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Abstract—In this paper, we will investigate an adaptive com-
pression scheme for tracking time-varying sparse signals with
possibly varying sparsity patterns and/or order. In particular,
we will focus on sparse sensing, which enables a completely
distributed compression and simplifies the sampling architecture.
The sensing matrix is designed at each time step based on the
entire history of measurements and known dynamics such that
the information gain is maximized. We illustrate the developed
theory with a target tracking example. Finally, we provide a few
extensions of the proposed framework to include a richer class
of sparse signals, e.g., structured sparsity and smoothness.

Index Terms—Structured sensing, sensor selection, sparsity-
aware Kalman filter, sparse sensing, adaptive compressed sensing,
distributed compression, big data.

I. I NTRODUCTION

W ITH the advances in sensor technology, the amount
of data produced by pervasive sensors is prohibitively

large. A large volume of such data is generated by a variety
of applications such as imaging platforms and mobile devices,
surveillance cameras and drones, as well as the Internet. The
data is often sampled through spatially separated nodes or
agents, which then transport the data to a central server for
further processing.

It is of crucial importance to start thinking about the
inference task we want to perform on the data and to gather
only the data that is informative for that specific task. By
doing so, we can significantly reduce the sensing cost, data
storage, processing overhead, and communications bandwidth.
Therefore, the aim is to extend traditional sensing methods
to more structured sensing mechanisms for specific signal
processing tasks. With such sampling schemes, the sampling
rates can be significantly reduced, yet achieving a desired
inferential performance.

The problem of choosing the best subset of sensors out
of the candidate sensors such that a desired inference perfor-
mance is achieved is referred to assensor selection. Sensor
selection is an experimental design problem, and has been
studied in the context of inference tasks like estimation,
filtering, and detection [1]–[6] (see references therein).In this
paper, we extend the sensor selection framework for non-linear
filtering developed in [6] to sampling designs for filtering
problems involving structured signals (more generally, filtering
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Fig. 1: Illustration of the sparse sensing scheme. Here, the
white (black) and colored squares represent a one (zero) and
an arbitrary value, respectively.

problems with equality constraints on the state variables).
In particular, we are interested in state sequences that are
sparse in nature, which have received a lot of attention in
the recent past throughcompressive sensing(CS) [7]. The
theory developed under the classical CS framework advocates
sensing architectures based on random matrices, which has
been proven essential to provide recovery algorithms, recon-
struction guarantees, and performance analyses. The CS theory
has evolved in recent years to include a much richer class
of structured signals. Further, the random sensing architec-
tures are replaced with more structured sensing operators to
accommodate practical applications such as sensor networks
(e.g., for source localization and field estimation), imaging,
and cognitive radio sensing, to list a few. See [8] for a more
detailed review on structured CS.

We consider the problem ofadaptive compressive sensingof
time-varying sparse signals with possibly time-varying sparsity
patterns and/or order. This problem has been studied in the past
leading to various forms of sparsity-aware filters [9]–[12], and
are applied to problems like visual surveillance [13] and target
localization [14]. We study the design of sensing matrices for
such problems; however, the focus will not be on the signal
recovery itself. Sensing matrix design for sparse recovery
has been studied in various forms. For example, in [15,
Ch. 6], [16] the variance of the distribution from which the
(random) sensing matrices are generated is designed such that
the average information gain is maximized. The Bayesian CS
framework [17] allows to quantify the sparse reconstruction
error through the so-called error bars, which again allows to
adaptively design the sensing matrices. Both [16] and [17] use
experimental design techniques with performance measures



like differential entropy to adaptively learn the sensing matrix
starting from a random matrix. In [18], a greedy algorithm
based on a submodular performance measure has been pro-
posed for sensing operator design for a signal lying in the
union of subspaces. However, the sensing design schemes
discussed above are mostly limited to time-invariant signals
and/or systems without any state-space representation. Hence,
they are not adaptive in the true sense, and are not meant for
tracking the signal variation over space and/or time.

In this paper, the sensing matrix is designed at each time
step based on the entire history of measurements and known
dynamics described through a state-space model. The sensing
matrices are parameterized through a sparse Boolean vector.
Hence, the resulting sampling architecture is referred to as
sparse sensing(see the illustration in Fig. 1). The sensing
matrix is deterministic, and hence it is more favorable for prac-
tical scenarios including distributed sampling that is crucial
for sensor network applications. The non-zero entries of the
Boolean vector are determined by optimizing thea posteriori
error. Thus, it maximizes the information gain or equivalently
reduces uncertainty. The proposed offline design problem is
convex in nature and can be readily solved using off-the-shelf
software. We also discuss a few extensions of the proposed
framework to include general structured signals, such as group
sparsity and smoothness.

