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Optimal sensor selection for source parameter estimation in energy harvesting Internet of Things (IoT) 
networks is studied in this paper. Specifically, the focus is on the selection of the sensor locations which 
minimizes the estimation error at a fusion center, and to optimally allocate power and bandwidth for 
each selected sensor subject to a prescribed spectral and energy budget. To do so, measurement accuracy, 
communication link quality, and the amount of energy harvested are all taken into account. The sensor 
selection is studied under both analog and digital transmission schemes from the selected sensors to the 
fusion center. In the digital transmission case, an information theoretic approach is used to model the 
transmission rate, observation quantization, and encoding. We numerically prove that with a sufficient 
system bandwidth, the digital system outperforms the analog system with a possibly different sensor 
selection. The design problem of interest is a Boolean non convex optimization problem, which is solved 
by relaxing the Boolean constraints. To efficiently round the obtained relaxed solution, we propose a 
randomized rounding algorithm which generalizes the existing algorithm.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Wireless sensor networks (WSN) have been gaining increasing 
interest in the last few years due to their role in emerging tech-
nologies such as Internet of things (IoT). Advanced sensor networks 
are needed in order to meet the increasing needs of IoT applica-
tions, such as automated surveillance, environmental monitoring, 
smart cities, and so on [3–5]. To guarantee a durable autonomous 
sensor network, sensing nodes should be capable of processing and 
communicating data with restricted energy harvesting (EH) and 
consumption budgets. Despite the wide range of studies regard-
ing WSN/IoT network optimization in the literature, there still are 
many challenges in implementing these networks. Sensors are ex-
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pected to harvest energy and control their consumption to result 
in self-powered sensing nodes and, on the other hand, they need 
to obtain accurate observations and communicate them reliably. 
The complexity of such problems lies in designing a mathematical 
model that accounts for many factors such as measurement accu-
racy, observation transmission quality, and EH efficiency. Managing 
the available resources, the system costs and the amount of data 
while achieving the desired inference performance forms a ma-
jor challenge in today’s big sensor networks. Therefore, placing the 
sensors at optimal locations to gather informative data with fewer 
sensors and optimizing power and spectral resources is a funda-
mental design task.

Sensor selection (placement) is the problem of choosing the 
best subset of sensors (locations) from a set of candidate sen-
sors (locations). This is a combinatorial problem, which can be 
solved optimally through an exhaustive search by evaluating a per-
formance measure (e.g., inference accuracy) for all possible com-
binations that satisfy a budget constraint. However, this process 
is computationally intractable when the number of selection vari-
ables is large. Instead, a suboptimal solution can be obtained by 
greedily selecting sensors one by one. Such a greedy algorithm is 
near optimal, if the performance measure can be expressed as a 
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submodular set function of the selection indicators with cardinal-
ity constraints [6], [7]. Alternatively, the sensor selection problem 
can be solved suboptimally using convex optimization [8], which 
utilizes the convexity of the performance measure and constraint 
functions to solve the optimization problem [9], [10]. For solutions 
based on convex optimization, the discrete selection variables are 
relaxed to the continuous domain and an approximate Boolean so-
lution is retrieved using rounding. See [11], for an overview on 
sensor selection techniques for common statistical signal process-
ing tasks. Other methods based on convex optimization such as the 
difference of two convex sets [12], and the �0 norm approximation 
[13] can also be used to reach a suboptimal solution.

Two related, yet different, major challenges in sensor networks 
are, (1) online sensor activation/deactivation where the sensor op-
eration is scheduled based on real-time measurements [14–17]. 
And, (2) offline sensor selection (placement) where the objective 
is to select a best subset of sensors (locations) out of a candi-
date set of sensors (locations). Offline sensor selection is done at 
the network design time, such that a desired performance is met 
based on prior statistics, which do not depend on real-time mea-
surements [6,8,10,18–20]. The focus of this paper is on the offline 
sensor selection.

The overall offline sensor selection is enhanced by considering 
different practical issues such as measurement accuracy, obser-
vation transmission quality, and EH efficiency. Considering these 
practical issues guarantees a better overall system performance in 
the sense of minimizing the minimum mean squared error (MMSE) 
at a central fusion center (FC). In [8], [10] the sensing locations are 
selected based only on the measurement accuracy at the sensor 
level. The earlier mentioned practical considerations are addressed 
in [18]. Nevertheless, only sensing location is optimized in [18], 
which restricts the system flexibility. In [21], the authors assume 
uncertainty of successful reception at a remote estimator based on 
the sensor transmission power and assume that the sensors receive 
feedback upon successful transmission. In that work, the sensor se-
lection problem is solved such that either a low power sensor or a 
high power sensor is placed at each candidate sensing node. How-
ever, only two types of sensors are considered and no spectrum 
allocation is performed.

Our proposed estimator is carefully designed based on the 
measurement model. The maximum a posteriori (MAP) estimator 
reaches the MMSE given a linear measurement model for a static 
source. While the Kalman filter is employed instead in order to take 
the temporal correlation into account while achieving MMSE esti-
mation [22]. Modeling the unknown source while considering both 
the sources’ cross-correlation and temporal correlation improves 
system optimization quality. Despite the lack of performance guar-
antees, several greedy algorithms were proposed to minimize the 
estimation error for the vector state linear dynamical system sub-
ject to a prescribed number of sensing nodes [6,23,19,20]. None 
of these studies has considered the cost of sending the sensor ob-
servations to the FC and the quality of the communication links 
between the sensors and the FC. We focus in this paper on i) static 
vector source parameter estimation and ii) dynamic scalar source 
parameter estimation.

In [1,14,8,10,18,24], a static measurement model for a vector 
of unknown source parameter was considered such that the dis-
tributed parameter estimation is minimized based on the current 
measurement statistics. These works considered a static source pa-
rameter. In [8], the sensor placement via convex relaxation was 
introduced for static state estimation. For a wide range of appli-
cations, physical quantities in nature tend to change slowly over 
time. Hence, the temporal correlation between observations that 
are separated by orders of a few seconds tend to be high. Scalar 
state estimation is studied in [2,21,16] in order to obtain a simple 
and optimal sensor selection solution.
Digital observation transmission is expected to perform bet-
ter than analog transmission schemes because of its immunity 
to channel noise. Nevertheless, few studies in the literature con-
sider digital transmission schemes in sensor selection problems 
because of analysis complexity. The introduced noise due to ob-
servation quantization is not Gaussian and therefore linear mea-
surement models cannot be used directly. In [25,26], the sensors’ 
total power consumption is optimized in an online fashion based 
on the Bayesian Fisher information at the FC which receives quan-
tized sensor observations. However, the amount of energy available 
through EH at each sensor is not taken into account.

In this work, practical aspects such as the sensor’s EH and ob-
servation transmission quality to the FC are taken into account. 
The main goal of this paper is to combine optimal sensor place-
ment with novel and important selection dimensions that add to 
the network design flexibility, namely, we allow for transmission 
power and resource block (i.e., time-frequency channel) allocation. 
The sensor’s transmission power is optimized by considering dif-
ferent kinds of sensors where expensive sensors are supplied with 
more EH capabilities and higher battery capacities as compared 
to cheaper sensors. In this setup, the approach in [21] is gener-
alized by considering K sensor kinds. Further, we allow sensors to 
transmit their observations over different spectral bandwidths such 
that the total system bandwidth is limited. In spite of the general 
awareness of the energy scarcity in IoT networks, only few studies 
allocate the sensor transmission power level for dynamic estima-
tion. We present sensor selection solutions considering analog and 
digital transmission schemes and compare their performances. In 
the digital scheme, we analyze observation quantization and en-
coding based on an information theoretic approach. The number of 
quantization levels is optimized based on the allocated bandwidth 
and the signal to noise ratio between the candidate sensor and the 
FC. We obtain a suboptimal sensor selection via convex optimiza-
tion by relaxing the discrete variables and rounding the obtained 
solution. A novel rounding algorithm is proposed in order to en-
hance the rounding efficiency. The contribution of this paper can 
be summarized as follows:

• The sensor transmission power and operating bandwidth are 
jointly optimized with the sensing location. This gives net-
work designers the flexibility to place more expensive sensors 
with a higher power budget and data rate in strategic locations 
while cheaper sensors are placed in less important locations.

