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Abstract

In this paper, we consider the problem of sensor selection for parameter estimation with correlated

measurement noise. We seek optimal sensor activations by formulating an optimization problem, in

which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix,

is minimized subject to energy constraints. Fisher information has been widely used as an effective

sensor selection criterion. However, existing information-based sensor selection methods are limited to

the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By

contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection

variables that is valid for any arbitrary noise correlation regime, and develop both a convex relaxation

approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of

sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to

determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided
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to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation

performance.

Index Terms

Sensor selection, sensor scheduling, parameter estimation, correlated noise, convex relaxation.

I. INTRODUCTION

Wireless sensor networks consisting of a large number of spatially distributed sensors have been

widely used for environmental monitoring, source localization, and target tracking [1]–[3]. Among the

aforementioned applications, sensors observe an unknown parameter or state of interest and transmit

their measurements to a fusion center, which then determines the global estimate. However, due to

the constraints on the communication bandwidth and sensor battery life, it may not be desirable to

have all the sensors report their measurements at all time instants. Therefore, the problem of sensor

selection/scheduling arises, which aims to strike a balance between estimation accuracy and sensor

activations over space and/or time. The importance of sensor selection has been discussed extensively in

the context of various applications, such as target tracking [4], bit allocation [5], field monitoring [6],

[7], optimal control [8], power allocation [9], [10], optimal experiment design [11], and leader selection

in consensus networks [12].

In this paper, we focus on the problem of sensor selection/scheduling for parameter estimation similar

to [12]–[15], but with a key difference in that the measurement noise is correlated in the problem

formulation. In [13], the sensor selection problem was elegantly formulated under linear measurement

models, and solved via convex optimization. In [14], the problem of sensor selection was generalized to

nonlinear measurement models by using the Cramér-Rao bound as the sensor selection criterion. In [12],

a particular class of sensor selection problems were transformed into the problem of leader selection in

dynamical networks. In [15], the problem of non-myopic scheduling that determined sensor activations

over multiple future time steps was addressed for nonlinear filtering with quantized measurements.

In the existing literature [12]–[15], the study of sensor selection/scheduling problems hinges on the

assumption of uncorrelated measurement noise, which implies that sensor observations are conditionally

independent given the underlying parameter. Due to conditional independence, each measurement

contributes to Fisher information (equivalently, inverse of the Cramér-Rao bound on the error covariance

matrix) in an additive manner [16]. Accordingly, Fisher information becomes a linear function with

respect to the sensor selection variables (which characterize the subset of sensors we select), and thus the

resulting selection problem can be efficiently handled via convex optimization [13], [14]. However, the
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sensed data is often corrupted by correlated noise due to the nature of the monitored physical environment

[17]. Therefore, development of sensor selection schemes for correlated measurements is a critical task.

Recently, it has been shown in [18]–[21] that the presence of correlated noise makes optimal sensor

selection/scheduling problems more challenging, since Fisher information is no longer a linear function

with respect to the selection variables. In [18]–[20], the problem of sensor selection with correlated noise

was formulated so as to minimize an approximate expression of the estimation error subject to an energy

constraint or to minimize the energy consumption subject to an approximate estimation constraint. In [21],

a reformulation of the multi-step Kalman filter was introduced to schedule sensors for linear dynamical

systems with correlated noise.

Different from [18]–[21], here we derive the closed form expression of the estimation error with

respect to sensor selection variables under correlated measurement noise, which is valid for any arbitrary

noise correlation matrix. This expression is optimized via a convex relaxation method to determine the

optimal sensor selection scheme. We also propose a greedy algorithm to solve the corresponding sensor

selection problem, where we show that when an inactive sensor is made active, the increase in Fisher

information yields an information gain in terms of a rank-one matrix. The proposed sensor selection

framework yields a more accurate sensor selection scheme than those presented in [18]–[20], because the

schemes of [18]–[20] consider an approximate formulation where the noise covariance matrix is assumed

to be independent of the sensor selection variables. We further demonstrate that the prior formulations

for sensor selection are valid only when measurement noises are weakly correlated. In this scenario,

maximization of the trace of the Fisher information matrix used in [20] is equivalent to the problem

of maximizing a convex quadratic function over a bounded polyhedron. The resutling problem structure

enables the use of optimization methods with reduced computational complexity.

Compared to [21], we adopt the recursive Fisher information to measure the estimation performance

of sensor scheduling. However, for non-myopic (multi-time step ahead) schedules, the Fisher information

matrices at consecutive time steps are coupled with each other. Due to coupling, expressing the Fisher

information matrices in a closed form is intractable. Therefore, we propose a greedy algorithm to seek

non-myopic sensor schedules subject to cumulative and individual energy constraints. Numerical results

show that our approach yields a better estimation performance than that of [21] for state tracking.

In a preliminary version of this paper [22], we studied the problem of sensor selection using the same

framework as in [18]–[20]. Compared to [22], we have the following new contributions in this paper.

• We propose a more general but tractable sensor selection framework that is valid for an arbitrary

noise correlation matrix, and present a suite of efficient optimization algorithms.

• We reveal drawbacks of the existing formulations in [18]–[20] for sensor selection, and demonstrate
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their validity in only the weak noise correlation regime.

• We extend the proposed sensor selection approach to address the problem of non-myopic sensor

scheduling, where the length of the time horizon and energy constraints on individual sensors are

taken into account.

The rest of the paper is organized as follows. In Section II, we formulate the problem of sensor selection

with correlated noise. In Section III, we present a convex relaxation approach and a greedy algorithm to

solve the problem of sensor selection with an arbitrary noise correlation matrix. In Section IV, we present

sensor selection approach with weakly correlated noise. In Section V, we extend our framework to solve

the problem of non-myopic sensor scheduling. In Section VI, we provide numerical results to illustrate

the effectiveness of our proposed methods. In Section VII, we summarize our work and discuss future

research directions.

II. PROBLEM FORMULATION

We wish to estimate a random vector x ∈ Rn with a Gaussian prior probability density function

(PDF) N (µ,Σ). Observations of x from m sensors are corrupted by correlated measurement noise. To

strike a balance between estimation accuracy and sensor activations, we formulate the problem of sensor

selection, where the estimation error is minimized subject to a constraint on the total number of sensor

activations.

Consider a linear system

y = Hx + v, (1)

where y ∈ Rm is the measurement vector whose mth entry corresponds to a scalar observation from the

mth sensor, H ∈ Rm×n is the observation matrix, and v ∈ Rm is the measurement noise vector that

follows a Gaussian distribution with zero mean and an invertible covariance matrix R. We assume that

x and v are mutually independent random variables, and the noise covariance matrix is positive definite

and thus invertible. We note that the noise covariance matrix is not restricted to being diagonal, so that

the measurement noise could be correlated among the sensors. We also note that in practice, the first

two moments of x can be learnt from a parametric covariance model, such as a power exponential model

together with a training dataset of the parameter [23].

