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ABSTRACT

The classical Compressive Sensing (CS) techniques for wide-
band spectral sensing consist of a two-stage estimation detec-
tion approach. A novel approach is proposed to solve the de-
tection problem directly from observations with incomplete
frequency information, for e.g., signals acquired using sub-
Nyquist rate sampling. The wideband occupancy detection
problem is formulated as a multiple hypothesis testing prob-
lem under a non-Bayesian framework, and a Neyman-Pearson-
like criterion is proposed. The detector based on exhaus-
tive search performs better than the conventional CS based
techniques. However, it is impractical for large block sizes.
Hence, we propose a sub-optimal greedy algorithm whose
complexity and performance can be traded-off by construc-
tion.

1. INTRODUCTION
Efficient spectrum sharing can be achieved in wireless sensor
networks through wideband spectrum sensing, by identifying
available channels within a large frequency range. In order to
sense large bandwidths, in the order of a few hundred MHz,
high-rate Analog-to-Digital Converters (ADCs) or complex
receiver front-ends are required.

Currently, there is a great interest in reducing the sam-
pling rate for sparse signals and relax the requirements on
the ADCs. These are often casted as a Compressive Sens-
ing (CS) problem, where the data is acquired at a rate signif-
icantly lower than the Nyquist rate. The sampling rate could
be reduced by using the architectures reported in the litera-
ture, such as multi-coset sampling [1] or modulated wideband
converters [2]. Later, the signal can be recovered with one of
the many available sparse recovery algorithms with little or
no loss of information. For sensing using classical CS based
techniques, either the entire signal or its statistical measures
are reconstructed first. Then, in the second stage, detection is
performed on this compressive estimate. Here, we avoid this
two stage estimation-detection approach. Instead we perform
a direct detection on the compressed samples obtained using
sub-Nyquist rate sampling. That is the main contribution of

This work was supported in part by STW under FASTCOM project
(10551) and in part by NWO-STW under the VICI program(10382).

this paper. Such detection problems appear in various fields
such as event detection in radar, Multi-User (MU) detection
in communications, imaging, and spectrum sensing for Cog-
nitive Radios (CRs).

Here, we consider a multiband occupancy detection prob-
lem. In a multiband spectrum, each band could be either busy
or free. We formulate this detection problem as a Multiple
Hypothesis Testing (MHT) problem under a non-Bayesian
philosophy, with each hypothesis describing one possible com-
bination (combinatorial in the number of channels N ) of all
the channels being busy and/or free. A channel length of N
would result in one null hypothesis H0, and m = 2N − 1,
alternative hypotheses indicated by H1, H2, . . . ,Hm. Solv-
ing the MHT problem would give the occupancy of all the N
channels at once, and would avoid solving a binary hypothesis
problem on every channel.

The MHT problem can be related to model order selec-
tion [3, 4], which is generally casted as a parameter estima-
tion problem in a Bayesian framework. However, in this pa-
per we consider a detection problem under a non-Bayesian
framework.

We develop a detector for a signal that is acquired using
sub-Nyquist rate sampling, i.e., the number of available mea-
surements M is less than the number of Nyquist rate mea-
surements N . This is termed a Compressed Detector (CD).
We propose an exhaustive search algorithm as well as a sub-
optimal greedy algorithm for CD. The performance of these
detectors is analyzed through simulations in terms of the de-
tection probability, the false alarm probability, and the com-
pression rate, which is given by M

N .

2. DETECTION MODEL
We start by defining the probability of detection, Pd, and the
probability of false alarm, Pfa, which are used to analyze
the performance of Wideband Sensing (WS) for a given static
channel occupancy.

Definition 1. Probability of detection and probability of false
alarm. Consider a wideband spectrum of B Hz segmented
into N channels, such that each channel has a bandwidth of
B
N Hz. The channels are indexed from 1 toN . These channels
can be either busy or free, depending on whether there is or
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there is not a signal transmission, respectively. The indices of
such K busy channels are collected in a set

b = {b1, b2, . . . , bK}, (1)
with |b| = K. The complement of the set b is denoted by

bc = {bc1, bc2, . . . , bcN−K}, (2)
with |bc| = N −K. The probability of detection is then de-
fined as

Pd =
1

K

K∑
j=1

X (bj ∈ b̃|b̃ detected)Pr(b̃ detected) (3)

where, X (.) denotes the indicator function and b̃ is the de-
tected busy channel set.