• We model a practical system which takes the EH, channel gain 
and measurement accuracy into account. Similar considera-
tions were taken into account in [1,2,24,18], however, all of 
them assumed analog communication where sensors directly 
amplify and forward observations.

• Sensor selection is optimized for digitally transmitted observa-
tions to the FC. An information theoretic approach is utilized 
to express the quantization and channel error.

• A generalized randomized rounding algorithm is proposed in 
order to efficiently round the relaxed solutions taking the joint 
power, location and resource block selection into account.

Table 1 shows a comparison between the proposed sensor 
placement methods and the existing methods. Indeed, Table 1
shows that our methods has advantages over others where the cell 
background color indicates how well the considered feature is han-
dled. Green means that general and practical cases are considered, 
yellow means there are some restrictions, while red means there 
is a shortcoming. (For interpretation of the colors, the reader is re-
ferred to the web version of this article.)

Notation: Throughout the paper, lower-case letters x denote vari-
ables, while boldface lower-case letters x and boldface upper-case 
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Table 1
Comparison with existing sensor placement solutions.

Feature\Ref. Prop. Stat. Prop. Dyna. [1] [2] [6] [7] [8,10] [18,24] [19,20] [21] [25,26]

Source: Static (St)/dynamic (Dy) St Dy St Dy Dy St St St Dy Dy St
Source dimension: scalar (Scl)/vector (Vec) Vec Scl Vec Scl Vec Vec Vec Vec Vec Scl Vec
Power allocation ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓a ✓

Spectral alloc. ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

EH consideration ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Tr. Scheme: No Tr. (N)/analog (A)/digital (D) A/D A/D A A N N N A N D D
a Only two power levels are allowed in [21].
Fig. 1. System setup in which a linear measurement model and additive white Gaus-
sian noise channels are considered.

letters X denote vectors and matrices, respectively. 1x and Ix de-
note the ones vector of size x and the identity matrix of size x × x, 
respectively. {·}T denotes the transpose operator. The operator E{·}
denotes expectation. For a vector x, the operator ||x||p denotes the 
�p norm. For matrix X, the operator tr(X) denotes the trace op-
erator. The calligraphic font X refers to sets. The floor function is 
denoted by �·�. Finally, R and Z denote the sets of real and inte-
ger numbers, respectively.

The paper is organized as follows. In the next section, the sys-
tem setup and the problem statements are discussed. In Sections 3
and 4, the sensor selection problem is formulated and solved for 
the static source and the dynamic source, respectively. Then, the 
randomized rounding algorithm is discussed in Section 5. Numeri-
cal experiments are presented in Section 6 before we conclude this 
work.

2. System setup and problem statement

Consider estimating a vector of unknown source parameters 
θ ∈ Rm which is assumed to be a zero-mean Gaussian random 
vector with covariance matrix �θ , i.e., θ ∼ N (0, �θ ). We can 
place sensors at a subset of predefined candidate sensing loca-
tions P = {p1, . . . , pL} to measure the unknown source parameters. 
The deployed sensors send their observations over a limited sys-
tem bandwidth of W [Hz] to a FC (more specifically, each sensor 
shares a part of the available W [Hz]), where the collected in-
formation is utilized to estimate the vector of unknown source 
parameters. Fig. 1 illustrates the system setup. To create an au-
tonomous system, the deployed sensors are equipped with energy 
harvesting (EH) capabilities. We consider that there are different 
sensor types T = {t0, . . . , tK }, where different sensor types mea-
sure the same quantities with the same measurement accuracy 
but differ in their EH efficiency, ηk , battery capacity, εk and cost, 
ck . For example, more expensive sensor types are equipped with 
more efficient EH capabilities. The type t0 is an auxiliary type 
Table 2
Summary of symbol notations.

Notation Description

θ ∈Rm Source parameter, θ ∼ N (0, �θ ).
P = {p1, . . . ,pL} Set of sensing locations. pl is the l-th sensing location.
hl and vl ∼ N (0, σ 2

v ) Measurement gain and noise at pl .
gl and ρl Channel gain and the average available power at pl .
T = {t0, . . . , tK } Set of sensor types. tk is the k-th sensor type.
ηk , εk and ck The k-th sensor type EH efficiency, battery capacity 

and cost.
W = {w1, · · · , w B } Set of sensor’s transmission bandwidths 

corresponding to B predefined number of channels 
N = {N1, · · · , NB }.

σ 2
φ FC receiver noise.

τ0 and w0 Channel interval and bandwidth.
T , W and N Transmission interval, system bandwidth and number 

of available channels.
S = {S(l,k,b) | ∀{l,k,b}} Set of all possible sensors. S(l,k,b) represents the 

sensor located at pl , of type tk and with transmission 
bandwidth wb [Hz].

Pl,k Sensor transmission power.
P̂ l,k,b Transmission power per channel.
Rl,k,b , Cl,k,b , ql,k,b Transmission rate, channel capacity and quantization 

distortion of the sensor S(l,k,b)

with ε0 = η0 = c0 = 0 representing no sensor placement.1 Sen-
sors send their observations over one of B available transmission 
bandwidths, W = {w1, · · · , w B}. The objective is to select the type 
of sensor and the bandwidth at each candidate sensing location 
such that the system performance is optimized. We summarize 
the symbol notations in Table 2. Further details about the system 
model are provided next.

2.1. Measurement modeling

Consider a linear measurement model. The observation at the 
sensor placed at pl is given by,

xl[t] = hT
l θ[t] + vl[t] (1)

θ[t] = Aθ[t − 1] + u[t] (2)

where, hl ∈ Rm is the regressor (also called gain) and vl is zero-
mean Gaussian noise with variance σ 2

v that is independent from 
the observations at other sensors. The matrix A ∈ Rm×m is the 
state transition matrix and u ∈ Rm is the driving or excitation 
noise.

This model allows for accurate estimator design since both the 
cross-correlation between source parameters and the temporal cor-
relation of the source parameters are taken into account. We focus 
in this paper on two special cases: (1) Static vector source param-
eter estimation, i.e., A = I and u[t] = 0. The Static state assumption 
is suitable for applications where stochastic variations over time 
have a minimal effect on the model, i.e., temporal correlation can 
be ignored. This assumption is suitable to ensure normal opera-
tion in human controlled environments such as monitoring the 

1 Throughout the paper, we express no sensor placement at pl as selecting a sen-
sor of type t0 at that location.
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Fig. 2. Time frequency channels. Each selected sensor (represented by a color) uses 
a subset of the channels.

power grid or a chemical plant. (2) Dynamic scalar source esti-
mation where the correlation between the different parameters is 
ignored, i.e., m = 1.