The notation used in this paper can be described as follows.
Upper (lower) bold face letters are used for matrices (column
vectors).(·)T denotes transposition.diag(·) refers to a block
diagonal matrix with the elements in its argument on the
main diagonal.1N (0N ) denotes theN × 1 vector of ones
(zeros).IN is an identity matrix of sizeN . E{·} denotes the
expectation operation.tr{·} is the matrix trace operator.det{·}
is the matrix determinant.λmin{A} (λmax{A}) denotes the
minimum (maximum) eigenvalue of a symmetric matrixA.

II. PROBLEM STATEMENT

Assume that the time-varying vector of interestzt ∈ R
M

is compressible in some known linear basis denoted by an
M×M matrixAt. In other words, we can expresszt = Atxt,
wherext has just a few non-zero coefficients, i.e.,‖xt‖0 ≪ M
(‖ · ‖

0
counts the non-zero entries of its argument). Under the

assumption that the parameter vectorxt is sparse, CS theory
asserts an exact recovery ofxt from observations which are
typically much smaller thanM , i.e, signals acquired via a
linear compression matrix. In this paper, we are interested
in designing a time-varying compression matrix as well as
determining the optimal compression rate to reach a desired
information gain or mean-squared error.

The unknown parameterxt follows a linear model corrupted
by additive noise:

yt = Φtzt + nt = ΦtAtxt + nt, (1)

where the (spatial and/or temporal) measurements at a tem-
poral block t are stacked in the measurement vectoryt =
[yt,1, yt,2, . . . , yt,N ]T ∈ R

N , and Φt ∈ R
N×M denotes

the sampling matrix. ForN ≪ M , the sampling matrix

will be a compression matrix, and the measurement vector
will be much shorter thanxt. The additive noise vector
nt = [nt,1, nt,2, . . . , nt,N ]T ∈ R

N is assumed to be zero-mean
with covariance matrixRnt

= σ2IN . Note that the sampling
matrix Φt and sparsity pattern (including the support size) of
the vectorxt can both be time-varying.

The unknown sparse parameter is assumed to obey the
following dynamical model

xt = ht(xt−1,vt−1), (2)

where the process noise is denoted byvt−1 ∈ R
M×1, which

accounts for any unmodeled dynamics. The evolution of the
sparse vectors{xt, t ∈ N} is governed by a non-linear function
ht : RM × R

M → R
M . Here, we modelvt ∼ N (0,Rvt

),
where Rvt

∈ R
M×M represents the covariance matrix of

vt. Alternatively, the evolution of the time-varying sparse
sequence (2) can be described using a pseudo-measurement
formulation [9], [14], [19]. More specifically, it is assumed
thatxt evolves according to the following model

dynamics: xt = Htxt−1 + ut; (3a)

pseudo-measurement:0 = g(xt) + et, (3b)

whereHt is an M × M state-transition matrix,ut ∈ R
M

is the process noise,g(xt) is a sparsity-controlling convex
function, andet is zero-mean unit-variance noise. For example,
g(·) can include any one of the well-known approximations
of the ℓ0(-quasi) norm such as theℓ1-norm

∑M

m=1
|xm,t|,

logarithmic function
∑M

m=1
log(|xm,t|+ δ) with δ > 0, or the

inverse Gaussian function
∑M

m=1

(
1− exp

(
−

x2

m,t

2σ2
g

))
with

tuning parameterσ2
g . Here, xm,t denotes themth entry of

xt. Henceforth, we will restrict ourselves to (3) instead of
(2) because of the generalization it offers to accommodate a
much richer class of structured signals as discussed later on
in Section VI.

Remark 1 (Static case). A specialization of(3) is the static
case, i.e.,{xt, t ∈ N} is time-invariant. This is obtained with
Ht = IM andRut

= 0M×M for t = 1, 2, . . . , T .

