
perturbations such as noise and outliers, a very small arbitrary
subset of the distance measurements would be enough for
locating a target. Outlier contamination but also model-consis-
tent noise typically lead to a large variation in the quality of
the different distance measurements. It therefore makes sense
to search for a relatively small subset of measurements that
potentially lead to optimal localization. Furthermore, besides
leading to a reliable estimate, robust censoring reduces the

signal processing cost associated with the number of measure-
ments that are used and/or stored.
We assume that localization is performed independently for

each target. For the sake of simplicity, we thus consider only one
target in the remainder of this section while the total number of
available sensors is still assumed to be large. In the present
problem, is the unknown position of the target in dimen-
sions, i.e., typically, or . We denote the known
positions of the sensors as . The noisy (out-
lier-free) distance measurement from the -th sensor is

(27)

where the additive noise is zero-mean Gaussian with vari-
ance . Since the level of uncertainty of distance measure-
ments is often higher for larger distances, we assume that
increases with as

(28)

with some known non-negative constants , , and that de-
pend on how the distance measurements were obtained.
Moreover, we assume that the noise at different sensors may in
general be correlated (e.g., due to some sources of interference
that affect several sensors):

(29)

where the coefficients are known and for
. Thus, the noise covariance matrix

with depends on
through (28) and (29). Using and

, we can write the likeli-
hood function of the problem as

The likelihood function of the reduced dimension data is
thus

(30)

with

Consequently, the proposed approach to robust censoring (cf.
(3)) for this problem is

(31)

where denotes the determinant of the matrix and
can be obtained from by Cholesky factorization. Analo-
gously, inserting (30) into (13) yields

(32)
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Since there is no closed-form solution for (32), we resort to the
following iterative approximation. Starting from some random
initial , we calculate updates for by eval-
uating the right hand side of (32) with consistently
replaced by . Each update amounts to solving
a non-linear least-squares problem, which we do approximately
using the Gauss-Newton algorithm [46]. In our experiments,

updates were enough to make the influence of the initial-
ization negligible. The resulting serves as an approximation
to (32) and will be denoted as in the rest of this section.

B. Proposed Method: MH Sampling

For the proposed MH sampler, we obtain the target distribu-
tion (cf. (16), (30))

(33)with

(34)

Let and denote, respectively, the indices of the -th and
the -th 1 in . Then the -th element of is obtained as

, and the -th element of is obtained
as , with

(35)

For finding a simple and effective proposal distribution
(cf. the discussion above (23)), we first sim-

plify (33) by neglecting all the off-diagonal elements of ,
which leads to

Note that for all . Following (23), we design
the probabilities of the indices based on

:

(36)

(37)

for all such that . The logarithm
in (36) is used in order to make the distribution flatter, thus al-
lowing more variation and improving the results, according to
our simulations. To ensure that all probabilities are non-nega-
tive, we subtract a constant in (36) such that the smallest
value of equals zero. In (37), and are

obtained by inserting for in (34) and (35), respec-
tively. The distribution is normalized such that
its sum over the indices where equals 1.
The proposed MH algorithm for robust censoring in target

localization follows Algorithm 1, using (37) for generating
and inserting (33) and (37) into (25) and (26) for

calculating .

C. Numerical Results
Reference Method: AD: We compare the performance of our

method to that of the straightforward AD approach presented at
the beginning of Section III. Due to (30), calculating (12) for
target localization specializes to

(38)
In order to calculate this approximately, we use the same sim-
plification as described above (37), i.e., we neglect the off-diag-
onal elements of . Denoting the -th diagonal
element of by

we obtain

(39)

As is easily verified, (39) amounts to finding the smallest
values among and setting the corresponding el-
ements of to 1 and the remaining elements of to 0. For
solving (11) for target localization, we use the same steps as
for solving (32). In our implementation, the AD method is sig-
nificantly less computationally complex than the proposed MH
method.
Reference Method: SCOR: As a second reference method

besides AD, we extended SCOR to the non-linear problem of
target localization. To this end, we replace (31) for this method
with