2.2. Resource block allocation

The communication channels between the sensors and the FC 
are assumed orthogonal (i.e. no interference between channels). To 
validate this assumption, the transmission is scheduled over time 
(TDMA) and/or frequency (FDMA). Let sensors transmit one obser-
vation every fixed transmission interval of T [s] over a total system 
bandwidth of W [Hz]. As shown in Fig. 2, the transmission inter-
val and available bandwidth are divided into N = NT N F channels, 
where NT and N F are the number of time and frequency channels, 
respectively. Denoting the channel interval as τ0 = T

NT
, the channel 

bandwidth, w0 = W
N F

reduces to w0 = ς 1
τ0

where ς accounts for 
the modulation and pulse shaping schemes. Without loss of gener-
ality, we assume that ς = 1.

The N channels are shared among the selected sensors such 
that each sensor can transmit over one of B predefined number of 
channels, N = {N1, · · · , NB}. Based on the number of channels Nb

given to a sensor, we define a resource block as,

wb = W Nb

N
= w0

Nb

NT
, (3)

where the total number of channels cannot exceed N . The resource 
block is the total bandwidth used by a sensor multiplied by the 
percentage of time resource occupation over the that bandwidth.2

Example. Let T = 1 [s] and W = 1 [MHz] be divided into NT = 10
and N F = 100 time and frequency channels, respectively. There-
fore, each transmission channel has τ0 = 100 [ms] and w0 =
10 [KHz]. The number of channels is N = 1000 channels which are 
shared by all selected sensors. For N = {10, 20, 50}, the resource 
block allocation set is W = {10, 20, 50} [KHz].

2.3. Power allocation

The sensor type selection is equivalent to discrete power alloca-
tion. Since we assume that the EH amount is location dependent, 
the selected sensor transmission power is a function of the avail-
able energy at pl as well as the energy harvesting efficiency of 
the deployed sensor type tk . To be more specific, the transmission 
power will be Pl,k = f (ρl, ηk, εk), where ρl is the average power 

2 The term ‘resource block allocation’, is interchanged with ‘bandwidth allocation’ 
throughout the paper.
Fig. 3. An example of candidate sensing locations, fusion center and EH distribution, 
ρl over the area of interest.

available at pl . For instance, the transmission power can be for-
mulated as, Pl,k = min(ρlηk, εk), where εk is a positive constant 
representing an upper limit for EH, e.g., battery capacity. Fig. 3
shows an example of the average EH intensity, ρl , over candidate 
sensor locations.

2.4. Channel modeling

The sensor located at pl transmits its observation with power 
Pl,k to the FC over a deterministic AWGN channel with channel 
gain gl and receiver noise φl ∼N (0, σ 2

φ ). The channel gain is given 
as gl = d−α(pl,pFC) where d(pl,pFC) is the distance between the 
sensing location pl and the location of the FC, pFC, and α is the 
path loss exponent. It is assumed that hl , �θ , gl and σ 2

φ are known 
at the FC. It is also assumed that the FC has the statistics of the 
average EH over time at each sensor location, i.e., Pl,k is known. 
Fig. 1 summarizes the system setup.

Before discussing the problem statement, we formally express 
the signal to noise ratio (SNR) per channel use at the FC in the 
following proposition.

Proposition 1. Given a system bandwidth of W [Hz], transmission in-
terval T [s], and sensor transmission power, Pl,k, the signal to noise ratio 
(SNR) per channel use at the FC is independent of N F and NT and is in-
versely proportional to the sensor bandwidth allocation, wb,

SNRl,k,b = Pl,k gl

κ
wb
, (4)

where, κ ≈ 1.3807 × 10−23 Joule per Kelvin is Boltzmann’s constant, 

is the receiver absolute temperature and gl is the channel gain.

Proof. Assume that the amount of energy a sensor collects over T
seconds, Pl,k T , is divided over the number of channels the sensor 
uses to transmit its observation. Then, the amount of energy per 
channel is,

Êl,k,b = Pl,k T

Nb
. (5)

Given that the channel interval is equal to τ0, the transmission 
power per channel is expressed as,

P̂ l,k,b = Pl,k T

τ0Nb
. (6)

The receiver noise power σ 2
φ , is a function of the channel band-

width, w0, i.e.,

σ 2
φ = κ
w0. (7)

By combining (6) and (7), and considering the channel gain, the 
SNR at the FC is expressed as,
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Fig. 4. System Model. The IoT device includes the sensor, the EH equipment and the wireless transmission system at pl .
SNRl,k,b = Pl,k gl T

κ
w0τ0Nb
= Pl,k gl

κ


N

Nb W
= Pl,k gl

κ
wb
. � (8)

2.5. Problem statement

Let S(l,k,b) represent the sensor located at pl , ∀l ∈ {1, · · · , L}, 
with the type tk , ∀k ∈ {0, · · · , K } and transmission bandwidth wb
[Hz], ∀b ∈ {1, · · · , B}. The objective is then to select a subset of 
S = {S(l,k,b) | ∀{l, k, b}} such that the estimator of the source pa-

rameters, θ̂ , at the FC is as close as possible in terms of MMSE to 
the original value, θ , subject to system cost and bandwidth con-
straints. Equivalently, we can minimize the system cost/bandwidth 
subject to an upper bound on the estimation error. In the following 
two sections, we consider achieving these goals for a static vector 
source and a dynamic scalar source, respectively.

3. Static source

The static source model is used when the source parameters do 
not change over time. We study in this section the sensor selection 
for a static source considering two schemes of sensor observation 
transmission to the FC, namely, analog and digital transmission 
schemes.

3.1. Analog transmission scheme

Recall that the observations at the sensor level are as given in 
(1). The selected sensor at pl amplifies and forwards its observa-
tion to the FC based on the available power and bandwidth such 
that the transmission power is equal to P̂ l,k,b as expressed in (6). 
The analog system model is described in Fig. 4. At the FC, the re-
ceived signal from S(l,k,b) is expressed as,

yl,k,b = sl,k,b

(√
P̂ l,k,b glxl

σx(l)
+ φl

)
, (9)

where sl,k,b is a selection indicator with sl,k,b = 1 indicating the 
selection of S(l,k,b) and sl,k,b = 0 indicating otherwise. We assume 
that φl , vl and θ are uncorrelated. To force the average transmitted 
power to P̂ l,k,b , the transmission signal is scaled by σx(l) , where 
σ 2

x(l) denotes the average power of the measurement xl and is given 
by

σ 2
x(l) = E{|xl|2} =E{|hT

l θ + vl|2} = hT
l �θ hl + σ 2

v . (10)

Note that σ 2
x(l) is assumed to be known at the sensor. Since the 

estimation error covariance matrix is a function of the received 
signal SNR, (9) can be normalized as [27] (Chapter 12 page 390)
yl,k,b = sl,k,b(hT
l θ + el,k,b), (11)

where, el,k,b = vl + φlσx(l)√
P̂ l,k,b gl

is the equivalent noise. Note that 

el,k,b is a zero-mean Gaussian noise with variance

σ 2
e(l,k,b) = σ 2

v + (hT
l �θ hl + σ 2

v )σ 2
φ

gl P̂l,k,b

. (12)

σ 2
e(l,k,b)

is the aggregate noise variance of the observation and re-
ceiver noises.