We consider the followingadaptive sparse sensingproblem.
For each t = 1, 2, . . . , T , design a deterministic sparse
compression matrixΦt based on the entire history of measure-
ments up to that point{y1,y2, . . . ,yt−1} using the state-space
model (1) and (3). The matrices{Φt, t ∈ N} are chosen from
a predefined set, i.e.,Φt is parameterized by a sensing vector
wt ∈ {0, 1}M that has to be designed. More specifically, the
sensing matrix takes the following form

Φt = diagr(wt),

where the notationdiagr(·) represents a diagonal matrix with
the argument on its diagonal but with the all-zero rows
removed. An illustration of the sparse sensing scheme is
shown in Fig. 1. In this work, we are interested in designing
a sequence of sparse vectors{wt, t ∈ N} (and, hence a
sequence of matrices{Φt(wt), t ∈ N}) that results in a
desired information gain or mean-squared-error. Note thatwe



are basically replacing the random measurement operation
traditionally used in the CS framework with a deterministic
and sparse sensing operation, which is more favorable for
practical implementation.

III. O PTIMIZATION CRITERION

Suppose that the estimatex̂t−1|t−1 and its covariance matrix
Pt−1|t−1 are available from the previous time step. At current
time stept, the prediction and its covariance are given as

x̂t|t−1 = Htx̂t−1|t−1

Pt|t−1 = HtPt−1|t−1H
T
t +Rut

.
(4)

Given the state-space equations (1) and (3a), without any
sparsity constraint, the update step of the standard Kalman
filter can be written as the following weighted least-squares
problem

x̂t|t = argmin
xt

‖x̂t|t−1 − xt‖
2

P
−1

t|t−1

+ ‖yt −Φt(wt)Atxt‖
2

R
−1

nt
,

(5)

where‖x‖2
A

= xTAx. The a posteriorierror covariance can
be written recursively fort = 1, 2, . . . , T as

Pt|t :=

(
P−1

t|t−1
+

1

σ2

∑M

m=1
wm,tam,ta

T
m,t

)−1

, (6)

wherePt|t−1 = Rut
+ HtP

−1

t−1|t−1
HT

t with Rut
being the

covariance matrix ofut, {am,t ∈ R
M×1,m = 1, 2, . . . ,M}

are the rows ofAt, andwt = [w1,t, w2,t, . . . , wM,t]
T is the

sampling operator.
The linear system (1) and (3a) is observable forΦt = IN ,

and it can be solved using the celebrated Kalman filter (KF)
algorithm (5) and (6). Due to the compression, the number of
unobservable modes increases and the conventional KF in no
more useful, unless the inherent sparsity of the state sequence
is taken into account. We do this through an (independent) ex-
tra pseudo-measurement (3b), which then modifies the update
equation (5) to the following non-linear least-squares problem

x̂t|t = argmin
xt

‖x̂t|t−1 − xt‖
2

P
−1

t|t−1

+ ‖yt −Φt(wt)Atxt‖
2

R
−1

nt

+ g2(xt),
(7)

The above optimization problem can be solved using a Gauss-
Newton algorithm leading to an iterative extended Kalman fil-
ter implementation; see [9], [14] for more details. Furthermore,
the a posteriorierror covariance (6) is modified to

Pt|t :=

(
P−1

t|t−1
+ ∂g(x̂t|t−1)∂g(x̂t|t−1)

T

+
1

σ2

∑M

m=1
wm,tam,ta

T
m,t

)−1

,

(8)

where∂g(x̂t|t−1) ∈ R
M is the (sub)gradient ofg(xt) towards

xt evaluated at̂xt|t−1. The second term in the above expres-
sion is due to the virtual measurement (3b) that accounts for
the sparsity of the state sequences{xt, t ∈ N}. For example,

using g(xt) :=
√
2γt‖xt‖1 with tuning parameterγt in (8),

we obtain the following performance measure

Pt|t(wt) :=

(
P−1

t|t−1
+

γt
2‖x̂t|t−1‖1

x̄t|t−1x̄
T
t|t−1

+
1

σ2

∑M

m=1
wm,tam,ta

T
m,t

)−1

,

(9)

where x̄t|t−1 =
[

x̂1,t|t−1

|x̂1,t|t−1|
,

x̂2,t|t−1

|x̂2,t|t−1|
, · · · ,

x̂M,t|t−1

|x̂M,t|t−1|

]T
with

x̂t|t−1 = [x̂1,t|t−1, . . . , x̂M,t|t−1]
T . The focus however is not

on solving (7) itself, but on designingwt to acquireyt based
on the information available one step ahead in time. We next
propose solvers for designing the sparse sensing matrices
based on the optimization criterion (9) and for a specific
desired performance.