The task of sensor selection is to determine the best subset of sensors to activate in order to minimize

the estimation error, subject to a constraint on the number of activations. We introduce a sensor selection

vector to represent the activation scheme

w = [w1, w2, . . . , wm]T , wi ∈ {0, 1}, (2)
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where wi indicates whether or not the ith sensor is selected. For example, if the ith sensor reports a

measurement then wi = 1, otherwise wi = 0. In other words, the active sensor measurements can be

compactly expressed as

yw = Φwy = ΦwHx + Φwv, (3)

where yw ∈ R‖w‖1 is the vector of measurements of selected sensors, ‖w‖1 is the `1-norm of w which

yields the total number of sensor activations, Φw ∈ {0, 1}‖w‖1×m is a submatrix of diag(w) after all

rows corresponding to the unselected sensors have been removed, and diag(w) is a diagonal matrix

whose diagonal entries are given by w. We note that Φw and w are linked as below

ΦwΦT
w = Iw and ΦT

wΦw = diag(w), (4)

where Iw denotes an identity matrix with dimension ‖w‖1.

A. Minimum mean-squared estimation error

We employ the minimum mean square error (MMSE) estimator to estimate the unknown parameter

under the Bayesian setup. It is worth mentioning that the use of the Bayesian estimation framework

ensures the validity of parameter estimation for an underdetermined system, in which the number of

selected sensors is less than the dimension of the parameter to be estimated, namely, ‖w‖1 < n.

Given the Gaussian linear measurement model (1), the prior distribution of the unknown parameter x

and the active sensor measurements (3), the error covariance matrix of the MMSE estimate of x is given

by [24, Theorem 12.1]

Pw =
(
Σ−1 + HTΦT

wR−1
w ΦwH

)−1
, (5)

where the matrix ΦwH comprises rows of H for the active sensors, and Rw denotes the submatrix of

R after all rows and columns corresponding to the inactive sensors have been removed, i.e.,

Rw = ΦwRΦT
w. (6)

It is clear from (5) that due to the presence of the prior knowledge about Σ, the MSE matrix Pw is

always well defined, even if the matrix HTΦT
wR−1

w ΦwH is not invertible for an underdetermined system

with ‖w‖1 ≤ n.

It is known from [16] that the MSE matrix Pw is the inverse of the Bayesian Fisher information matrix

Jw under the linear Gaussian measurement model with a Gaussian prior distribution. We thus obtain

Jw = P−1
w

= Σ−1 + HTΦT
wR−1

w ΦwH, (7)
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where the second term is related to the sensor selection scheme. In this paper, for clarity of presentation,

we choose to work with Jw rather than Pw.

It is clear from (6) and (7) that the dependence of Jw on w is through Φw. This dependency does not

lend itself to easy optimization of scalar-valued functions of Jw with respect to w. In what follows, we

will rewrite Jw as an explicit function of the selection vector w.

B. Fisher information Jw as an explicit function of w

The key idea of expressing (7) as an explicit function of w is to replace Φw with w based on their

relationship given by (4). Consider a decomposition of the noise covariance matrix [25]

R = aI + S, (8)

where a positive scalar a is chosen such that the matrix S is positive definite, and I is the identity matrix.

We remark that the decomposition given in (8) is readily obtained through an eigenvalue decomposition

of the positive definite matrix R, and it helps us in deriving the closed form of the Fisher information

matrix with respect to w.

Substituting (8) into (6), we obtain

Rw = Φw(aI + S)ΦT
w = aIw + ΦwSΦT

w, (9)

where the last equality holds due to (4).

Using (9), we can rewrite a part of the second term on the right hand side of (7) as

ΦT
wR−1

w Φw = ΦT
w(aIw + ΦwSΦT

w)−1Φw

(1)
= S−1−S−1(S−1+a−1ΦT

wΦw)−1S−1

(2)
= S−1−S−1(S−1+a−1 diag(w))−1S−1, (10)

where step (1) is obtained from the matrix inversion lemma1, and step (2) holds due to (4).

Substituting (10) into (7), the Fisher information matrix can be expressed as

Jw =Σ−1 + HTS−1H

−HTS−1(S−1 + a−1 diag(w))−1S−1H. (11)

It is clear from (11) that the decomposition of R in (8), together with equations (9)-(10), allows us to

make explicit and isolate the dependence of Jw on w. We also remark that the positive scalar a and

1For appropriate matrices A, B, C and D, the matrix inversion lemma states that (A+BCD)−1 = A−1−A−1B(C−1 +

DA−1B)−1DA−1, which yields B(C−1 +DA−1B)−1D = A−A(A+BCD)−1A.
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positive definite matrix S can be arbitrarily chosen, and have no effect on the performance of the sensor

selection algorithms that will be proposed later on.

C. Formulation of the optimal sensor selection problem

We now state the main optimization problem considered in this work as

minimize
w

tr(J−1
w )

subject to 1Tw ≤ s,

w ∈ {0, 1}m,

(P0)

where Jw ∈ Rn is given by (11), and s ≤ m is a prescribed energy budget given by the maximum

number of sensors to be activated. We recall that n is the dimension of the parameter to be estimated,

and m is the number of sensors.

We note that (P0) is a nonconvex optimization problem due to the presence of Boolean selection

variables. Moreover, if we drop the source statistics Σ from the MSE matrix (5) and impose the assumption

s ≥ n, the proposed formulation (P0) is then applicable for sensor selection in a non-Bayesian framework,

where the unknown parameter is estimated through the best linear unbiased estimator [24].

In what follows, we discuss two special cases for the formulations of the sensor selection problem

under two different structures of the noise covariance matrix R: a) R is diagonal, and b) R has small

off-diagonal entries.

D. Formulation for two special cases

When measurement noises are uncorrelated, the noise covariance matrix R becomes diagonal. From

(6) and (7), the Fisher information matrix in the objective function of (P0) simplifies to

Jw =Σ−1 + HTΦT
wΦwR−1ΦT

wΦwH

=Σ−1 + HT diag(w)R−1 diag(w)H

=Σ−1 +

m∑
i=1

wiR
−1
ii hih

T
i , (12)

where hTi denotes the ith row of H, Rii denotes the ith diagonal entry of R, and the last equality holds

due to the fact that

w2
i = wi, i = 1, 2, . . . ,m. (13)

It is clear from (12) that each sensor contributes to Fisher information in an additive manner. As

demonstrated in [13] and [14], the linearity of the inverse mean squared error (Fisher information) with

respect to w enables the use of convex optimization to solve the problem of sensor selection.
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When measurement noises are weakly correlated (namely, R has small off-diagonal entries), it will be

shown in Sec. IV that the Fisher information matrix can be approximately expressed as

Ĵw := Σ−1 + HT (wwT ◦R−1)H, (14)

where ◦ stands for the Hadamard (elementwise) product. The problem of sensor selection with weakly

correlated noise becomes

minimize
w

tr
(
Σ−1 + HT (wwT ◦R−1)H

)−1

subject to 1Tw ≤ s,

w ∈ {0, 1}m.