Based on the observations received at the FC given by (11), the 
unknown parameters can be reconstructed using the MMSE esti-
mator. Denoting the MMSE estimate of θ as θ̂ , the MMSE error 
covariance matrix, �θ |y = E{(θ − θ̂)(θ − θ̂)T } is expressed as, [27]
(Chapter 12 equation (12.29))

�θ |y(S) =
(

�−1
θ +

L∑
l=1

K∑
k=1

B∑
b=1

sl,k,b

σ 2
e(l,k,b)

hlh
T
l

)−1

, (13)

where y encompasses all the received observations at the FC. Ob-
serve how the selection indicators {sl,k,b} in the numerator affect 
the MMSE error covariance matrix. All the selection indicators are 
encompassed in the set of matrices S = {S1, · · · , SL} where Sl in-
cludes the selection indicators for all the sensor type and band-
width combinations at the sensing location pl as follows,

Sl =

⎡
⎢⎢⎢⎣

sl,0,1 sl,0,2 . . . sl,0,B
sl,1,1 sl,1,2 . . . sl,1,B

...
...

. . .
...

sl,K ,1 sl,K ,2 . . . sl,K ,B

⎤
⎥⎥⎥⎦ ,

where the element at the (k + 1)-th row and the b-th column is 
set to one if the sensor Sl,k,b is selected.

Proposition 2. Increasing the allocated bandwidth and sending the 
same copy of a sensor’s observation over multiple transmission channels 
does not improve the estimation performance for the analog transmis-
sion scheme, given a fixed transmission energy per observation.

Proof. See Appendix A. �
Based on Proposition 2, we can let each sensor transmit over 

one channel to save bandwidth, i.e., Nb = 1 and wb = W
N = w0

NT
. 

Consequently, P̂ l,k,b , σ 2
e(l,k,b)

and sl,k,b are reduced to P̂ l,k , σ 2
e(l,k)

and sl,k .
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Fig. 5. System Model. The IoT device includes the sensor, the EH equipment and the wireless transmission system at pl .
The reconstruction error is a function of the error covariance 
matrix. To guarantee a small reconstruction error, one might, for 
example, minimize the sum of the eigenvalues of the error covari-
ance matrix (known as the A-optimality criterion3), denoted by

tr{�θ |y(s)} = tr

(
�θ

−1 +
L∑

l=1

K∑
k=0

sl,k

σ 2
e(l,k)

hlh
T
l

)−1

, (14)

where s = {s1, · · · , sL} is defined as a set of vectors with sl indicat-
ing the sensor type at the location pl . Recall that the element sl,k is 
equal to 1 if the sensor at location pl and type tk is selected, oth-
erwise, sl,k = 0. We assume that no more than one sensor can be 
selected at any location. Therefore, the �0 norm of the vector in-
cluding all sensor types at location pl , sl = [sl,0, · · · , sl,K ]T , is equal 
to one. Having the auxiliary sensor type that represents no sensor 
selection, t0, with ε0 = η0 = c0 = 0, the relation ||sl||0 = 1 holds 
whether a sensor at pl is selected or not.

Given L candidate sensing locations and K sensor types with 
different EH capabilities, battery capacities and prices, we would 
like to jointly find the optimal sensor location and power selection 
for MMSE-based static source estimation (Static Source LoPS) subject to 
constraints on the cost and bandwidth. The MMSE estimation error 
is caused by the noisy measurements and the noisy communica-
tion channels between the sensors and the FC. Since each sensor 
transmits over only one channel, we assume that the bandwidth 
constraint is always satisfied. The Static Source LoPS optimization 
problem can now be formulated as

Problem 1: Static Source LoPS:

arg min
{sl,k}

tr{�θ |y(s)} (15)

subject to
L∑

l=1

cT sl ≤ λ (15a)

L∑
l=1

[0 1T
K ]sl ≤ N (15b)

sl,k ∈ {0,1}, ∀l,k (15c)

||sl||0 = 1, ∀l, (15d)

3 “A-optimality criterion minimizes the average variance of the estimation error. 
Other optimality criteria can also be used such as the D-optimality criterion which 
seeks to maximize the determinant of the information matrix, i.e., max det{�θ |y(s)}.
where λ is a prescribed system cost and c = [c0 . . . cK ]T is the cost 
vector for all the sensor types. The constraint (15a) is to limit the 
total deployed sensor cost to λ and the constraint (15b) is to limit 
the system bandwidth to W [Hz] by limiting the total number of 
channels used by all deployed sensors to N . Note how the selec-
tion of the sensor type t0 does not add to the LHS of (15b). The 
constraints (15c) and (15d) guarantee that the selection indicators 
are either zero or one and that at most one sensor is deployed at 
each sensing location. Alternatively, the system cost can be mini-
mized subject to a prescribed reconstruction error, ξ , which may 
be beneficial for applications in which the goal is to minimize the 
system cost, i.e.,

arg min
{sl,k}

L∑
l=1

cT sl (16)

subject to tr{�θ |y(s)} ≤ ξ (16a)

constraints (15b), (15c) and (15d). (16b)

Although the function tr{�θ |y(s)} is convex over s ∈RK+1 [10], 
the optimization problems (15) and (16) are not convex because 
of the non-convex Boolean constraints in (15c) and the �0 norm 
constraints in (15d). To obtain a convex problem which can be 
solved using well-established tools, the constraints (15c) are re-
laxed to sl,k ∈ [0, 1], ∀l,k and the constraints (15d) are relaxed to 
1T sl = 1, ∀l. The convex relaxation of (15) can then be written as,

arg min
{sl,k}

tr{�θ |y(s)} (17)

subject to constraints (15a) and (15b) (17a)

sl,k ∈ [0,1], ∀l,k (17b)

1T sl = 1, ∀l. (17c)

The solution of (17) will be between zero and one. Hence, a 
rounding heuristic should be applied to the solution to obtain a 
Boolean solution [10,8]. These heuristics are discussed in Section 5.

3.2. Digital transmission scheme

Instead of sending observations directly, in practice, each sen-
sor in the digital transmission scheme quantizes, encodes and then 
transmits its observations. An illustration of the system model is 
shown in Fig. 5. The measured observation, xl , at S(l,k,b) is quan-
tized to 2Nb Rl,k,b levels during each transmission interval, T , where 
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Rl,k,b is the transmission rate per channel which is bounded by the 
Shannon capacity theorem as

Rl,k,b ≤ Cl,k,b = log2(1 + SNRl,k,b), (18)

where, Cl,k,b is the channel capacity. Note that Rl,k,b and Nb Rl,k,b
are not necessarily integers. However, the number of quantization 
levels, 2Nb Rl,k,b , must be an integer.

Example. A signal might be quantized to 9 levels and sent over 
one 9-ary channel or two 3-ary channels. In the first case, Nb = 1
and Rl,k,b = log2(9) while in the other case, Nb = 2 and Rl,k,b =
log2(3).

For Gaussian sensor observations, quantization distortion is 
given by the rate distortion theorem as [28] (Chapter 10 equation 
(10.37)),

σ 2
q(l,k,b) = σ 2

x(l)2
−2Nb Rl,k,b (19)

where σ 2
x(l) is as defined in (10). To minimize distortion, we se-

lect the maximum number of quantization levels to represent each 
observation while Rl,k,b ≤ Cl,k,b , i.e., the number of quantization 
levels is

Q = 2Nb Rl,k,b = �2Nb log2(1+SNRl,k,b)�, (20)

where �·� is the floor function. From (4), (19) and (20) the quanti-
zation distortion is expressed as,

σ 2
q(l,k,b) = σ 2

x(l)2
−2 log2�2Nb log2(1+SNRl,k,b )�

= σ 2
x(l)�(1 + SNRl,k,b)

Nb �−2

= σ 2
x(l)

⌊(
1 + Pl,k gl

κ
wb

)Nb
⌋−2

. (21)

Remark. Unlike the analog scheme, in which by increasing the 
transmission bandwidth the estimation performance is not im-
proved, the quantization distortion is decreased as the selected 
bandwidth wb is increased. As wb → ∞ we reach the minimum 
quantization error given by,

σ 2
q(l,k) = σ 2

x(l)

⌊
exp

(
Pl,k gl N

κ
W

)⌋−2

, (22)

which is obtained by applying the identity, exp(a) = limb→∞(1 +
a
b )b on (21).