IV. SPARSESENSING DESIGN

The sensing matrix design is determined by evaluating
scalar functions of thea posteriorierror covariance (9). Some
of the prominent scalar functions are related to A-optimality
(signifies the mean-squared-error), E-optimality (signifies the
worst case error), and D-optimality (signifies the entropy),
and are respectively given asft(wt) := tr{Pt|t}, ft(wt) :=
λmin{Pt|t}, andft(wt) := det{Pt|t}. Here, the performance
measureft(·) is time-varying. All the above criteria quantify
reasonably the “largeness” of the information content (or
reduction in uncertainty). Hence, the sensing operation is
designed such that one of these functions as well as the
cardinality ofwt are jointly minimized, where the cardinality
of wt represents the compression rate. In other words, the
compression rate increases with the number of non-zero entries
of wt.

Mathematically, in adaptive sparse sensing, at each time step
t = 1, 2, . . . , T , we solve the following optimization problem

argmin
wt

‖wt‖0

s.to ft(wt) ≤ λ,

wt ∈ {0, 1}M ,

(10)

where the thresholdλ specifies the desired accuracy and also
controls the compression rate. The optimization problem in
(10) is a non-convex Boolean problem. We simplify (10) by
replacing theℓ0(-quasi) norm with its best convex approx-
imation, i.e., theℓ1-norm given as1T

Mwt and the Boolean
{0, 1} constraint with a box constraint[0, 1]. However, the
performance measureft(wt) is convex inwt [1]. Thus, the
relaxed optimization problem is given as

argmin
wt

1T
Mwt

s.to ft(wt) ≤ λ,

0 ≤ wm,t ≤ 1,m = 1, 2, . . . ,M.

(11)

The above optimization problem is convex inwt. However,
the solution of (11) is not yet Boolean, and the approximate
Boolean solution has to be recovered. This can be done either
by deterministic or randomized rounding [4]. The relaxed
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Fig. 2: Tracking a target using a grid-based model withM = 30 andN = 5. (a) A target is moving along the straight line
θx,t = θy,t = t, i.e., it moves with a constant velocity of1 m/s. Selected sensors shown correspond tot = 25 s. (b) The
solution path illustrating the selected rows of the dictionary A for t = 1, 2, . . . , 25 s.

optimization problem can be solved using readily available
convex optimization solvers like CVX [20] or SeDuMi [21].
We underline that the formulation (11) will also optimize the
number of rows ofΦt. In case a specific compression rate is
desired (i.e.,N is known a priori), we solve the following
equivalent problem:

argmin
wt

ft(wt)

s.to 1T
Mwt = N,

0 ≤ wm,t ≤ 1,m = 1, 2, . . . ,M.

(12)

Note that other approximations for‖wt‖0 can also be con-
sidered, such as the sum-of-logarithms

∑M

m=1
log(wm,t + δ)

with a smallδ > 0 [4].

V. EXAMPLE : TARGET TRACKING

In this section, we illustrate the developed theory with the
following target tracking example. Letθt = [θx,t, θy,t]

T ∈ R
2

denote the position of the target at time instancet andpm ∈
R

2 denote the position of themth virtual sensor. Let us assume
that there areM locations where we can place these sensors.
The candidate sensors are capable of measuring the signal
strength according to the following modelzm,t = am,t(θt)
for m = 1, 2, . . . ,M , where

am,t(θt) =
βs

β + ‖θt − pm‖2
2

(13)

with a constantβ > 0. Here,s denotes the signal strength.
We linearize (13) aroundM grid points {gm}Mm=1, where
the target could be potentially located. In this case, we are
interested in tracking a target moving along a straight line
θx,t = θy,t = t as shown in Fig. 2a. As a result, we arrive at
the linear grid-based model given by

zm,t = aTmxt, m = 1, 2, . . . ,M,

wheream = [am,t(g1), am,t(g2), . . . , am,t(gM )]T ∈ R
M is

time-invariant, butxt is time-varying. All the entries of the
vectorxt ∈ R

M are equal to zero except for themth entry,
xm,t, which is equal to the target signal strengths at time

t if and only if the target is located at themth grid point,
i.e., θt = gm. By letting zt = [z1,t, z2,t, . . . , zM,t]

T and the
dictionaryA = [a1, a2, . . . , aM ]T ∈ R

M×M , we havezt =
Axt. Note that the number of grid points can be much larger
than the number of sensors.