(P1)

Compared to the generalized formulation (P0), the objective function of (P1) is convex with respect

to the rank-one matrix wwT . Such structure introduces computational benefits while solving (P1). We

emphasize that (P1) has been formulated in [18]–[20] for sensor selection with correlated noise, however,

using this formulation, without acknowledging that it is only valid when the correlation is weak, can

lead to incorrect sensor selection results. We elaborate on the problem of sensor selection with weakly

correlated noise in Sec. IV.

III. GENERAL CASE: PROPOSED OPTIMIZATION METHODS FOR SENSOR SELECTION

In this section, we present two methods to solve (P0): the first is based on convex relaxation techniques,

and the second is based on a greedy algorithm. First, we show that after relaxing the Boolean constraints

the selection problem can be cast as a standard semidefinite program (SDP). Given the solution of the

relaxed (P0) we then use the randomization method to generate a near-optimal selection scheme. Next, we

show that given a subset of sensors, activating a new sensor always improves the estimation performance.

Motivated by this, we present a greedy algorithm that scales gracefully with the problem size to obtain

locally optimal solutions of (P0).

A. Convex relaxation

Substituting the expression of Fisher information (11) into problem (P0), we obtain

minimize
w

tr
(
C−BT

(
S−1 + a−1 diag(w)

)−1
B
)−1

subject to 1Tw ≤ s,

w ∈ {0, 1}m,

(15)

where for notational simplicity we have defined C := Σ−1 + HTS−1H and B := S−1H.
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Problem (15) can be equivalently transformed to [26]

minimize
w,Z

tr (Z)

subject to C−BT
(
S−1 + a−1 diag(w)

)−1
B � Z−1,

1Tw ≤ s,

w ∈ {0, 1}m,

(16)

where Z ∈ Sn is an auxiliary variable, Sn represents the set of n×n symmetric matrices, and the notation

X � Y (or X � Y) indicates that the matrix X − Y (or Y − X) is positive semidefinite. The first

inequality constraint in (16) is obtained from(
C−BT

(
S−1 + a−1 diag(w)

)−1
B
)−1
� Z,

which implicitly adds the additional constraint Z � 0, since the left hand side of the above inequality is

the inverse of the Fisher information matrix.

We further introduce another auxiliary variable V ∈ Sn such that the first matrix inequality of (16) is

expressed as

C−V � Z−1, (17)

and

V � BT
(
S−1 + a−1 diag(w)

)−1
B. (18)

Note that the minimization of tr(Z) with inequalities (17) and (18) would force the variable V to

achieve its lower bound. In other words, problem (16) is equivalent to the problem in which the

inequality constraint in (16) is replaced by the two inequalities (17) and (18). Finally, employing the Schur

complement, the inequalities (17) and (18) can be rewritten as the following linear matrix inequalities

(LMIs) C−V I

I Z

 � 0,

V BT

B S−1 + a−1 diag(w)

 � 0. (19)

Substituting (19) into (16), the sensor selection problem becomes

minimize
w,Z,V

tr (Z)

subject to LMIs in (19),

1Tw ≤ s,

w ∈ {0, 1}m.

(20)

Problem (20) has the form of an SDP except for the last Boolean constraints. As shown in [13], one

possibility is to relax each Boolean variable to its convex hull to obtain w ∈ [0, 1]m. In this case, we
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can choose s active sensors given by the first s largest entries of the solution of the relaxed problem, or

employ a randomized rounding algorithm [14, Algorithm 3] to generate a Boolean selection vector.

Rather than directly relaxing Boolean selection variables to continuous variables, we can use

semidefinite relaxation (SDR) [27] — referred to problems in which the relaxation of a rank constraint

leads to an SDP — to better overcome the difficulties posed by the nonconvex constraints of (20). The

Boolean constraint (13) on the entries of w can be enforced by

diag(wwT ) = w, (21)

where, with an abuse of notation, diag(·) returns in vector form the diagonal entries of its matrix argument.

By introducing an auxiliary variable W together with the rank-one constraint

W = wwT , (22)

the energy and Boolean constraints in (20) can be expressed as

tr(W) ≤ s, diag(W) = w. (23)

After relaxing the (nonconvex) rank-one constraint (22) to W � wwT , we reach the SDP

minimize
w,W,Z,V

tr (Z)

subject to LMIs in (19),

tr(W) ≤ s,

diag(W) = w,W w

wT 1

 � 0,

(24)

where the last inequality is derived through the application of a Schur complement to W � wwT .

We can use an interior-point algorithm to solve the SDP (24). In practice, if the dimension of the

unknown parameter vector is much less than the number of sensors, the computational complexity of

SDP is roughly given by O(m4.5) [28]. Once the SDP (24) is solved, we employ a randomization method

to generate a near-optimal sensor selection scheme, where the effectiveness of the randomization method

has been shown in our extensive numerical experiments. We refer the readers to [27] for more details on

the motivation and benefits of randomization used in SDR. The aforementioned procedure is summarized

in Algorithm 1, which includes the randomization procedure described in Algorithm 2.

B. Greedy algorithm

We begin by showing in Proposition 1 that even in the presence of correlated measurement noise, the

Fisher information increases if an inactive sensor is made active.
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Algorithm 1 SDR with randomization for sensor selection
Require: prior information Σ, R = aI + S as in (8), observation matrix H and energy budget s

1: solve the SDP (24) and obtain solution (w,W)

2: call Algorithm 2 for Boolean solution.

Algorithm 2 Randomization method [27]

Require: solution pair (w,W) from the SDP (24)

1: for l = 1, 2, . . . , N do

2: pick a random number ξ(l) ∼ N (w,W −wwT )

3: map ξ(l) to a sub-optimal sensor selection scheme w(l)

w
(l)
j =

 1 ξ
(l)
j ≥ [ξ(l)]s

0 otherwise,
j = 1, 2, . . . ,m,

where w(l)
j is the jth element of w(l), and [ξ(l)]s denotes the sth largest entry of ξ(l)

4: end for

5: choose a vector in {w(l)}Nl=1 which yields the smallest objective value of (15).

Proposition 1: If w and w̃ represent two sensor selection vectors, where wi = w̃i for i ∈

{1, 2, . . . ,m} \ {j}, wj = 0 and w̃j = 1, then the resulting Fisher information matrix satisfies Jw̃ � Jw.