The quantization distortion can be represented by a zero mean 
Gaussian signal, denoted as ql,k,b , with variance σ 2

q(l,k,b)
added to 

the quantized signal [28] (Chapter 10 page 311). Fig. 6 illustrates 
the quantization error.

After quantization, the observation is encoded to be sent over 
Nb channels with an average power P̂ l,k,b . Denoting the encoded 
signal as, x̃l,k,b = [x̃(1)

l,k,bx̃(2)

l,k,b . . . x̃(Nb)

l,k,b ]T , and assuming AWGN chan-
nels between Sl,k,b and the FC, the received signal at the FC is 
formulated as,

ỹl,k,b = sl,k,b(
√

glx̃l,k,b + φ), (23)

where, ỹl,k,b = [ ỹ(1)

l,k,b ỹ(2)

l,k,b . . . ỹ(nb)

l,k,b]T is the vector of received sig-
nals from the Nb channels between Sl,k,b and the FC. It is assumed 
that Nb is large enough such that it is possible to use efficient 
coding and modulation techniques to decode the received signals 
with negligible error at the FC [28, Theorem 8.7.1]. For instance, 
we assume that Nb ≥ Nmin, where Nmin is the minimum number 

of channels such that φ ≈ 0. Equivalently wb ≥ wmin = W Nmin .

N

Fig. 6. An illustration of the transmitted signal power after being distorted by the 
quantization error [28] (Chapter 10 page 311).

Considering both the measurement distortion and quantization 
distortion, the decoded signal received from Sl,k,b at the FC can be 
written as,

yl,k,b = sl,k,b(hT
l θ + vl + ql,k,b)

= sl,k,b(hT
l θ + ẽl,k,b). (24)

Since vl and ql,k,b are two Gaussian random variables, ẽl,k,b is also 
a Gaussian random variable with zero mean and variance,

σ 2
ẽ(l,k,b)

= σ 2
v + σ 2

q(l,k,b). (25)

At the FC, all selected sensors’ observations are collected to es-
timate the unknown parameter, θ . Since the received signal at the 
FC can be expressed as a linear function of the unknown parame-
ter as in (24), the MMSE error covariance matrix is expressed as, 
[27] Chapter 12 equation (12.29)),

�θ |y(S) =
(

�−1
θ +

L∑
l=1

K∑
k=0

B∑
b=1

sl,k,b

σ 2
ẽ(l,k,b)

hlh
T
l

)−1

,

where σ 2
ẽ(l,k,b)

is as in (25). Similar to the previous section, we 
express the estimation error by taking the trace of the error co-
variance matrix,

tr{�θ |y(S)} = tr

(
�θ

−1 +
L∑

l=1

K∑
k=0

B∑
b=1

sl,k,b

σ 2
ẽ(l,k,b)

hlhl
T

)−1

. (26)

Having the mathematical expression for the MMSE estimation 
error in terms of different system parameters, we are ready to de-
fine and solve the sensor “Bandwidth, Location and Power Selection for 
Static source estimation” (Static Source BLoPS) problem for the digital 
transmission scheme. In the Static Source BLoPS problem, the error 
is minimized subject to constraints on the total system cost and 
the total system bandwidth. The bandwidth allocation is done op-
timally such that each selected sensor occupies a bandwidth from 
the vector w = [w1 · · · w B ]T where wmin ≤ w1 < w2 · · · < w B such 
that wmin is large enough so as to give each sensor enough band-
width to transmit as many symbols as needed to communicate 
reliably.

Given L candidate sensor locations and K sensor types with dif-
ferent energy harvesting capabilities, battery capacities and costs, 
and B operating bandwidths, we would like to jointly choose the 
optimal subset of S = {S(l,k,b) | ∀{l, k, b}} that minimizes tr{�θ |y(S)}
subject to thresholds on the system cost and bandwidth. The Static 
Source BLoPS optimization problem is mathematically written as,

Problem 2: Static Source BLoPS:

arg min
{s }

tr{�θ |y(S)} (27)

l,k,b
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subject to
L∑

l=1

cT Sl1B ≤ λ (27a)

L∑
l=1

[0 1T
K ]Slw ≤ W (27b)

sl,k,b ∈ {0,1}, ∀l,k,b (27c)

||Sl||0 = 1, ∀l, (27d)

where ||Sl||0 is defined as the number of non-zero elements in Sl .
The objective function is convex w.r.t. S [10]. The constraints 

(27a) and (27b) bound the system cost and bandwidth to λ and 
W respectively. The constraints (27c) and (27d) guarantee that the 
selection indicators are either zero or one and that at most one 
sensor is deployed at each sensing location. For example, the ele-
ment at the (k +1)-th row and the b-th column is set to one while 
all other elements are equal to zero if the sensor Sl,k,b is selected. 
In case no sensor is selected, any element in the first row is set to 
one while all other elements are equal to zero. Note how the first 
row of Sl is excluded from the bandwidth constraint (27b).

The constraints (27c) and (27d) are not convex. To obtain a con-
vex problem, the nonconvex Boolean constraints in (27c) and the 
�0 norm in (27d) are relaxed as follows,

arg min
{sl,k,b}

tr{�θ |y(S)} (28)

subject to constraints (27a) and (27b) (28a)

sl,k,b ∈ [0,1], ∀l,k,b (28b)

||Sl||1 = 1, ∀l, (28c)

where ||Sl||1 is defined as the summation of the modulus of all 
entries of Sl .

The optimization problem (28) is solved using well-known con-
vex optimization tools. However, the solution is in general not 
Boolean. Therefore, a rounding algorithm should be applied to ap-
proximate the solution.

4. Dynamic source

In nature, physical quantities tend to change slowly over time. 
Therefore, exploiting the temporal correlation between measure-
ments significantly improves the estimation quality. The Kalman 
filter, [22], is used at the FC to obtain the MMSE parameter estima-
tion based on the received observations from the selected sensors 
over time. As opposed to the previous section which considered a 
static vector source, we now focus on a dynamic scalar source.4

The dynamics of the unknown parameter are captured through 
the first order Gauss-Markov process, i.e.,

xl[t] = hlθ[t] + vl[t], (29)

θ[t] = aθ[t − 1] + u[t], t ∈Z++ (30)

where E{θ[0]} = μs and u[t] ∼ N (0, σ 2
u ) is the driving or exci-

tation noise. We assume that θ[0] and u[t] are independent and, 
u[t1] and u[t2] are uncorrelated ∀t1 �= t2. For a stabilizable (a, σu)

and as t → ∞, μθ = lim
t→∞E{θ[t]} = 0 and

σ 2
θ = lim

t→∞ Var(θ[t]) = σ 2
u /(1 − a2). (31)

4 We only consider the dynamic scalar source due to the difficulty of dealing 
with the discrete algebraic Riccati equation (DARE) which arises from solving for 
the MMSE Kalman estimation error covariance matrix.
Since the selection is done at the design time, we consider the 
steady state Kalman MMSE estimation. In the following subsec-
tions, we study the sensor selection for the analog and digital 
transmission schemes.