The probability of false alarm is defined as

Pfa =
1

N −K

N−K∑
j=1

X (bcj ∈ b̃|b̃ detected)Pr(b̃ detected).

(4)
The MHT detector in the Neyman-Pearson sense is the

most likely hypothesis, that would optimize the probability
of detection, Pd, (as defined in (3)) with a constraint on the
probability of false alarm, Pfa (as defined in (4)). However,
this detector is complicated to derive. Hence, we propose a
simplified detector for the MHT problem using a Neyman-
Pearson-like criterion, in the sense that we do not assign any
prior probabilities to the hypotheses.

Proposition 1. MHT under a Neyman-Pearson-like criterion.
Let y denote the observations from a certain process. Let the
null hypothesis be denoted by, H0, and the alternative hy-
potheses by, Hi, with i = 1, . . . ,m = 2N − 1. The proposed
MHT detector under a Neyman-Pearson-like criterion is

i∗ = arg max
i

(
Λ(i) = ln

Pr(y|Hi)
Pr(y|H0)

)
, i = 1, 2, . . . ,m.

(5)

Λ(i∗)
Hi∗

R
H0

γth. (6)

The optimization problem (5) will result in the most likely
hypothesis. A selection between the null hypothesis H0 and
the most likely alternative hypothesis Hi∗ is done using the
threshold γth, as in (6).

For the proposed MHT detector we can further re-write
Pd and Pfa as

Pd =
1

K

K∑
j=1

m∑
i∗=0

X (bj ∈ b̃(i∗)|i∗ is solution)PHi∗ ,

Pfa =
1

N −K

N−K∑
j=1

m∑
i∗=0

X (bcj ∈ b̃(i∗)|i∗ is solution)PHi∗ .

(7)
where, b̃(i∗) is one of the possible detected busy channel set
and PHi∗ is the probability that Hi∗ is selected. We choose
γth based on simulations, to maintain a certain Pfa.

3. SIGNAL MODEL
Let the time domain signal representing N frequency chan-
nels be denoted by the N × 1 vector x ∈ CN and the noise
by the N × 1 vector v ∈ CN . The signal x can be written
in terms of its frequency response xf ∈ CN as x = FHxf ,
where F ∈ CN×N is the normalized Discrete Fourier Trans-
form (DFT) matrix. Similarly, the noise v can be written in
terms of its frequency response vf ∈ CN as v = FHvf . The
passband signal at the receiver can then be written as

y = Ψ(xf + vf ), (8)

where, Ψ = FH . We acquire the received signal through a
linear measurement process modeled by the sensing matrix,
Φ ∈ RM×N , with M < N . For sub-Nyquist rate sampling,
Φ is a fat matrix, resulting in an under-determined system.
The acquired signal is denoted by the M × 1 vector

ỹ = Φy = Ψ̃(xf + vf ), (9)

where, Ψ̃ = ΦΨ.
Let the combination of N frequency bands being free (in-

dicated by “0”) and/or the frequency bands being occupied
(indicated by “1”) for the ith hypothesis be denoted by the
N × 1 vector cx|Hi

. Such that

i = 0 : cx|H0
=
[
0, 0, . . . , 0, 0

]T
,

i = 1 : cx|H1
=
[
0, 0, . . . , 0, 1

]T
,

i = 2 : cx|H2
=
[
0, 0, . . . , 1, 0

]T
,

...

i = 2N − 1 : cx|H2N−1
=
[
1, 1, . . . , 1, 1

]T
.

(10)

The number of non-zero entries of the vector cx|Hi
is denoted

by its `0-norm, i.e., ‖cx|Hi
‖
0
. The variance of any active

channel is modeled as σ2
x, and the variance of the noise in

each channel as σ2
v . Assuming that the channels are uncor-

related, we can then define the following covariance matrices
Σx|Hi

= E[xfx
H
f |Hi] = σ2

xdiag(cx|Hi
) = σ2

xCx|Hi
and

Σv = E[vfv
H
f ] = σ2

vIN .
Both the signal and noise are modeled as independently

and identically distributed (i.i.d.) Gaussian random variables.
Hence, for the ith hypothesis, the signal can be written as
x(i) ∼ CN (0,ΨΣx|Hi

ΨH) and the noise as
v ∼ CN (0, σ2

vIN ).