More precisely,

Jw̃ − Jw = cjαjα
T
j , (25)

and

tr(J−1
w )− tr(J−1

w̃ ) =
cjα

T
j J−2

w αj

1 + cjαjJ
−1
w αj

≥ 0, (26)

where cj is a positive scalar given by

cj =

 R−1
jj w = 0

(Rjj − rTj R−1
w rj)

−1 otherwise,
(27)

and

αj =

 hj w = 0

HTΦT
wR−1

w rj − hj otherwise.
(28)

In (27)-(28), Rjj is the jth diagonal entry of R, rj represents the covariance vector between the

measurement noise of the jth sensor and that of the active sensors in w, hTj is the jth row of H,

Φw and Rw are given by (3) and (6), respectively.
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Proof: See Appendix A. �

It is clear from (25) that when an inactive sensor is made active, the increase in Fisher information

leads to an information gain in terms of the rank-one matrix given by (25). Such a phenomenon was

also discovered in the calculation of sensor utility for adaptive signal estimation [29] and leader selection

in stochastically forced consensus networks [12]. Since activating a new sensor does not degrade the

estimation performance, the inequality (energy) constraint in (P0) can be reformulated as an equality

constraint.

In a greedy algorithm, we iteratively select a new sensor which gives the largest performance

improvement until the energy constraint is satisfied with equality. The greedy algorithm is attractive

due to its simplicity, and has been employed in a variety of applications [12], [29], [30]. In particular,

a greedy algorithm was proposed in [30] for sensor selection under the assumption of uncorrelated

measurement noise. We generalize the framework of [30] by taking into account noise correlation.

Clearly, in each iteration of the greedy algorithm, the newly activated sensor is the one that maximizes

the performance improvement characterized by tr(J−1
w ) − tr(J−1

w̃ ) in (26). We summarize the greedy

algorithm in Algorithm 3.

Algorithm 3 Greedy algorithm for sensor selection

Require: w = 0, I = {1, 2, . . . ,m} and Jw = Σ−1

1: for l = 1, 2, . . . , s do

2: given w, enumerate all the inactive sensors in I to determine j ∈ I such that tr(J−1
w )− tr(J−1

w̃ )

in (26) is maximized

3: update w by setting wj = 1, and update Jw by adding cjαjα
T
j in (25)

4: remove j from I.

5: end for

In Step 2 of Algorithm 3, we search O(m) sensors to achieve the largest performance improvement. In

(26), the computation of J−1
w incurs a complexity of O(n2.373) [31]. Since Algorithm 3 terminates after s

iterations, its overall complexity is given by O(sm+ sn2.373), where at each iteration, the calculation of

J−1
w is independent of the search for the new active sensor. If the dimension of x is much less than the

number of sensors, the complexity of Algorithm 3 reduces to O(sm). Our extensive numerical experiments

show that the greedy algorithm is able to yield good locally optimal sensor selection schemes.
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IV. SPECIAL CASE: SENSOR SELECTION WITH WEAK NOISE CORRELATION

In this section, we show that the existing sensor selection model in [18]–[20] is invalid for an arbitrary

noise covariance matrix. We establish that in contrast to the approach proposed in this paper, the existing

model in [18]–[20] is only valid when measurement noises are weakly correlated. In this scenario, the

proposed sensor selection problem given by (P0) would simplify to (P1). Moreover, if the trace of the

Fisher information matrix (also known as information gain defined in [20]) is adopted as the performance

measure for sensor selection, we show that the resulting optimization problem can be cast as a special

problem of maximizing a convex quadratic function over a bounded polyhedron.

A. Drawbacks of existing formulation

In [18]–[20], several variations of sensor selection problems with correlated noise have been studied,

based on whether the quantity to be estimated is a random parameter or a random process, and whether

the cost function is energy or estimation error. The common feature in [18]–[20] is that the information

matrix was approximated by (14); we repeat equation (14) here for convenience

Ĵw = Σ−1 + HT (wwT ◦R−1)H. (29)

Compared to our formulation (7), the noise covariance matrix appearing in (29) is independent of the

sensor selection variables. In fact, Ĵw can be thought of as Fisher information under the measurement

model

y = ΦwHx + v, (30)

where Φw was defined in (3). Different from (3), the noise from the unselected sensors is spread across the

selected sensors. As a result, the measurement model (30) yields yi = vi if the ith sensor is inactive. This

contradicts the fact that an inactive sensor should keep silent and thus have no effect on the estimation

task.

The Fisher information in (29) can also be interpreted as [18, Sec. 3]

Ĵw = Σ−1 +
∑
i,j∈S

R̄ijhih
T
j ,

= Σ−1 + HTΦT
w(ΦwR−1ΦT

w)ΦwH, (31)

where S is the set of selected sensors, and R̄ij denotes the (i, j)th entry of R−1. In (31), R−1 is computed

first and then truncated according to the sensor selection scheme. This is an incorrect way of modeling

the noise covariance matrix for active sensors, since the matrix R should be truncated first and then

inverted as demonstrated in (7).

March 25, 2016 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2550005, IEEE
Transactions on Signal Processing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2016 14

Both of the interpretations (30) and (31) indicate that the existing formulation in [18]–[20] is inaccurate

for modeling the problem of sensor selection with correlated noise. A natural question that arises from the

preceding discussion is whether there exist a condition that ensures the validity of the Fisher information

matrix (29) as presented in [18]–[20]? We will show in the next section that the formulation reported in

[18]–[20] becomes valid only when sensor selection is restricted to the weak noise correlation regime.

B. Validity of existing formulation: weak correlation

We consider the scenario of weakly correlated noise, in which the noise covariance matrix R has small

off-diagonal entries, namely, noises are weakly correlated across the sensors. For ease of representation,

we express the noise covariance matrix as

R = Λ + εΥ, (32)

where Λ is a diagonal matrix which consists of the diagonal entries of R, εΥ is a symmetric matrix

whose diagonal entries are zero and off-diagonal entries correspond to those of R, the parameter ε is

introduced to govern the strength of noise correlation across the sensors, and Λ and Υ are independent

of ε. Clearly, the covariance of weakly correlated noises can be described by (32) for some small value

of ε since Υ is ε-independent. As ε→ 0, the off-diagonal entries of R are forced to go to zero.

Proposition 2 below shows that the correct expression (7) of Fisher information is equal to the expression

(29), as presented in [18]–[20], up to first order in ε as ε→ 0.

Proposition 2: If measurement noises are weakly correlated and R = Λ + εΥ, then the Fisher

information matrix (7) can be expressed as

Jw = Ĵw +O(ε2) as ε→ 0,

where Ĵw is given by (29).

Proof: See Appendix B. �

It is clear from Proposition 2 that (P1) is valid only when the noise correlation is weak. Proceeding

with the same logic as in the previous section for the introduction of constraints (22)-(23), we relax (P1)

to the SDP

minimize
w,W,Z

tr(Z)

subject to

Σ−1 + HT (W ◦R−1)H I

I Z

 � 0,

tr(W) ≤ s, diag(W) = w,W w

wT 1

 � 0,

(33)
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where Z ∈ Sn is an auxiliary optimization variable. Given the solution pair (w,W) of problem (33), we

can use the randomization method in Algorithm 2 to construct a near-optimal sensor selection scheme. The

computational complexity of solving problem (33) is close to that of solving the SDP (24). However, as

will be evident later, the sensor selection problem with weakly correlated noise can be further simplified

if the trace of the Fisher information matrix is used as the performance measure. In this scenario, the

obtained problem structure enables the use of more computationally inexpensive algorithms, e.g., bilinear

programing, to solve the sensor selection problem.