4.1. Analog transmission scheme

Following the same analog scheme derivations as in the pre-
vious section, the received observation from Sl,k,b at the FC is 
expressed as

yl,k,b = sl,k,b

(√
P̂ l,k,b glxl

σx(l)
+ φl

)
,

where xl = hlθ + vl is the scalar measurement observation at the 
sensor and σ 2

x(l) = E{x2
l }. Note that we drop the time index for 

simple presentation. Without loss of generality, the received signal 
is normalized as

yl,k,b = sl,k,b(hlθ + el,k,b), (32)

where, el,k,b = vl + φlσx(l)√
P̂ l,k,b gl

is the equivalent noise. el,k,b is a zero 

mean Gaussian variable with variance,

σ 2
e(l,k,b) = σ 2

v + (hl�θhl + σ 2
v )σ 2

φ

gl P̂l,k,b

. (33)

Define ε(S) = [ε1 · · ·εL]T with εl = ∑K
k=0

∑B
b=1 sl,k,b el,k,b where S

is the selection indicator set of matrices, Sl, ∀l, as defined before. 
Now, the received vector of observations from all selected sensors 
at the FC is formulated as,

y(S) = hθ + ε(S). (34)

Here, y(S) ∈ RL represents the received observations from all the 
sensing locations as a function of the sensor type and bandwidth 
selection at each location. h = [h1 · · ·hL]T represents the vector of 
measurement gains over sensing locations. Since, ei,k,b and e j,k,b

are uncorrelated for any i �= j, the elements of ε(S) are uncor-
related. Consequently, the covariance matrix of ε(S), denoted as 
�ε(S) is diagonal such that,

[�ε(S)]ll =E{ε2
l } =

K∑
k=0

B∑
b=1

sl,k,b σ 2
e(l,k,b). (35)

Since only one sensor is selected at any location, only one term 
of the summation is non zero. To avoid the indefinite form 
el,0,bsl,0,b = ∞ · 0 that arises with the auxiliary sensor type (with 
P̂ l,0,b = 0) not being selected, we redefine the t0 transmission 
power as P̂ l,0,b ≈ 0.

Assuming that (a; σu) in (31) is stabilizable, the MMSE Kalman 
estimation error as t → ∞ converges to [27] (Chapter 13 equations 
(13.39), (13.40), (13.42)), [29] (Chapter 3 equations (1.3), (1.12)).

M(S) = M(S)[t] (36)

=
[

1 − hT (
�ε(S)

Mp(S)
+ hhT )−1h

]
Mp(S), (37)

where Mp(S) = Mp(S)[t] = a2M(S)[t −1] +σ 2
u is the MMSE Kalman 

prediction error. Since the MMSE Kalman estimation error con-
verges as t → ∞, M(S) = M(S)[t −1]. Therefore, the MMSE Kalman 
prediction error is expressed as,

Mp(S) = a2M(S) + σ 2
u . (38)
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The MMSE Kalman estimation error can be derived by substituting 
(38) into (37).

For the analog transmission scheme, increasing the transmis-
sion bandwidth is unnecessary as proved in Appendix A. Therefore, 
the selection is reduced to one operating bandwidth, wb = W

N . 
The MMSE Kalman estimation error is minimized subject to a 
prescribed system budget and bandwidth by solving the Dynamic 
Source LoPS optimization problem expressed as,

Problem 3: Dynamic Source LoPS:

arg min
{sl,k}

M(s) (39)

subject to
L∑

l=1

cT sl ≤ λ (39a)

L∑
l=1

[0 1T
K ]sl ≤ N (39b)

sl,k ∈ {0,1}, ∀l,k (39c)

||sl||0 = 1, ∀l. (39d)

Neither the objective function in (39) nor the constraints (39c)
and (39d) are convex. Hence, the optimization problem cannot be 
efficiently solved using well-known methods [9].

Proposition 3. The minimization of M(S) is equivalent to maximizing 
γ (S) where,

γ (S) =
L∑

l=1

K∑
k=0

B∑
b=1

(hl)
2 gl P̂l,k,b

σ 2
v gl P̂l,k,b + σ 2

x(l)σ
2
φ

sl,k,b (40)

Proof. See Appendix B. By replacing M(S) with γ (S) and relaxing 
the constraints (39c) and (39d), the optimization problem in (39), 
becomes convex (linear) and can be expressed as,

arg max
{sl,k}

γ (s) (41)

subject to (39a), (39b) (41a)

sl,k ∈ [0,1], ∀l,k (41b)

1T sl = 1, ∀l. (41c)

Equivalently, we can minimize the system cost subject to a pre-
scribed MMSE reconstruction error, M(S). The relaxed equivalent 
problem is written as,

arg min
{sl,k}

L∑
l=1

cT sl (42)

subject to γ (S) ≥ ξ̃ (42a)

constraints (39b), (41b) and (41c) (42b)

where bounding γ (S) to be greater than ξ̃ is equivalent to bound-
ing M(S) to be less than ξ such that,

ξ̃ = σ 2
u − (1 − a2)ξ

a2ξ2 + σ 2
u ξ

(43)

This is proved by substituting M(S) and γ (S) with ξ and ξ̃ in 
(B.3) respectively, and since M(S) and γ (S) are inversely propor-
tional. �
4.2. Digital transmission scheme

In the digital transmission scheme, the sensors’ observations 
are quantized and encoded such that the transmission to the FC 
is error free. Following the same derivations as in the previous 
section, the decoded vector of received signals at the FC is as ex-
pressed in (34) with the ε(S) covariance matrix redefined as,

[�ε(S)]ll =
K∑

k=0

B∑
b=1

(
σ 2

v + σ 2
x(l)

⌊(
1 + Pl,k gl

κ
wb

)Nb
⌋−2 )

sl,k,b.

Following a similar derivations to the analog case, it can be 
shown that minimizing the steady state Kalman MMSE estimation 
error, M(S), is equivalent to maximizing

γ (S) = hT �ε(S)−1h =
L∑

l=1

h2
l

[�ε(S)]l,l
.

Since sl,k,b ∈ {0, 1} and ||Sl||0 = 1, γ (S) can be written as,

γ (S) =
L∑

l=1

K∑
k=0

B∑
b=1

h2
l sl,k,b(

σ 2
v + σ 2

x(l)

⌊(
1 + Pl,k gl

κ
wb

)Nb
⌋−2

) . (44)

Now, having a convex formulation for the Kalman MMSE error 
to be minimized (through an equivalent maximization of a linear 
function), we are ready to formulate the dynamic source BLoPS op-
timization problems.

The relaxed optimization problem for selecting the sensor 
bandwidth, location and power to minimize the Kalman MMSE 
error subject to a prescribed system cost and bandwidth is formu-
lated as,

Problem 4: Dynamic Source BLoPS:

arg max
{sl,k,b}

γ (S) (45)

subject to
L∑

l=1

cT Sl1B ≤ λ (45a)

L∑
l=1

[0 1T
K ]Slw ≤ W (45b)

sl,k,b ∈ [0,1], ∀l,k,b (45c)

||Sl||1 = 1, ∀l. (45d)

5. Rounding algorithms

In the ideal case, the solution of the relaxed problem is sl,k,b ∈
{0, 1} with ||Sl||0 = 1. However, due to the problem relaxation, the 
solution is in general sl,k,b ∈ [0, 1]. Rounding algorithms are needed 
to recover a Boolean solution from the solution obtained via con-
vex relaxation. The randomized algorithm outperforms the simple 
rounding algorithm (via the function round(sl,k,b)) at the expense 
of a higher computational cost while solving for the reconstruc-
tion MSE of at most J realizations. However, due to the constraint 
||Sl||0 = 1, the randomized algorithm proposed in [10] is unreliable 
and might give no or a bad solution.