4. OPTIMIZATION PROBLEM
The algorithm to solve the MHT problem will decide on one
of the following hypotheses

H0 : ỹ = Ψ̃vf ,

Hi : ỹ = Ψ̃(x
(i)
f + vf ), i = 1, . . . ,m = 2N − 1.

(11)



The acquired signal can be written in terms of the com-
pressed signal denoted by x̃(i) = Ψ̃x

(i)
f , and the noise ṽ =

Ψ̃vf . Since, the measurement process is linear, the com-
pressed vectors will still be Gaussian random variables. The
covariance matrix of the signal x̃ for the ith hypothesis is
given by

Σ̃x|Hi
= E[x̃x̃H |Hi] = Ψ̃Σx|Hi

Ψ̃H , (12)

and for the noise ṽ it is given by

Σ̃v = E[ṽṽH ] = Ψ̃ΣvΨ̃
H = σ2

vΦΦH . (13)

Hence, the covariance matrix of the acquired signal can be
written as

Σ̃y|Hi
= E[ỹỹH |Hi] = Ψ̃Σx|Hi

Ψ̃H + σ2
vΦΦH . (14)

From (12), (13) and (14) we can write

Pr(ỹ|H0) =
|Σ̃v|−

1
2

(2π)(
N
2 )

exp

(
−1

2
ỹHΣ̃

−1
v ỹ

)
, (15)

Pr(ỹ|Hi) =
|Σ̃y|Hi

|− 1
2

(2π)(
N
2 )

exp

(
−1

2
ỹH(Ψ̃Σx|Hi

Ψ̃H + Σ̃v)
−1

ỹ

)
.

(16)
Substituting (15) and (16) in (5), and scaling appropriately we
can write the Log Likelihood Ratio (LLR) as

Λ(i) = ln

(
|Σ̃y|Hi

|
|Σ̃v|

)
+

ỹH
(
Σ̃
−1
v − (Ψ̃Σx|Hi

Ψ̃H + Σ̃v)
−1)

ỹ.

(17)

Using the matrix inversion lemma, we obtain

(Ψ̃Σx|Hi
Ψ̃H + Σ̃v)

−1

= Σ̃
−1
v − Σ̃

−1
v Ψ̃(Σ−1x|Hi

+ Ψ̃HΣ̃
−1
v Ψ̃)−1Ψ̃HΣ̃

−1
v .

(18)

Further factorizing (18) and simplifying the determinant, we
can rewrite the objective function as

Λ(i) = σ2
xỹ

HΣ̃
−1
v Ψ̃Cx|Hi

(IN + σ2
xCx|Hi

Ψ̃HΣ̃
−1
v Ψ̃

Cx|Hi
)−1Cx|Hi

Ψ̃HΣ̃
−1
v ỹ − ‖cx|Hi

‖
0

ln(1 + γ), (19)

where γ =
σ2
x

σ2
v

.
It is mathematically intricate to factor out the matrix Cx|Hi

from the matrix inverse in (19). This makes the optimiza-
tion an involved non-convex non-linear integer programming
problem of high complexity. An exhaustive search would re-
quire O(2N ) computations, and is practically not feasible for
large N . We term this algorithm based on exhaustive search

as MHT-CD. Therefore, we propose a sub-optimal greedy al-
gorithm to solve this optimization problem, based on certain
heuristics.

Before presenting the proposed greedy algorithm, we pro-
vide some definitions.

Definition 2. Neighborhood. For cx|Hi
∈ {0, 1}N , the neigh-

borhood of cx|Hi
with size S is defined as the set

NS(cx|Hi
) = {cx|Hj

∈ {0, 1}N | ‖cx|Hi
− cx|Hj

‖
1
≤ S},

(20)
where, ‖cx|Hi

− cx|Hj
‖
1

denotes the Hamming distance be-
tween cx|Hi

and cx|Hj
.

This means, the vectors cx|Hj
and cx|Hi

differ by S bits
∀ cx|Hj

∈ NS(cx|Hi
). For any cx|Hi

, the total number of
vectors in NS(cx|Hi

) will be |NS(cx|Hi
)| =

∑S
r=0

(
N
r

)
.

Definition 3. Local Maximum LLR (LML) point. Consider
cx|Hi

∈ {0, 1}N with a neighborhoodNS(cx|Hi
). If Λ(p∗) ≥

Λ(j) ∀cx|Hj
∈ NS(cx|Hi

) and ∀cx|Hp∗ ∈ NS(cx|Hi
), then

cx|Hp∗ results in the local maximum LLR Λ∗S(p∗) with an
LML point p∗ within the neighborhood size S.