C. Sensor selection by maximizing trace of Fisher information

Instead of minimizing the estimation error, the trace of Fisher information (so-called T-optimality [32])

also has been used as a performance metric in problems of sensor selection [20], [33], [34]. According to

[35, Lemma 1], the trace of Fisher information constitutes a lower bound to the trace of error covariance

matrix given by J−1
w in (7). That is,

tr(J−1
w ) ≥ n2

tr(Jw)
. (34)

Motivated by (34) and the generalized information gain used in [20], we propose to minimize the lower

bound of the objective function in (P1), which leads to the problem

maximize
w

tr
(
Σ−1 + HT (wwT ◦R−1)H

)
subject to 1Tw ≤ s,

w ∈ {0, 1}m.

(P2)

It is worth mentioning that the sensor selection scheme obtained from (P2) may not be optimal in the

MMSE sense. However, the trace operator is linear and introduces computational benefits in optimization.

Reference [20] has shown that (P2) is not convex even if Boolean selection variables are relaxed. However,

there is no theoretical justification and analysis provided in [20] on the problem structure. In what follows,

we demonstrate that the Boolean constraint in (P2) can be replaced by its convex hull w ∈ [0, 1]m without

loss of performance, to obtain an equivalent optimization problem.

Proposition 3: (P2) is equivalent to

maximize
w

wTΩw

subject to 1Tw ≤ s,

w ∈ [0, 1]m,

(35)

where Ω is a positive semidefinite matrix given by A(R−1⊗ In)AT , ⊗ denotes the Kronecker product,

A ∈ Rm×mn is a block-diagonal matrix whose diagonal blocks are given by {hTi }mi=1, and hTi denotes

the ith row of the measurement matrix H.
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Proof: See Appendix C. �

It is clear from Proposition 3 that (P2) eventually approaches the problem of maximizing a convex

quadratic function over a bounded polyhedron. It is known [36] that finding a globally optimal solution

of (35) is NP-hard. Therefore, we resort to local optimization methods, such as bilinear programming

and SDR, to solve problem (35). To be specific, bilinear programming is a special case of alternating

convex optimization, where at each iteration we solve two linear programs. Since bilinear programming

is based on linear programming, it scales gracefully with problem size but with a possibility of only

finding local optima. If we rewrite the constraints of problem (35) as quadratic forms in w, (P2) can be

further transformed into a nonconvex homogeneous quadratically constrained quadratic program (QCQP),

which refers to a QCQP without involving linear terms of optimization variables. In this scenario, SDR

can be applied to solve the problem. Compared to the application of SDR in (33), the homogeneous

QCQP leads to an SDP with a smaller problem size. We refer the readers to [22, Sec. V] and [20, Sec. V]

for more details on the application of bilinear programming and SDR.

V. NON-MYOPIC SENSOR SCHEDULING

In this section, we extend the sensor selection framework with correlated noise to the problem of

non-myopic sensor scheduling, which determines sensor activations for multiple future time steps. Since

the Fisher information matrices at consecutive time steps are coupled with each other, expressing them in

a closed form with respect to the sensor selection variables becomes intractable. Therefore, we employ

a greedy algorithm to seek locally optimal solutions of the non-myopic sensor scheduling problem.

Consider a discrete-time dynamical system

xt+1 = Ftxt + ut (36)

yt = Htxt + vt, (37)

where xt ∈ Rn is the target state at time t, yt ∈ Rm is the measurement vector whose ith entry

corresponds to a scalar observation from the ith sensor at time t, Ft is the state transition matrix from

time t to time t + 1, and Ht denotes the observation matrix at time t. The inputs ut and vt are white,

Gaussian, zero-mean random vectors with covariance matrices Q and R, respectively. We note that the

covariance matrix R may not be diagonal, since the noises experienced by different sensors could be

spatially correlated. We also remark that although the dynamical system (36)-(37) is assumed to be linear,

it will be evident later that the proposed sensor scheduling framework is also applicable to non-linear

dynamical systems.
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The PDF of the initial state x0 at time step t0 is assumed to be Gaussian with mean x̂0 and covariance

matrix P̂0, where x̂0 and P̂0 are estimates of the initial state and error covariance from the previous

measurements obtained using filtering algorithms, such as a particle filter or a Kalman filter [37], [38]. At

time step t0, we aim to find the optimal sensor schedule over the next τ time steps t0+1, t0+2, . . . , t0+τ .

Hereafter, for notational simplicity, we assume t0 = 0. The sensor schedule can be represented by a vector

of binary variables

w = [wT
1 ,w

T
2 , . . . ,w

T
τ ]T ∈ {0, 1}τm, (38)

where wt = [wt,1, wt,2, . . . , wt,m]T characterizes the sensor schedule at time 1 ≤ t ≤ τ . In what follows,

we assume that τ > 1. If τ = 1, the non-myopic sensor scheduling problem reduces to the sensor selection

problem for one snapshot or the so-called myopic scheduling problem. This case has been studied in the

previous sections.

In the context of state tracking [16], [39], the Fisher information matrix has the following recursive

form

Jt = (Q + Ft−1J
−1
t−1F

T
t−1)−1 + Gt (39)

Gt = HT
t ΦT

wt
(Φwt

RΦT
wt

)−1Φwt
Ht, (40)

for t = 1, 2, . . . , τ , where Jt denotes the Fisher information at time t, Gt denotes the part of Fisher

information matrix which incorporates the updated measurement, and Φwt
is a submatrix of diag(wt)

where all the rows corresponding to the unselected sensors are removed. It is clear from (10) that the

term involving Φwt
in (40) can be further expressed as an explicit form with respect to wt.

Remark 1: In case of non-linear measurement models, the term Gt in the Fisher information matrix

becomes

Gt = Ext
[(∇xT

t
h)TΦT

wt
(Φwt

RΦT
wt

)−1Φwt
(∇xT

t
h)],

where h(·) is a nonlinear measurement function, and ∇xT
t
h is the Jacobian matrix of h with respect

to xt. In this equation, the expectation with respect to xt is commonly calculated with the help of the

prediction state x̂t := Ft−1Ft−2 · · ·F0x̂0 [38], [40]. To be concrete, we approximate the PDF of xt with

p(xt) = δ(xt − x̂t), where δ(·) is a δ-function. The matrix Gt is then given by

Gt = ĤT
t ΦT

wt
(Φwt

RΦT
wt

)−1Φwt
Ĥt, (41)

where Ĥt := ∇xT
t
h(x̂t).

We note that the Fisher information matrices at consecutive time steps are coupled with each other

due to the recursive structure in (39). Therefore, Jt is a function of all selection variables {wk}tk=1. The
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recursive structure makes the closed form of Fisher information intractable. This is in sharp contrast with

the problem of myopic sensor selection, where expressing the Fisher information matrix in a closed form

is possible.