In the conventional randomized algorithm [10], J realizations 
are generated where in each realization the sensor Sl,k,b is se-
lected independently with probability sl,k,b . Each sensor selection 
realization is tested against the optimization problem constraints 
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such that all realizations violating the problem constraints are 
eliminated. Then, an exhaustive search for the minimum MSE is 
performed over the remaining realizations to obtain a subopti-
mal solution. Since exactly one sensor is selected per location (i.e., 
||Sl||0 = 1), most realizations are expected to be eliminated before 
performing the exhaustive search. Therefore, the conventional ran-
domized algorithm proposed in [10] is not suitable for the joint 
sensor location, type and bandwidth selection setup and a new 
rounding algorithm is needed. We illustrate this issue in the fol-
lowing example:

Example. Suppose that the relaxed solution obtained by solving 
one of the optimization problems discussed in the previous two 
sections is feasible at the locations l ∈ {ζ + 1, · · · , L} (i.e., sl,k,b ∈
{0, 1}, ∀l ∈ {ζ + 1, · · · , L}) and that sl,k,b = 0.5, ∀l ∈ {1, · · · , ζ }, k ∈
{0, 1}, b = 1. By performing the conventional randomized round-
ing algorithm, the probability of selecting Sl,k,b, ∀l ∈ {1, · · · , ζ }, k ∈
{0, 1}, b = 1 is equal to 0.5 at each realization. Therefore, the 
probability of selecting exactly one sensor at all the locations 
l ∈ {1, · · · , ζ } is equal to 0.5ζ . Hence, 1 − 0.5ζ of the realizations 
are eliminated to satisfy ||Sl||0 = 1.

To round the obtained solutions efficiently, we propose a novel 
rounding algorithm which takes the sensor type and bandwidth 
selection into consideration as summarized in Algorithm 1.

In the first line, we define L vectors, �l , representing the sen-
sor type and operating bandwidth selection at the sensing location 
pl where P {�l = (k, b)} = sl,k,b, ∀l. At each realization (line 2), �l

takes one value, ψ( j)
l , i.e., one sensor type and operating band-

width are selected per sensing location (line 3). Hence, all the J
realizations satisfy the constraint ||Sl||0 = 1. In line four, realiza-
tions are tested against the cost and bandwidth constraints before 
performing an exhaustive search for the minimum MSE (line 7).

Algorithm 1 Randomized rounding.
1: Let �l = (�l,1, �l,2), ∀l, be a random vector from population {(0, 1), · · · , (K , B)}

such that P {�l = (k, b)} = sl,k,b, ∀l
2: Generate j = {1, · · · , J } realizations
3: Let ψ( j)

l = (ψ
( j)
l,1 , ψ( j)

l,2 ) be the j-th realization of �l, ∀l

4: Let � = { j| ∑L
l=1 c

ψ
( j)
l,1

≤ λ, ∑L
l=1 w

ψ
( j)
l,2

≤ W , } be the set of all realizations that 
satisfy the constraints.

5: If � is empty, go back to step (2).
6: Define ŝ( j)

l,k,b such that ŝ( j)
l,k,b = 1 if ψ( j)

l = (k, b) otherwise, ŝ( j)
l,k,b = 0, ∀l, k, b, j.

7: The suboptimal Boolean solution is S̃ = arg min
j∈�

tr{�θ |y(Ŝ( j))} for the static 

source and arg min
j∈�

γ (Ŝ( j)) for the dynamic source.

The complexity of the proposed rounding algorithm is equal 
to J× (the cost of computing the performance metric). For the 
static source LoPs and BLoPs problems, the minimum MSE compu-
tation involves matrix inversion which costs O(m3). Hence, the 
algorithm complexity for rounding the static source LoPs and BLoPs
is O( J × m3). For the dynamic source LoPs and BLoPs problems, the 
minimum MSE can be solved directly by summing the non-zero 
terms in (42) and (46). Therefore, the complexity of the algorithm 
for dynamic source LoPs and BLoPs rounding is O( J ). It should be 
clear that by increasing the number of realizations, J , the rounding 
accuracy improves. As will be shown in the numerical experiment, 
a tight approximation is obtained when J > 2LK B .

6. Numerical experiments

Consider a field of area 400 × 400 [m2] with L = 36 candidate 
sensing locations distributed uniformly. We select sensors from a 
pool of K = 3 sensor types and B = 3 operating bandwidths to be 
placed at a subset of the L sensing locations such that λ ≤ 35 [k$] 
Fig. 7. System map includes a grid of 36 candidate sensor locations, one FC, five 
sources and two BSs at different locations.

Table 3
Default system parameters.

Par. Value Par. Value Par. Value

c [0 1 2 3] [k$] �θ I5 α 2
η [0 .3 .6 .9] σ 2

u 5 β1 10

ε [0 .3 .6 .9] × 10−3 σ 2
v 1 β2 100

w [20 40 60] [kHz] σ 2
φ −60 [dBm] β3 250

a 0.71 �i 1 [dB] �0 −3 [dBm]

and W ≤ 1 [MHz]. A measurement is collected every T = 1 [ms] at 
each selected sensor. The time-frequency resource is divided into 
N = 1000 channels with w0 = 1 [KHz]. The observed measurement 
at Sl,k,b is a linear combination of the diffused unknown parameter 
from m sources. As a practical example for the sensor selection for 
source estimation, consider a chemical plant at which sensors are 
placed to estimate the gas emission from gas flares. Assume that 
the gas diffuses from the flares to the sensing locations as follows,

hl,m = β1 exp(−dl,m/β2)1{dl,m≤β3}, (46)

where dl,m is the distance between the sensing location pl and 
the m-th source, β1, β2 are the source diffusion parameters and 
1{dl,m≤β3} is the indicator function which equals one if dl,m ≤ β3

and zero otherwise. For the scalar dynamic source, we consider 
m = 1 source located at (290, 180). While for the vector static 
sources, we consider m = 5 sources located as shown in Fig. 7. 
The selected sensors harvest solar energy and electromagnetic en-
ergy from cellular base stations (BS) and use it to transmit their 
observations to the FC.5 The maximum energy harvesting at the 
location pl is given by,

ρl =
I∑

i=1

�id
−α
i,l + �0 (47)

where �i is the i-th BS transmission power, �0 is the EH from solar 
cells and di,l is the distance between the i-th BS and pl . The source 
parameters, candidate sensing locations, BSs and FC are shown in 
Fig. 7. Unless otherwise stated, the default system parameters are 
presented in Table 3.

Using the CVX optimization tool box [30], we directly solve 
the static source LoPS and BLoPS, and the dynamic source LoPS 
and BLoPS problems. Then, the obtained solution is rounded using 

5 Hardware and signal processing powers are neglected.
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Fig. 8. A sensor selection example for the Static Source BLoPS problem. (σ 2
v =

10−2.5).

Fig. 9. Number of selected sensors from each sensor type and operation bandwidth 
against σ 2

v .

Algorithm 1 where the number of realizations is J = 1000. The so-
lution of the static source BLoPS problem is shown in Fig. 8. As 
shown in Fig. 8, more expensive and higher bandwidth sensors are 
selected at far distances from the FC (and BSs) as compared to can-
didate sensor locations close to the FC (and BSs). This is expected 
since far sensors from the FC need higher resources to guarantee 
reliable communication link to the FC. Also note how most of the 
un-selected sensing locations are at the edge of the field.