(40)

Direct application of SCOR to (40) is not possible because
depends on and because is a non-linear function of .
Instead, we resort to an approach analogous to (11), (12); we
alternately minimize the multivariate cost function in (40) with
respect to either or while the respective other parameter is
fixed, thus converging to a local minimum of the cost function.
More specifically, in iteration , we calculate

(41)



278 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 2, MARCH 2016

(42)

Here, can be calculated using LASSO [47] like in the
original SCOR for linear problems. In each iteration, we choose
a suitable value of . Guidelines for a robust way of choosing
are given in [13]. However, since this SCOR method was

already significantly more complex than the proposed MH
method, we do not follow [13] here but instead choose
heuristically. In each iteration, we set equal to the largest
absolute value of the vector ,
where contains the diagonal elements of .
As is easily verified by comparing (42) and (32), is ob-
tained by calculating with replaced by .
The algorithm is initialized with , where

is randomly drawn from a uniform distribution over .
The algorithm terminates after iteration if ,
where is calculated from by finding the largest
absolute values among the elements of and setting the
corresponding elements of to 1 and the remaining elements
of to 0. After its final iteration , the algorithm returns

and . As mentioned above, in our
implementations, the computational complexity of this method
is significantly higher than that of the proposed MH method.
The reason is that the calculations in the MH method are based
on vectors of length or matrices of size , e.g., , ,
or , whereas the calculations in the SCOR method are based
on vectors of length or matrices of size , e.g., , ,
or .
Simulation Setup: To assess and compare the performance

of the methods described above, we generated several hundred
measurement vectors according to (27), using and

. In the following, all lengths are normalized with respect
to a unit length of 1m. For each measurement vector, the true lo-
cation and the sensor locations were individually
generated from a uniform distribution on . Each noise
vector was generated using and . The correla-
tion coefficients were generated individually for each noise
vector. To this end, we first generated a matrix from a uni-
form distribution on , where was varied in
different experiments. Then, the coefficient for was
obtained as the -th element of . The resulting coeffi-
cients for were distributed closely around their mean
, while we set for . In each data
vector, out of the measurements were contami-
nated with outliers, by adding zero-mean Gaussian noise with
variance . In different experiments, , , and were
varied to study the behavior of the methods in different settings.
For each data vector, and were calculated according to

the proposed method, i.e., Algorithm 1, with itera-
tions and . The corresponding curves are labeled
as MH. We compare the proposed method with the two refer-
ence methods described above, labeled as SCOR and as AD,
respectively. The performance measures we assess are the em-
pirical root-mean-square error (RMSE) of obtained by av-
eraging over 200 experiments, and the average number of
outlier measurements among the selected measurements ac-
cording to , i.e., outliers that were not successfully rejected.

Fig. 2. Performance for different degrees of outlier contamination :
(a) Average rate of outliers among the selected measurements
corresponding to , (b) Empirical RMSE of . For the MH method, vertical
bars mark an interval as wide as the empirical standard deviation on each side
of the respective average. For , the MH method yields ,
i.e., the selected measurements were outlier-free in all 200 experiments.

Normalizing with yields the average residual rate of outlier
contamination among the selected measurements, which can be
compared to the unprocessed rate of outlier contamination .
Simulation Results: Fig. 2 shows the average residual out-

lier contamination rate as well as the RMSE of for dif-
ferent values of , i.e., different degrees of outlier contamination

between 1% and 80%. Here, we used , ,
, and . We can see that, in terms of ,

all methods perform well at lower contamination , success-
fully eliminating the outliers almost completely. The proposed
method is clearly the most robust, showing the smallest ,
up to very high outlier rates above 70%. In terms of , the pro-
posed method outperforms the other methods significantly for
most degrees of outlier contamination . The performance
gap only becomes smaller around and above. Inter-
estingly, the error of does not appear to depend on in the
proposed method (up to about ) and SCOR (within
the range studied here). In this sense both methods are robust to
higher outlier contamination, but at very different error levels.
Fig. 3 shows results from 200 experiments where is fixed

