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Sparse sensing

@ Why sparse sensing?

Economical constraints (hardware cost)

Limited physical space
- Limited data storage space

Reduce communications bandwidth

Reduce processing overhead
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Sparse sensing

What is sparse sensing?

Select the “best” subset of sensors out of the candidate sensors
that guarantee a certain desired estimation accuracy.

Sensor selection for estimation — uncorrelated observations:

@ convex optimization: design {0,1}M selection vector
[Joshi-Boyd-09], [Chepuri-Leus-13]

@ greedy methods and heuristics: submodularity
[Krause-Singh-Guestrin-08], [Ranieri-Chebira-Vetterli-14]
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Sparse sensing for estimation

@ Suppose the unknown 8 € RV follows

x ~ N (h(6),X)
{O,I}KXM
/—/ﬁ
y ®(w) = diag,(w x ~ N (h(6),X)

|

“Design sparsest w"

diag; (-) - diagonal matrix with the argument on its diagonal but with the zero rows removed.
5/15



Design problem

Problem 1 Problem 2

LSl [wllg arg min f(w)
sto f(w) <A sto  |wl, =K
w e {0,1}M w e {0,1}M
f(w) performance measure K  number of selected sensors
A accuracy requirement

Non-convex Boolean problem
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Convex relaxation

@ Boolean constraint is relaxed to the box constraint [0, 1]V

@ /p(-quasi) norm is relaxed to either:
(a.) f-norm: "M w,
(b.) sum-of-logs: S=™__ In (wp, + &) with 6 > 0
(c.) your favorite approximation

Relaxed problem 1
argmin 17w
w
sto f(w) <A
w € [0,1]M

What is convex f(w) for estimation with
correlated observations?
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Estimation accuracy f(w) — Cramér-Rao bound
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@ Best subset of sensors yields the lowest error

E=E{(6-6)6-6)"}

0 estimate of 6

@ Closed-form expression for E is not always available
(e.g., non-linear, non-Gaussian)

@ Cramér-Rao bound (CRB) as a performance measure
- well-suited for offline design problems
- reveals (local) identifiability
- improves performance of any practical algorithm
- equal to the MSE for the linear case



f(w) for estimation - scalar measures

@ For Gaussian observations, Fisher information matrix
F(w,0) = [®(w)J(0)] =7 (w) [®(w)I(8)]
J(0) = 0h(6)/96 ; T(w) = T’

@ Prominent scalar measures (related to the confidence
ellipsoid):

@ A-optimality (average error):
f(w) = tr{(F(w,0))~"}
Q@ E-optimality (worst case error):
F(w) = Amax {(F(w,0)) ™"} = Awin {F(w, ) }.

@ These performance metrics
- in its current form are not convex on w € [0, 1]V
- depend on the true parameter
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Equivalent convex expression for f(w)

@ Express
Y=al+S forany a#0€R suchthat S>0

@ Constraint (E-optimal design)
i
IT@)7 (al n ¢S¢T> ®J(0) = Ay

is equivalent to

S—! 4+ a~ldiag(w) S~1J(6)
=0

)

J7(e)s! JT(6)S71I(6) — Ay
an LMI —linear/convex in w.

Hint: use matrix inversion lemma and ®7 ® = diag(w)

10/15



@ SDP problem based on ¢1-norm heuristics (E-optimal design):

argmin 17w
w

S + a~ldiag(w) S—1J(6)
s.to =0,v0 €T,
JT(0)s 1! JT(0)S71I(6) — Aly
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Sensor placement for source localization

@ Sensors along the horizontal edges are equicorrelated (with
correlation coefficient = 0.5)
@ Sensors along the vertical edges are not correlated
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@ Out of M = 80 available uncorrelated sensors (OJ) and correlated sensors
(¢), 14 sensors indicated by (x) are selected. The source domain is
indicated by (o).
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Is correlation good?

@ Linear model, Gaussian regression matrix

@ Equicorrelated correlation matrix: £ = [(1— p)l + p117]

30

20
best K = 2 sensors

10f
best K = 5 sensors

Mean squared error [dB] (i.e., f(w))

0 0.2 0.8 1

0.4 06
Correlation coefficient p

@ # of sensors required (and MSE) reduces as sensors become
more coherent
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Conclusions

@ Design space-time sparse samplers
to reduce sensing and other related costs

@ Fundamental statistical inference problems:
Estimation, filtering, and detection

@ Applications in networks:

environmental monitoring, location-aware
services, spectrum sensing,. . .
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Thank Youl!!

For more on sparse sensing for statistical inference, see:
http://cas.et.tudelft.nl/~sundeep
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