The sparsity ofxt allows us to uniquely recoverzt from
its compressed version. This is the central idea behind the CS
theory. Recalling the measurement model (1), i.e.,

yt = Φt(wt)zt + nt,

we re-emphasize the advantage ofsparse sensing(cf. Fig. 1) as
follows. In scenarios like the one considered here, compression
via random linear projections would still need all theM
sensors with no reduction in the sensing and communications
cost. On the contrary, sparse sensing enables a completely
decentralized sensing, and it needs onlyN ≪ M sensors.
Moreover, such spatial sampling schemes lead to (CS-based)
sensor placement pertinent to applications like medical imag-
ing, visual surveillance, radar, cognitive radio, to list afew.

The target follows a constant velocity model defined by

xt = Hxt−1 + ut,

where the entries of the initial vectorx0 are all zero except
for the first entryx1,1 = s. Here, the state-transition matrix is
a shift matrix, i.e.,

H =




0 0 · · · 0
1 0 · · · 0
...

. ..
. . .

...
0 · · · 1 0


 ∈ R

M×M .

In this example, the sparsity pattern is time-varying, but the
sparsity order is fixed. We stress here that the proposed
framework is not limited to signals with a fixed sparsity
order. We use the following parameters in the simulations: The
number of grid points/candidate sensorsM = 30, N = 5,
β = 100, and s = 10. The sensors are (virtually) deployed
uniformly at random within a30 × 30 m2 surveillance area
as shown in Fig. 2a. We choose potential target grid points
gm = [m,m]T for m = 1, 2, . . . , 30. Furthermore, we use



ft(wt) := tr{P−1

t|t }, x̂0|0 = 1M , P0|0 = IM , Rut
= 0.01IM ,

and σ = 10−3. We computeγt using the method described
in [14] andλ is chosen such thatN = 5 sensors are selected
at each time step.

The relaxed optimization problem is solved using CVX,
which internally calls SeDuMi. The update step of the sparsity-
aware Kalman filter is computed using (7), while we use (9)
for the covariance update and (4) for prediction. Recall that we
design the sensing matrixΦt(wt) one step ahead by optimiz-
ing a scalar function of (9). Fig. 2b illustrates the solution path
obtained by solving (11) fort = 1, 2, . . . , 25 s. The Boolean
solution is recovered using deterministic rounding. The sensors
selected for time stept = 25 s is also shown in Fig. 2a. In this
example, the same subset of sensors are selected fort > 10
because the matricesA andH, and the sparsity order are not
changing with time.

VI. EXTENSIONS

In this section, we highlight some important generalizations
of the proposed framework, which are often studied together
with the CS framework. The sparsity prior can be extended
to a much broader class of structured signals, including struc-
tured sparse signals (or block-sparse signals) [22], smoothness
(i.e., sparsity of the coefficients and also sparsity of their
differences) [23], to list a few. Depending on the structure
of the state, theg(xt) has to be modified accordingly. More
specifically, for structured sparse signals we use a regularizer
that accounts for block sparsity, i.e.,

g(xt) := 2γt

G∑

i=1

‖xi‖2,

where the state vectorxt is grouped intoG subvectors each
of lengthN/G asxt = [xT

1,t,x
T
2,t, . . . ,x

T
G,t]

T . Similarly, for
signal smoothness, we use the regularizer

g(xt) := γ1,t‖xt‖1 + γ2,t

M−1∑

m=1

|xm,t − xm−1,t|,

whereγ1,t andγ2,t are tuning parameters. Note that using the
above regularizers in (7), equations (7) and (8) together will
form the update step of a generalstructured-sparsity-aware
Kalman filter.

VII. C ONCLUSIONS

In the era of big data, it is very crucial to design sensing
operators keeping in mind the specific task we want to perform
on the acquired data. Thus, only the informative data has
to be acquired such that the inferential performance is still
acceptable. The sensing architectures for dimensionalityreduc-
tion, especially under the classical CS framework are mostly
based on random matrices. In this paper, we have developed a
framework for sensing matrix design for time-varying sparse
signals. In particular, we have considered the design of a
deterministic and sparse sensing matrix, which is essential for
decentralized compression. The proposed solvers are convex in
nature and can be solved using off-the-shelf software. We have
also provided some extensions of the proposed framework

to include a much richer class of sparse signals (e.g., block
sparse, smoothness), which also leads to a structured-sparsity-
aware Kalman filter.
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