4.1. Heuristics

Property 1. Consider cx|Hi
∈ {0, 1}N with a neighborhood

NS(cx|Hi
) and LML point Λ∗S(i). Then Λ∗1(i) ≤ Λ∗2(i) · · · ≤

Λ∗N (i) = Λ(i∗).

For cx|Hi
∈ {0, 1}N with a neighborhoodNS(cx|Hi

), the
LLR values between cx|Hi

and NS(cx|Hi
) are closer to each

other for smaller S. As S → N , the difference between the
LLR values increases. We make use of this property in the
proposed sub-optimal greedy algorithm. Since the algorithm
is based on the LML and used to perform CD, we call it LML-
CD.

An approach based on the LML has also been proposed
in the literature for MU detection [5]. These detectors are for
uncompressed signals and are gradient based, where the ob-
jective function is sequentially updated by bit-flipping so that
its likelihood monotonically increases in each step. The de-
tectors in [5] are for the uncompressed signal, hence it is pos-
sible to easily compute the likelihood for each component of
the vector. However, this is complicated for the compressed
signal as in (19). In this paper, we propose a novel approach
for the compressed signals based on the LML, where we se-
lect an initial neighborhood region and then build upon the
selected region depending on the required performance and
complexity.

4.2. Algorithm

The algorithm LML-CD is initialized with a vector c(0) ∈
{0, 1}N uniformly at random out of 2N possible vectors. From
property 1, we know that the LLR values are closer to each



other for smaller S. Hence, we choose N vectors c(u) ∈
{0, 1}N , u = 1, 2, . . . , N , uniformly at random such that these
N vectors have all possible Hamming distances from 1 to N ,
with the initial vector. An observation space from these N
vectors and the initial vector is formed. The maximum LLR
and hence the hypothesis Hi∗1 within this initial observation
space is selected. Next, the observation space is updated with
all the possible vectors in the neighborhoodNS(cx|Hi∗1

). The
hypothesis Hi∗2 resulting in the maximum LLR with in this
updated observation space is computed. If the LLR value
Λ(i∗2) exceeds the pre-determined threshold γth then we choose
hypothesisHi∗2 otherwise we chooseH0. The algorithm LML-
CD is summarized in Table 1.

For S = 3, the algorithm LML-CD requires 1
6 (N3 +

11N + 6) computations, with complexity order of O(N3).
The advantage of the LML-CD algorithm is that the complex-
ity and the performance can be traded-off and can be adapted
through construction by selecting an appropriate maximum
neighborhood size S. In other words, if the neighborhood
size S is increased from one, two, etc., up to N , the computa-
tional complexity is linear, quadratic, etc., up to exponential
in the number of channels and also the performance increases.

Table 1: LML-CD algorithm for WS.

Objective: Select a hypothesisHi, i = 0, 1, . . . , 2N − 1.

1. Initialization: Start with an initial vector c(0) ∈
{0, 1}N uniformly at random.

2. Generate N vectors: c(u) ∈ {0, 1}N , u =
1, 2, . . . , N , each with a Hamming distance of 1
to N from the initial vector c(0).

3. Observation space and index set: U1 = {c(u),
u = 0, 1, . . . , N}, |U1| = N + 1, I1 = {i|cx|Hi

∈
U1}.

4. Compute: i∗1 = arg max
i∈I1

Λ(i).

5. Update observation space and index set: U2 =
{NS(cx|Hi∗1

)}, |U2| =
∑S
r=1

(
N
r

)
, I2 =

{i|cx|Hi
∈ U2}.

6. Compute: i∗2 = arg max
i∈I2

Λ(i).