We now pose the non-myopic sensor scheduling problem

minimize
w

1

τ

τ∑
t=1

tr(J−1
t )

subject to 1Tw ≤ s, (42a)∑τ
t=1wt,i ≤ si, i = 1, 2, . . . ,m, (42b)

w ∈ {0, 1}mτ ,

where Jt is determined by (39)-(40), the cumulative energy constraint (42a) restricts the total number of

activations for all sensors over the entire time horizon, and the individual energy constraint (42b) implies

that the ith sensor can report at most si measurements over τ time steps.

To solve problem (42) in a numerically efficient manner, we employ a greedy algorithm that iteratively

activates one sensor at a time until the energy constraints are satisfied with equality. The proposed greedy

algorithm can be viewed as a generalization of Algorithm 3 by incorporating the length of the time horizon

and individual energy constraints.

We elaborate on the greedy algorithm. In the initial step, we assume w = 0 and split the set of indices

of w into m subsets {Ii}mi=1, where we use the entries of the set Ii to keep track of all the time instants

at which the ith sensor is inactive. The set Ii is initially given by {i, i + m, . . . , i + (τ − 1)m} for

i = 1, 2, . . . ,m. There exists a one-to-one correspondence between an index j ∈ Ii and a time instant

t ∈ {1, 2, . . . , τ} at which the ith sensor can be scheduled, where j = i+ (t− 1)m. At every iteration of

the greedy optimization algorithm, we update Ii for i = 1, 2, . . . ,m such that it only contains indices of

zero entries of w. The quantity τ−|Ii| gives the number of times that the ith sensor has been used, where

| · | denotes the cardinality of a set. The condition τ − |Ii| ≥ si indicates a violation of the individual

energy constraint. Note that the union {I1∪I2∪ . . .∪Im} gives all the remaining time instants at which

the sensors can be activated. We enumerate all the indices in the union to determine the index j∗ such

that the objective function of (42) is minimized as wj∗ = 1. We summarize the greedy algorithm for

non-myopic sensor scheduling in Algorithm 4.

The computational complexity of Algorithm 4 is dominated by Step 3. Specifically, we evaluate the

objective function of (42) using O(τm) operations. And the computation of the Fisher information matrix

requires a complexity of O(τm2.373), where O(τ) accounts for the number of recursions, and O(m2.373)

is the complexity of matrix inversion in (41) [31]. We emphasize that different from Proposition 1,
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Algorithm 4 Greedy algorithm for sensor scheduling

Require: w = 0 and Ii = {i, i+m, . . . , i+ (τ − 1)m} for i = 1, 2, . . . ,m

1: for l = 1, 2, . . . ,min{s,
∑m

i=1 si} do

2: if τ − |Ii| ≥ si, then replace Ii with an empty set for i = 1, 2, . . . ,m,

3: enumerate indices of w in {I1 ∪ I2 ∪ . . . ∪ Im} to select j∗ such that the objective function of

(42) is minimized when wj = 1,

4: remove j from Ii∗ , where i∗ is given by the remainder of j
m for i∗ 6= m, and i∗ = m if the

remainder is 0.

5: end for

expressing the closed form of the performance improvement in a greedy manner becomes intractable,

since the Fisher information matrices are coupled with each other over the time horizon. Therefore, the

computation cost of Algorithm 4 is given by O(τ2m3.373) per iteration.

For additional perspective, we compare the computational complexity of Algorithm 4 with the method

in [21], where a reweighted `1 based quadratic programming (QP) was used to obtain locally optimal

sensor schedules under linear (or linearized) dynamical systems with correlated noise. It was shown in

[21] that the computational complexity of QP was ideally given by O(m2.5τ5) for every reweighting `1

iteration. We note that the computational complexity of the greedy algorithm increases slightly in terms

of the network size by a factor m0.873, while it decreases significantly in terms of the length of the time

horizon by a factor τ3.

VI. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the proposed approach for sensor selec-

tion/scheduling with correlated measurement noise. In our numerical examples, we assume that the sensors

are randomly deployed in a square region, where each of them provides the measurement of an unknown

parameter or state. For parameter estimation, we use the linear MMSE estimator [24, Sec. 12] to estimate

the unknown parameter. For state tracking, we use the extended Kalman filter [24, Sec. 13] to track the

target state.

Sensor selection for parameter estimation: We consider a network with m ∈ {20, 50} sensors to

estimate the vector of parameters x ∈ Rn with n = 2, where sensors are randomly deployed over a

50 × 50 lattice. The prior PDF of x is given by x ∼ N (µ,Σ), where µ = [10, 10]T and Σ = I.

For simplicity, the row vectors of the measurement matrix H are chosen randomly, and independently,
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from the distribution N (0, I/
√
n) [13]. The covariance matrix of the measurement noise is set by an

exponential model [41]

Rij = cov(vi, vj) = σ2
v e
−ρ‖βi−βj‖2 , (43)

for i, j = 1, 2, . . . ,m, where σ2
v = 1, βi ∈ R2 is the location of the ith sensor in the 2D plane, ‖ · ‖2

denotes the Euclidean norm, and ρ is the correlation parameter which governs the strength of spatial

correlation, namely, a larger (or smaller) ρ corresponds to a weaker (or stronger) correlation.

We choose N = 100 while performing the randomization method. Also, we employ an exhaustive

search that enumerates all possible sensor selection schemes to obtain the globally optimal solution of

(P0). The estimation performance is measured through the empirical MSE, which is averaged over 1000

numerical trials.

In Fig. 1, we present the MSE as a function of the energy budget by solving (P0) with correlation

parameter ρ = 0.1. In Fig. 1-(a) for the tractability of exhaustive search, we consider a small network

with m = 20 sensors. We compare the performance of the proposed greedy algorithm and SDR with

randomization to that of SDR without randomization and exhaustive search. In particular, the right plots

of Fig. 1-(a) show the performance gaps for the obtained locally optimal solutions compared to the

globally optimal solutions resulting from an exhaustive search. We observe that the SDR method with

randomization outperforms the greedy algorithm and yields optimal solutions. The randomization method

also significantly improves the performance of SDR in sensor selection. This is not surprising, and our

numerical observations agree with the literature [27], [42] that demonstrate the power and utility of

randomization in SDR.

In Fig. 1-(b), we present the MSE as a function of the energy budget for a relatively large network

(m = 50). Similar to the results of Fig. 1-(a), the SDR method with randomization yields the lowest

estimation error. We also observe that the MSE ceases to decrease significantly when s ≥ 20. This

indicates that a subset of sensors suffices to provide satisfactory estimation performance, since the presence

of correlation among sensors introduces information redundancy and makes observations less diverse.