The number of selected sensors from each sensor type and op-
erating bandwidth is shown in Fig. 9 against the measurements 
noise variance. When the measurement noise variance is low com-
pared to the communication channel noise variance, less but more 
equipped sensors are selected. On the other hand, if the measure-
ment noise is dominant over the channel noise, selecting many 
cheap sensors with a low operating bandwidth becomes more suit-
able.

Recall that the static source LoPS and dynamic source LoPS 
problems are used when the analog transmission scheme is as-
sumed while the static source BLoPS and dynamic source BLoPS 
problems are utilized when the digital transmission scheme is as-
sumed. Figs. 10 and 11 show the obtained source estimation MMSE 
versus λ. The digital scheme outperforms the analog scheme at the 
expense of a higher system bandwidth consumption. Recall that 
in order to neglect the AWGN channel noise for digital transmis-
Fig. 10. Reconstruction error for Static Source LoPS and BLoPS against system cost.

Fig. 11. Reconstruction error for Dynamic Source LoPS and BLoPS against system 
cost.

sion, Nb must be large to enable channel coding. The solutions of 
the relaxed optimization problems throughout the paper represent 
a lower bound for the achievable estimation MMSE. As shown in 
Figs. 10 and 11, the average performance of the solution obtained 
by running a Monte-Carlo experiment for the proposed rounding 
algorithm is very close to the lower bound solution. This is partly 
because most of the selection indicators are Boolean even before 
rounding.

Taking the static source BLoPS problem as an example, Fig. 12
shows the advantage of adding higher degrees of flexibility to the 
system by allowing different sensor types and operating band-
widths. In the figure, the blue curves restrict the sensor type selec-
tion while jointly optimizing sensing location and operating band-
width. Similarly, the orange curves restrict the operating band-
width while the sensor location and type are jointly optimized. 
The green curve is obtained by jointly optimizing the sensor band-
width, location and type. From Fig. 12, we note that restricting 
the system types degrades the system performance considerably 
while restricting the sensor transmission bandwidth is less influ-
ential. For λ > 12 [K$], restricting the sensor type to k = 2 results 
in a better performance as compared to restricting the sensor type 
to k = 1 and k = 3. This is because expensive sensors might pro-
vide extra unnecessary power for sensors close to the FC while 
cheap sensors might be useless for sensors far from the FC (see 
how the curve k = 1 decreases slowly after λ = 23 [K$]). Finally, 
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Fig. 12. Reconstruction error for Static Source BLoPS with selection restrictions.

notice how at λ ≤ 18 [K$], the flexible solution (with all sensor 
types and bandwidths allowed) and the solution with all types but 
only bandwidth wb = 60 [KHz] are identical. This is because there 
is enough system bandwidth to allow all selected sensors to trans-
mit over wb = 60 [KHz]. As λ increases, the number of selected 
sensors also increases and the smaller transmission bandwidths 
become more suitable for some of the selected sensors.

7. Conclusion

Novel models for sensor selection have been introduced to op-
timize the source parameter estimation at a central unit. Given 
limited system cost and spectral bandwidth, we place sensors at 
a subset of candidate sensing locations and allocate the suitable 
amount of transmission power and bandwidth to each sensor such 
that the best source parameter estimate is obtained. The EH and 
the communication channel quality were taken into account in ad-
dition to the measurement accuracy. A digital transmission scheme 
between the sensors and the FC was modeled based on informa-
tion theory. We show that the digital transmission scheme out-
performs the analog scheme given enough bandwidth to encode 
data efficiently. We show that the system performance can be en-
hanced significantly by jointly selecting the sensor’s transmission 
power and bandwidth, in addition to selecting the sensing loca-
tions. Given a limited power and bandwidth budget, using a few 
expensive sensors with high transmission power and bandwidth is 
suitable in the case of accurate measurements at the sensor level 
but low communication link quality. On the other hand, a large 
number of cheap sensors with low transmission power and band-
width is preferred when power measurements are obtained at the 
sensor level while the communication link is relatively strong.
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Appendix A. The effect of bandwidth increase on the analog 
communication

Assume Nb observation copies of a selected sensor, Sl,k,b , are 
transmitted over Nb channels. The received signal from the i-th 
channel, ∀i ∈ {1, · · · , Nb}, is expressed as,
y(i)
l,k,b =

√
P̂ l,k,b glxl

σx(l)
+ φ

(i)
l .

The FC receiver noise is reduced by averaging the received obser-
vation copies from Sl,k,b as,

ȳl,k,b =
√

P̂ l,k,b glxl

σx(l)
+ 1

Nb

Nb∑
i=1

φ
(i)
l

Assuming independent FC receiver noises over the Nb channels, 
the SNR is expressed as

SNRl,k,b = P̂ l,k,b gl

E
{( 1

nb

∑nb
i=1 φ

(i)
l

)2
}

= P̂ l,k,b gl

σ 2
φ /nb

= Pl,k gl

κ


N

W

which is independent of Nb .

Appendix B. Proof that min M(S) is equivalent to maxγ (S)

From (37) and from the matrix inversion lemma,

Â−1B̂(D̂ − ĈÂ−1B̂)−1 = (Â − B̂D̂−1Ĉ)−1B̂D̂−1, (B.1)

where, Â = IL,L , B̂ = hT , Ĉ = h and D̂ = 1

(a2M(S) + σ 2
u )

�ε(S), the 

MMSE Kalman estimation error is rewritten as,

M(S) =
(

1 − [
1 + hT (a2M(S) + σ 2

u )�ε(S)−1h
]−1

(a2M(S) + σ 2
u )�ε(S)−1h

)
(a2M(S) + σ 2

u )

= (a2M(S) + σ 2
u )

1 + (a2M(S) + σ 2
u )hT �ε(S)−1h

(B.2)

Letting γ (S) = hT �ε(S)−1h, (B.2) is reformulated as,

a2M(S)2γ (S) + (1 + σ 2
u γ (S) − a2)M(S) − σ 2

u = 0 (B.3)

and therefore,

M(S) =

√
(1 − a2)2

γ (S)2
+ 2(1 − a2)σ 2

u + 4a2σ 2
u

γ (S)
+ σ 4

u

(2a2)

− (
(1 − a2)/γ (S) + σ 2

u

)
/(2a2). (B.4)

As γ (S) increases, we note that the first term of the right hand 
side is decreasing faster than the increase in the second term in 
(B.4). Therefore, the error M(S) is monotonically decreasing with 
the increase of γ (S). M(S) diminishes as γ (S) → ∞. γ (S) is al-
ways greater than zero by definition. Hence, minimizing M(S) is 
equivalent to maximizing γ (S).

Since �ε(S) is diagonal and by substituting [�ε(S)]l,l as in (35), 
γ (S) is expressed as,

γ (S) =
L∑

l=1

h2
l

[�ε(S)]l,l

=
L∑

l=1

h2
l∑K

k=0
∑B

b=1

(
σ 2

v + σ 2
x(l)σ

2
φ

gl P̂l,k,b

)
sl,k,b

. (B.5)
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Since sl,k,b ∈ {0, 1} and ||Sl||0 = 1, it is not hard to show that,

γ (S) =
L∑

l=1

K∑
k=0

B∑
b=1

h2
l gl P̂ l,k,b

σ 2
v gl P̂l,k,b + σ 2

x(l)σ
2
φ

sl,k,b,

which proves (40)
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