7. Selection: if Λ(i∗2) ≥ γth then choose Hi∗2 other-
wise chooseH0.

5. SIMULATION RESULTS
The proposed MHT-CD based on an exhaustive search and the
proposed sub-optimal LML-CD based on a greedy search are

tested in this section. For the simulations, the following pa-
rameters are considered: the number of channels is N = 10,
and two fixed sensing matrices, Φ are used, i) Gaussian: ma-
trix whose elements are drawn i.i.d. from a random Gaus-
sian distribution of zero mean and variance 1

M , and ii) multi-
coset: constructed by selecting M columns uniformly at ran-
dom from IN and multiplied with a normalization factor of√

N
M . The Gaussian and multi-coset matrices are used in the

simulations, as these are the standard sensing matrices used
in the CS framework for recovery with `1-norm optimization.
However, for direct detection, the required properties of the
sensing matrices have to be analyzed and this is the subject
of future work. The simulations are averaged over 1000 tri-
als. In every trial, the vector xf is randomly generated with
i.i.d. Gaussian distributed entries of zero mean and variance
according to a certain static channel occupancy (σ2

x for busy
channels and zero for free channels). The vector vf is gener-
ated with i.i.d. Gaussian distributed entries of zero mean and
variance σ2

v in each trial. The time domain vectors x and v are
then obtained using the DFT matrix Ψ. The variances are set
according to the required SNR, given by 10 log10

(
Kσ2

x

Nσ2
v

)
dB.

A static channel occupancy is considered, with a busy chan-
nel set b = {3, 4}, number of free channels N −K = 8, and
number of busy channels K = 2. γth is chosen to keep the
Pfa below 10% in order to have a fair comparison between
different algorithms.

The proposed MHT based compressive wideband sens-
ing is compared with the conventional approach for CS based
spectrum sensing of [6]. Then the detection is performed on
the frequency response estimate (power or amplitude). We
make use of the Regularized Orthogonal Matching Pursuit
(ROMP) [7] to solve the convex program in [6], and then per-
form energy detection to determine the occupancy. We make
use of ROMP, as it has the speed of the greedy iterative meth-
ods (matching pursuit) and the robustness of `1-minimization.
The complexity order of ROMP is O(NMK). Additionally,
in the second stage, the threshold based detection has a com-
plexity order of O(N).

Fig. 1a and Fig. 1b show the performance of the MHT
based detector for Gaussian and multi-coset compression ma-
trices, respectively. The detector MHT-CD based on exhaus-
tive search is illustrated for SNR of 10 dB and 30 dB. MHT-
CD performs better than the classical two-stage approach. A
Pd of 0.9 is achieved for M

N ≈ 0.3 with MHT-CD. Using
the classical two-stage approach, a Pd of 0.9 is achieved for
M
N ≈ 0.6 and M

N ≈ 0.5 with Gaussian and multi-coset com-
pression matrices, respectively. In the case of the LML-CD
algorithm, Pd ≈ 0.9 is obtained for M

N ≈ 0.6 and M
N ≈ 0.5

for Gaussian and multi-coset sensing matrices, respectively.
The performance of the cubic complexity LML-CD algorithm
is similar to that of the classical two-stage approach.

Using a small N in the simulations reveals an important
aspect of CS. In the CS literature, Gaussian or any other
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(b) Φ = multi-coset compression matrix.

Fig. 1: Performance of MHT detector based on exhaustive
search (MHT-CD), classical estimation-detection two stage
approach, and the sub-optimal LML-CD algorithm, withN =
10, K = 2, S = 3.

random matrices are suggested as a favorable choice for sig-
nal recovery with `1-norm optimization, but this choice holds
mostly for N →∞ [8]. As can be seen in Fig. 1b, structured
matrices like multi-coset matrices perform better in case of a
smaller N , which appear more often in digital communica-
tions.

6. CONCLUSIONS
In this paper, we considered wideband spectral sensing in the
multiple hypothesis sense. Each hypothesis corresponds to
one of the possible combinations of all channels being busy
and/or free. To reduce the complexity and capitalize on the
sparsity of the spectrum, the sampling rate is reduced as in
the CS framework. Here, we avoid the conventional CS based
sensing, which usually involves reconstruction of the com-
pressed signal before detection. Instead a direct detection
based on the compressed samples is performed, resulting in

a CD. The detector MHT-CD was developed and requires
O(2N ) computations. The detector MHT-CD performs bet-
ter than the classical two-stage approach, but is impractical
for large N . Hence, we proposed a sub-optimal greedy al-
gorithm, LML-CD, based on the observed properties of the
local maximum LLRs. The LML-CD is of complexity or-
der O(NS), and has a performance comparable to that of
the conventional two-stage approach of the complexity order
O(KMN). However, there is still a need for a lower com-
plexity algorithm with a performance near to the MHT-CD
and is a subject for future work. It should be noted that the
exact knowledge of the sparsity level is not required for direct
detection.
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