at 10% and is varied between 10 and 150, leading to dif-
ferent compression rates . As in Fig. 2, the proposedmethod
clearly outperforms the other methods in terms of both (at
least for smaller ) and (for the entire range of ). In the pro-
posed method and in SCOR, the performance shows very weak
or no visible dependence on , while the performance of AD
degrades when fewer measurements are selected. For larger
than about 100, AD performs similarly to the proposed method
in terms of , but it still clearly yields a larger estimation
error in terms of .
In Fig. 4, we show the dependence of the RMSE of and of

the average residual outlier contamination rate on the out-
lier strength , using , , , and

. We can see that AD yields a roughly constant
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Fig. 3. Performance for different numbers of selected measurements out of
: (a) Average rate of outliers among the selectedmeasurements

corresponding to , (b) Empirical RMSE of . For the MHmethod, vertical
bars mark an interval as wide as the empirical standard deviation on each side
of the respective average.

Fig. 4. Performance for different outlier variances : (a) Average rate of
outliers among the selected measurements corresponding to ,
(b) Empirical RMSE of . For the MH method, vertical bars mark an interval as
wide as the empirical standard deviation on each side of the respective average.

for different , while its estimate becomes worse for larger
. Both SCOR and the proposed method, on the other hand,

improve in terms of as increases, while their esti-
mation errors of appear fairly independent of . This result
seems intuitive, since smaller outliers can more easily be missed
on the one hand, but they do not cause as much degradation in
the observation on the other hand. In both performance mea-
sures, the proposed method performs consistently much better
than SCOR, and consistently better than AD.
Fig. 5 shows the average residual outlier contamination rate

as well as the RMSE of for different values of , i.e.,
different noise levels. Here, we used , ,

, and . We can see that, in terms of ,

Fig. 5. Performance for different noise levels : (a) Average rate of outliers
among the selected measurements corresponding to , (b) Empir-

ical RMSE of . For the MH method, vertical bars mark an interval as wide
as the empirical standard deviation on each side of the respective average. For

and , the SCORmethod yields, respectively,
and .

all methods produce rather flat curves at lower noise levels and
significant increases at higher noise levels. The increase is most
drastic in the SCOR method, where it reaches ,
i.e., all selected observations are outlier-contaminated. Interest-
ingly, this drastic failure at outlier rejection does not correspond
to a significant increase of the RMSE of compared to lower
noise levels. The proposed MH method consistently performs
best in both performance measures. In terms of , the perfor-
mance gap is largest at low noise levels and steadily decreases
with increasing noise.
Fig. 6 studies the effect of the correlations among different

measurements. We vary between 0 and 0.6, using ,
, , and . We can see that the

proposed method handles correlations best, achieving smaller
errors and stronger outlier rejection than the reference methods
at all levels of correlation. While the average residual outlier
contamination rate of the proposed method appears fairly
invariant to (by contrast to the reference methods), the error
of increases slightly at higher correlation levels.
Finally, in Fig. 7 we study the behavior of the proposed MH

method over the number of iterations . The results are aver-
aged from 10 000 experiments using , ,

, , and . Fig. 7(a) shows how
many of the observations are used within the first
iterations. Fig. 7(b) shows the dependence of the RMSE of
and of the average residual outlier contamination rate

on . We can see that the number of observations converges
towards steadily but rather slowly. By contrast,
the error decreases very quickly in the first 50 iterations and
then improves only marginally in further iterations. We can con-
clude from the slow decrease of the errors at later iterations that
a prohibitively large number of iterations may be required to
guarantee a high probability of obtaining the unique optimal
among the elements of . On the other hand, the
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Fig. 6. Performance for different values of average measurement correlation
: (a) Average rate of outliers among the selected measurements cor-
responding to , (b) Empirical RMSE of . For the MH method, vertical bars
mark an interval as wide as the empirical standard deviation on each side of the
respective average.