In Fig. 2, we solve the problem of sensor selection with weak noise correlation (ρ = 0.5), and present

the MSE as a function of the energy budget s ∈ {2, 3, . . . , 50}. We compare the performance of three

optimization approaches: SDR with randomization for solving (P1), bilinear programming (BP) for solving

(P2), and SDR with randomization for solving (P2). We recall that (P1) is to minimize the trace of

the error covariance matrix and (P2) is to maximize the trace of Fisher information. As we can see,

approaches that maximize the trace of Fisher information yield worse estimation performance than those

that minimize the estimation error. This is because (P2) ignores the contribution of prior information Σ

March 25, 2016 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2550005, IEEE
Transactions on Signal Processing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2016 21

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
S

E

 

Greedy algorithm
SDR without rand.
SDR with rand.
Exhaustive search

2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

Energy budget, s

Performance gap
for greedy algorithm

Performance gap
for SDR without rand.
Performance gap
for SDR with rand.

(a)

2 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
S

E

Energy budget, s

 

Greedy algorithm
SDR without rand.
SDR with rand.

(b)

Fig. 1: MSE versus energy budget with correlation parameter ρ = 0.1.

in sensor selection. We also note that although BP (a linear programming based approach) has the lowest

computational complexity, it leads to the worst optimization performance.

In Fig. 3, we present the MSE as a function of the correlation parameter ρ, where m = 50 and

s ∈ {7, 13}. We consider sensor selection schemes by using SDR with randomization to solve problems

(P0) and (P1), respectively. For comparison, we also present the estimation performance when all the

sensors are selected. As demonstrated in Fig. 3, we consider two correlation regimes: weak correlation

and strong correlation. We observe that in the weak correlation regime, solutions of both (P0) and (P1)

yield the same estimation performance. In the strong correlation regime, solutions of (P1) could lead to

worse estimation performance for sensor selection. We also observe that the sensitivity to the strategy
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Fig. 2: MSE versus energy budget for sensor selection with weak noise correlation ρ = 0.5.
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Fig. 3: MSE versus the strength of correlation for s ∈ {7, 13}.

of sensor selection reduces if the strength of correlation becomes extremely large, e.g., ρ ≤ 0.05. More

interestingly, the estimation performance is improved as the correlation becomes stronger. This is because

for strongly correlated noise, noise cancellation could be achieved by subtracting one observation from

the other [43]. Further if we fix the value of ρ, the estimation error decreases when the energy budget

increases, and the performance gap between solutions of (P0) and (P1) reduces.

Sensor scheduling for state tracking

In this example, we track a target with m = 30 sensors over 30 time steps. We assume that the target

state is a 4 × 1 vector xt = [xt,1, xt,2, xt,3, xt,4]T , where (xt,1, xt,2) and (xt,3, xt,4) denote the target
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location and velocity at time step t. The state equation (36) follows a white noise acceleration model

[38]

Ft =


1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1

 , Q = q


∆3

3 0 ∆2

2 0

0 ∆3

3 0 ∆2

2

∆2

2 0 ∆ 0

0 ∆2

2 0 ∆

 ,

where ∆ and q denote the sampling interval and the process noise parameter, respectively. In our

simulations, we set ∆ = 1 and q = 0.01. The prior PDF of the initial state is assumed to be Gaussian

with mean x̂0 = [1, 1, 0.5, 0.5]T and covariance Σ̂0 = diag(1, 1, 0.1, 0.1). The measurement equation

follows a power attenuation model [44],

hi(xt) =

√
P0

1 + (xt,1 − βi,1)2 + (xt,2 − βi,2)2
(44)

for i = 1, 2, . . . ,m, where P0 = 104 is the signal power of the source, and the pair (βi,1, βi,2) is

the position of the ith sensor. The covariance matrix of the measurement noise is given by (43) with

ρ = 0.035.
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Fig. 4: MSE versus individual energy budget in target tracking.

In the sensor scheduling problem (42), we assume s =
∑m

i=1 si and s1 = s2 = · · · = sm. In order to

implement the proposed greedy algorithm and the existing method in [21], the nonlinear measurement

function (44) is linearized at the prediction state x̂t = Ft−1Ft−2 · · ·F0x̂0 as suggested in Remark 1. We

determine sensor schedules for every τ = 6 future time steps, and then update the estimate of the target

state based on the selected measurements via an extended Kalman filter [45]. The estimation performance
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Fig. 5: Sensor schedules when si = 2: (a) t = 10, (b) t = 24.

is measured through the empirical MSE, which is obtained by averaging the estimation error over 30

time steps and 1000 simulation trials.

In Fig. 4, we present the MSE as a function of the individual energy budget. We compare the

performance of our proposed greedy algorithm with that of the sensor scheduling method in [21]. We

remark that the method in [21] relies on a reformulation of linearized dynamical systems and an `1

relaxation in optimization. In contrast, the proposed greedy algorithm is independent of the dynamical

system models and convex relaxations. We observe that the greedy algorithm outperforms the method in

[21]. This result together with the previous results in Fig. 1 and 2 have implied that the greedy algorithm

could yield satisfactory estimation performance. Sensor schedules at time steps t = 10 and 24 are shown

in Fig. 5. We observe that some sensors closest to the target are selected due to their high signal power.

However, from the entire network point of view, the active sensors tend to be spatially distributed rather

than aggregating in a small neighborhood around the target. This is because observations from neighboring

sensors are strongly correlated in space and may lead to information redundancy in target tracking.

VII. CONCLUSION

In this paper, we studied the problem of sensor selection/scheduling with correlated measurement noise.

We proposed a general but tractable framework to design optimal sensor activations. We pointed out some

drawbacks of the existing frameworks for sensor selection with correlated noise, and showed that the

existing formulation is valid only for the special case of weak noise correlation. Further, we extended our

framework to the problem of non-myopic sensor scheduling, where a greedy algorithm was developed
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to design non-myopic sensor schedules. Numerical results were provided to illustrate the effectiveness

of our approach and the impact of noise correlation on the performance of sensor selection.

In future work, we will study applications of sensor selection with correlated noise, such as localization

in multipath environments, sensor collaboration in distributed estimation, and clock synchronization in

wireless sensor networks. It would also be of interest to seek theoretical guarantees for the performance

of the greedy algorithm. Furthermore, in order to reduce the computational burden at the fusion center,

developing a decentralized architecture where the optimization procedure can be carried out in a distributed

way and by the sensors themselves is another direction of future research.

APPENDIX A

PROOF OF PROPOSITION 1

Given the sensor selection scheme w̃, it is clear from (7) that Fisher information can be written as

Jw̃ = Σ−1+ [HT
w,hj ]R

−1
v

Hw

hTj

 , Rw̃ :=

Rw rj

rTj rjj

 (45)

where Hw := ΦwH.

If w 6= 0, the inverse of Rw̃ in (45) is given by

R−1
w̃ = cj

cj−1R−1
w + R−1

w rjr
T
j R−1

w −R−1
w rj

−rTj R−1
w 1

 (46)

where cj := 1/(rjj − rTj R−1
w rj), and cj > 0 following from the Schur complement of Rw̃. Substituting

(46) into (45), we obtain

Jw̃ = Jw + cjαjα
T
j , (47)

where Jw = Σ−1 + HT
wR−1

w Hw as indicated by (7), and αj := HT
wR−1

w rj − hj .