Fig. 7. Behavior of the proposed MH method over the number of iterations
: (a) Number of observations that are used within the first iterations,

(b) Empirical RMSE of and average rate of outliers among the selected
measurements after iterations.

outlier rate is reduced from to within
only 122 iterations, using only 188.8 of the 1000 observations.
The average computation times for an unoptimized

MATLAB R2014b 64-bit implementation on a 2.5-GHz Intel
Core i5 processor were 0.41s for the proposed MH method
(with ), 0.03s for AM, and 30.22s for SCOR.

V. HYBRID MODEL-DATA-DRIVEN SCHEME

The problem formulation for robust censoring presented in
(3) links the applications of outlier rejection and data-driven
dimensionality reduction, yielding a solution that is optimal in
the maximum likelihood sense. Similarly as in other methods
for outlier rejection or for data-driven dimensionality reduction,
the decision criterion in (3) does not take into account the
resulting inference performance in terms of the mean squared

error (MSE). On the other hand, dimensionality reduction
schemes that are optimal in terms of theMSE, i.e., model-driven
schemes, are not robust to outliers. In this section, we propose
to extend the decision criterion in (3) such that it reduces the
resulting MSE. We present the corresponding modifications of
the proposed MH method for robust censoring, and we give an
example where the extended hybrid model-data-driven sensing
scheme indeed leads to improved performance.
For ease of exposition, we consider a linear inverse problem.

Recall that this model was already introduced in (4)–(6). As
stated there, the robust censoring problem formulated in (3) sim-
plifies for the linear inverse problem (4) to

In analogy to (14), (15), we can write this as

(43)

(44)

with (cf. (13))

(45)

Inserting (45) into (43) yields

(46)

with

(47)

We will now modify (47) such that it also takes into account
the MSE of , while (44) and (45) remain unchanged. Due to
(44), we can express the MSE of as a function of :

Using (45) and (4), this can be shown to yield

By adding

(48)

as a penalty term in the cost function in (47), we obtain a hybrid
model-data-driven sensing scheme which jointly minimizes the
negative likelihood function and the MSE of :

(49)
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Here, is a tuning parameter. In particular, results
in the related data (model)-driven scheme. The above optimiza-
tion problem is non-convex in . A generalization of the hybrid
model-data-driven sensing scheme is discussed in the following
remark.
Remark (Non-Linear Model): The proposed hybrid model-

data-driven scheme can be generalized to more complicated ob-
servation models, e.g., non-Gaussian and/or non-additive noise
models. In a more general hybrid scheme, we will replace
in (49) with a negative log-likelihood function and with
the Cramér-Rao bound as in [6], and the minimization will be
over both and .
Before we present the proposed MHmethod for solving (49),

we discuss an alternative method based on convex relaxation,
which will serve as a performance benchmark.

A. Convex Relaxation
The optimization problem (49) can be equivalently written in

the epigraph form as

(50a)

(50b)
(50c)

with auxiliary variables and , where the constraint
(50c) is convex in . We relax the non-convex constraint set
to its best convex approximation

Using the Schur complement and the property that
, the constraint (50b) can be equivalently expressed as

which is convex and linear in and . The convex relaxed
hybrid model-data-driven sensing problem then becomes

(51)

The solution of this problem is not Boolean; however, an ap-
proximate Boolean solution can be obtained by using determin-
istic or randomized rounding as discussed in [6].
Contrary to the solver presented in this subsection, the pro-

posed MH method for solving (49), which will be introduced
next, does not use any convex relaxations.