If w = 0, namely, Jw = Σ−1, we can immediately obtain from (45) that

Jw̃ = Jw +
1

rjj
hTj hj . (48)

Equations (47) and (48) imply that Jw̃ − Jw � 0 since cj > 0.

We apply the matrix inversion lemma to (47). This yields

J−1
w̃ = [Jw + cjαjα

T
j ]−1 = J−1

w −
cjJ
−1
w αjα

T
j J−1

w

1 + cjαjJ
−1
w αj

.

The improvement in estimation error is then given by

tr(J−1
w )− tr(J−1

w̃ ) =
cjα

T
j J−2

w αj

1 + cjαjJ
−1
w αj

.

�

March 25, 2016 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2550005, IEEE
Transactions on Signal Processing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2016 26

APPENDIX B

PROOF OF PROPOSITION 2

Our goal is to simplify the Fisher information matrix given by (7) under the assumption of weak noise

correlation. According to (32), we obtain

R−1
w =(ΦwRΦT

w)−1

=(ΦwΛΦT
w + εΦwΥΦT

w)−1

(1)
=(I + εΦwΛ−1ΦT

wΦwΥΦT
w)−1ΦwΛ−1ΦT

w

(2)
=(I− εΦwΛ−1ΦT

wΦwΥΦT
w)ΦwΛ−1ΦT

w

+O(ε2) (as ε→ 0)

(3)
=ΦwΛ−1ΦT

w − εΦwΛ−1DwΥDwΛ−1ΦT
w

+O(ε2) (as ε→ 0), (49)

where Dw := diag(w). In (49), step (1) holds since we use the facts that Λ is a diagonal matrix

and (ΦwΛΦT
w)−1 = ΦwΛ−1ΦT

w; step (2) is obtained from the Taylor series expansion (I + εX)−1 =∑∞
i=0(−εX)i as ε→ 0 (namely, the spectrum of εX is contained inside the open unit disk); step (3) is

true since ΦT
wΦw = Dw as in (4).

Substituting (49) into (7), we obtain

Jw =Σ−1 + HTΦT
wΦwΛ−1ΦT

wΦwH

− εHTΦT
wΦwΛ−1DwΥDwΛ−1ΦT

wΦwH

+O(ε2) (as ε→ 0)

(1)
=Σ−1 + HT (DwΛ−1Dw − εDwΛ−1ΥΛ−1Dw)H

+O(ε2) (as ε→ 0)

=Σ−1 + HTDw(Λ−1 − εΛ−1ΥΛ−1)DwH

+O(ε2) (as ε→ 0)

(2)
=Σ−1 + HTDwR−1DwH +O(ε2) (as ε→ 0)

(3)
=Σ−1 + HT (wwT ◦R−1)H +O(ε2) (as ε→ 0),

where step (1) is achieved by using the fact that DwΛ−1 = Λ−1Dw = DwΛ−1Dw, step (2) holds due

to R−1 = Λ−1 − εΛ−1ΥΛ−1 + O(ε2), and step (3) is true since Dw is diagonal and has only binary

elements. �
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APPENDIX C

PROOF OF PROPOSITION 3

We begin by simplifying the objective function in (P2),

φ(w) := tr(Σ−1) + tr
(
(wwT ◦R−1)(HTH)

)
= tr(Σ−1) +

m∑
i=1

m∑
j=1

wiwjR̄ijh
T
i hj

= tr(Σ−1) + wTΩw, (50)

where R̄ij is the (i, j)th entry of R−1, and R̄ijhTi hj corresponds to the (i, j)th entry of Ω which yields

the succinct form

Ω = A(R−1 ⊗ In)AT . (51)

In (51), ⊗ denotes the Kronecker product, A ∈ Rm×mn is a block-diagonal matrix whose diagonal blocks

are given by {hTi }mi=1, and Ω � 0 due to R−1 ⊗ In � 0.

According to (50), (P2) can be rewritten as

maximize
w

wTΩw

subject to 1Tw ≤ s,

w ∈ {0, 1}m.

(52)

Next, we prove that problem (35) is equivalent to problem (52). We recall that the former is a relaxation

of the latter, where the former entails the maximization of a convex quadratic function over a bounded

polyhedron P := {w|1Tw ≤ s,w ∈ [0, 1]m}. It has been shown in [46] that optimal solutions of such a

problem occur at vertices of the polyhedron P , which are zero-one vectors. This indicates that solutions

of problem (35) are feasible for problem (52). Therefore, solutions of (35) are solutions of (52), and vice

versa. �

REFERENCES

[1] L. Oliveira and J. Rodrigues, “Wireless sensor networks: a survey on environmental monitoring,” Journal of

Communications, vol. 6, no. 2, 2011.

[2] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in distributed sensor networks,” ACM Transactions

on Embedded Computing Systems, vol. 3, no. 1, pp. 61–91, Feb. 2004.

[3] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, S. Stoleru, Q. Cao, J. A. Stankovic, and T. Abdelzaher, “Achieving

real-time target tracking using wireless sensor networks,” in Proceedings of IEEE Real Time Technology and Applications

Symposium, 2006, pp. 37–48.

[4] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic sensor collaboration,” IEEE Signal Processing Magazine, vol.

19, no. 2, pp. 61–72, Mar. 2002.

March 25, 2016 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2550005, IEEE
Transactions on Signal Processing

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2016 28

[5] E. Masazade, R. Niu, and P. K. Varshney, “Dynamic bit allocation for object tracking in wireless sensor networks,” IEEE

Transactions on Signal Processing, vol. 60, no. 10, pp. 5048–5063, Oct. 2012.

[6] H. Zhang, J. Moura, and B. Krogh, “Dynamic field estimation using wireless sensor networks: Tradeoffs between estimation

error and communication cost,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2383–2395, June 2009.

[7] S. Liu, A Vempaty, M. Fardad, E. Masazade, and P. K. Varshney, “Energy-aware sensor selection in field reconstruction,”

IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1476–1480, 2014.

[8] S. Liu, M. Fardad, P. K. Varshney, and E. Masazade, “Optimal periodic sensor scheduling in networks of dynamical

systems,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3055–3068, June 2014.

[9] G. Thatte and U. Mitra, “Sensor selection and power allocation for distributed estimation in sensor networks: Beyond the

star topology,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 2649–2661, July 2008.

[10] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, “Sparsity-aware sensor collaboration for linear coherent estimation,” IEEE

Transactions on Signal Processing, vol. 63, no. 10, pp. 2582–2596, May 2015.

[11] K. Chaloner and I. Verdinelli, “Bayesian experimental design: A review,” Statistical Science, vol. 10, no. 3, pp. 273–304,

1995.
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