B. MH Sampler
For the data-driven MH sampler as proposed in Section III,

the target distribution (cf. (16), (5)) for the linear problem con-
sidered in this section becomes

where we used (45) and (47). In analogy to the hybrid problem
formulation in (49), we can modify the above to

(52)

in order to design a MH sampler for hybrid model-data-driven
robust censoring.
Analogously to Section IV-B, we design a simple and effec-

tive proposal distribution (cf. the discussion
above (23)) by simplifying the target distribution to a product
of factors such that each factor depends only on one
element of . To this end, we first replace from (48) with

Furthermore replacing with a fixed that does not
depend on —we use —leads to

Note that for all . Following the discussion above
(23), we set (analogously to (36)):

(53)

(54)

for all such that . Differently
from (37), non-negativity of the probabilities is already guar-
anteed in (54) without adding a constant. The distribution

is normalized such that its sum over the
indices where equals 1.
The proposed MH algorithm for hybrid model-data-driven

robust censoring in linear problems follows Algorithm 1, using
(54) for generating and inserting (52) and (54) into (25)
and (26) for calculating .
The proposed MH approach is more flexible than the convex-

relaxation-based method presented in Section V-A in that it can
be extended to non-linear and/or non-Gaussian data models.

C. Numerical Results
In the numerical experiments presented in the following, we

assess not only the two methods proposed above but also the hy-
brid censoring scheme itself, in comparison to the data-driven
scheme and the model-driven scheme. To this end, we chose the
dimensions of the problem small enough to allow for an exhaus-
tive search over , thus obtaining the truly optimal estimate
according to each sampling scheme, without potential inaccu-
racies due to some optimization method. We generated data ac-
cording to (4) using , , , and .
For each experiment, the elements of and were generated
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Fig. 8. Performance comparison of the three censoring schemes: cdf of
.

individually from zero-mean Gaussian distributions with vari-
ance 1. In each data vector, 3 out of the measurements
were contaminated with outliers, by adding zero-mean Gaussian
noise with variance 1.
Evaluation of the Scheme: Asmentioned in the previous sub-

section, both the data-driven and the model-driven scheme have
their respective strengths and weaknesses. In a given scenario,
either of them may perform better, depending on the strength
and number of outlier measurements, among other parameters.
Similarly, the proposed hybrid scheme may perform better or
worse than either of the original schemes in a given scenario.
It is interesting to note, however, that although the hybrid cost
function is a linear combination of the two original cost func-
tions, the best performance that can potentially be achieved by
the hybrid scheme is not necessarily between the best perfor-
mances achieved by the two original schemes. This is illustrated
in Fig. 8, where we show the empirical cdf’s of the error of the
optimal estimate according to the three schemes. These op-
timal estimates were not obtained by applying the methods pro-
posed above but by performing an exhaustive search over .
For the hybrid scheme, we chose . The cdf’s were ob-
tained from 1000 experiments. We can see that, here, the hybrid
censoring scheme allows for a lower minimal error than both
original schemes. Evidently, it exploits both the robustness with
respect to outliers, which it shares with the data-driven scheme,
and the information about the average reliability of each sensor,
which it shares with the model-driven scheme.
Evaluation of the Methods: The two methods presented in

Sections V-A and V-B are compared in Fig. 9. More specifi-
cally, we assess the empirical cdf’s of their estimates from
1000 experiments using . We can see that the error distri-
bution achieved with the MHmethod almost coincides with that
of exhaustive search, while the errors obtained by the convex re-
laxation method are larger.

VI. CONCLUSIONS
We proposed a novel joint approach to the two tasks of on-

line data censoring and outlier-robust learning. This problem
was formulated in terms of non-convex optimization, by jointly
maximizing the likelihood of the reduced dataset with respect to
both the inferredmodel parameters and the data selection vector.
We showed that the specialization of our general approach to
the linear Gaussian model is closely related to existing state-
of-the-art methods for outlier rejection in this model. Based on
the concept of Metropolis-Hastings sampling, we proposed a
method for solving the general non-convex problem of robust

Fig. 9. Performance comparison for the two methods proposed above: cdf of
.

censoring. We applied the proposed method to the problem of
robust censoring for target localization and demonstrated its ex-
cellent performance in comparison to other approaches, as well
as its high robustness with respect to the number and strength
of outliers and other parameters. Finally, we also studied an ex-
tension to the original problem formulation, allowing us to im-
prove the inference results in terms of average performance. We
showed that the resulting hybrid censoring scheme may indeed
perform better than both original schemes from which it was
derived.
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