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X
Abstract—In this paper, we will investigate an adaptive com- t

Vi Dy (wy) Ay
pression scheme for tracking time-varying sparse signals ith B
possibly varying sparsity patterns and/or order. In particular, =
we will focus on sparse sensing, which enables a completel B B
distributed compression and simplifies the sampling archigcture. |

The sensing matrix is designed at each time step based on the

entire history of measurements and known dynamics such that
the information gain is maximized. We illustrate the develped -
theory with a target tracking example. Finally, we provide afew

extensions of the proposed framework to include a richer clss
of sparse signals, e.g., structured sparsity and smoothres _ _ _
Index Terms—Structured sensing, sensor selection, sparsity- Fig. 1: lllustration of the sparse sensing scheme. Here, the

aware Kalman filter, sparse sensing, adaptive compressedrs®ng, white (black) and colored squares represent a one (zero) and
distributed compression, big data. an arbitrary value, respectively.

. INTRODUCTION problems with equality constraints on the state variables)

ITH the advances in sensor technoloay. the amoul particular, we are interested in state sequences that are
9 F%arse in nature, which have received a lot of attention in

of data produced by pervasive sensors is prohibitive ﬁ/e recent past througbompressive sensinfCS) [7]. The

large. A large volume of such data is generated by a vari developed under the classical CS f k ad
of applications such as imaging platforms and mobile deyice eory developed un er the classica ramework & \_/Bcate
nsing architectures based on random matrices, which has

surveillance cameras and drones, as well as the Internet. ‘E@ . . .
en proven essential to provide recovery algorithms,rreco

data is often sampled through spatially separated nodes Rliction guarantees, and performance analyses. The Gf/the

agents, which 'Fhen transport the data to a central server E%rs evolved in recent years to include a much richer class
further processing.

: LI o of structured signals. Further, the random sensing amchite
It is of crucial importance to start thinking about th

inf task {1 ; the dat dt ﬁures are replaced with more structured sensing operators t
Inference task we want o periorm on the data and to ga l‘éle({commodate practical applications such as sensor network
only the data that is informative for that specific task. B

. N ; e.g., for source localization and field estimation), inmagi
doing so, we can significantly reduce the sensing cost, d J )

¢ . head. and cat batidwi tr% cognitive radio sensing, to list a few. See [8] for a more
storage, processing overhead, and communications batidwig .. 4" eview on structured CS.
Therefore, the aim is to extend traditional sensing methods

to more structured sensing mechanisms for specific signal’Ve consider the problem atiaptive compressive sensiofy

processing tasks. With such sampling schemes, the sampﬁ -varying sparse Sign"_’lls with possibly time-varying_rsity
rates can be significantly reduced, yet achieving a desirB@Herns and/ororder. This problem has been studied indtie p
inferential performance. leading to various forms of sparsity-aware filters [9]—[1&}d

The problem of choosing the best subset of sensors %rl? qppl!ed to problems like visual _surveillancg [13] angea
of the candidate sensors such that a desired inferencerper calization [14]. We study the design .Of sensing matrlcmf_s f

mance is achieved is referred to ssnsor selectianSensor such problems; however, the focus will not be on the signal
selection is an experimental design problem, and has b &HOVEry itsef. _Sen_sing r_natrix design for sparse recovery
studied in the context of inference tasks like estimatiofo> been studied in various forms. For example, in [15,

filtering, and detection [1]-[6] (see references therdim}this h. 6], [16] th? varianpe of the distributiqn from which the
paper, we extend the sensor selection framework for naatin (random) sensing matrices are generated is designed saich th

filtering developed in [6] to sampling designs for filterin he average information gain is maximized. The Bayesian CS

problems involving structured signals (more generalligfihg ramework [17] allows to quantify the sparse rec_onstructm
error through the so-called error bars, which again allows t

This work was supported in part by STW under the FASTCOM pmtoje adapt?vely design .the Sensmg matri(.;es- Both [16] and [5€] u
(10551) and in part by NWO-STW under the VICI program (10382) experimental design techniques with performance measures



like differential entropy to adaptively learn the sensingtrix  will be a compression matrix, and the measurement vector
starting from a random matrix. In [18], a greedy algorithmill be much shorter thanx,. The additive noise vector
based on a submodular performance measure has been pfo= [n;1,ns9,...,n:.n]7 € RY is assumed to be zero-mean
posed for sensing operator design for a signal lying in tivéth covariance matri®,, = 0*Iy. Note that the sampling
union of subspaces. However, the sensing design schemmegrix ®, and sparsity pattern (including the support size) of
discussed above are mostly limited to time-invariant dginahe vectorx; can both be time-varying.

and/or systems without any state-space representatiortelle The unknown sparse parameter is assumed to obey the
they are not adaptive in the true sense, and are not meantffdlowing dynamical model

tracking the signal variation over space and/or time. _

In this paper, the sensing matrix is designed at each time Xt = he(x-1, Vi), (2)
step based on the entire history of measurements and knowmirere the process noise is denotedwgy; € RM*! which
dynamics described through a state-space model. The gensiacounts for any unmodeled dynamics. The evolution of the
matrices are parameterized through a sparse Boolean veaparse vectorfx,,t € N} is governed by a non-linear function
Hence, the resulting sampling architecture is referredsto &, : R™ x RM — RM. Here, we model; ~ N(0,R,,),
sparse sensingsee the illustration in Fig. 1). The sensingvhere R,, € RM*M represents the covariance matrix of
matrix is deterministic, and hence it is more favorable f@cp v;. Alternatively, the evolution of the time-varying sparse
tical scenarios including distributed sampling that isc@ali sequence (2) can be described using a pseudo-measurement
for sensor network applications. The non-zero entries ef tformulation [9], [14], [19]. More specifically, it is assume
Boolean vector are determined by optimizing th@osteriori thatx; evolves according to the following model
error. Thus, it maximizes the information gain or equivéien
reduces uncertainty. The proposed offline design problem is
convex in nature and can be readily solved using off-thdfshe pseudo-measurementd = g(x:) + e, (3b)

software. We also discuss a few extensions of the proposgflare H, is an M x M state-transition matrixyy, € RM
framework to include general structured signals, such asmmr is the process noisej(x;) is a sparsity-controlling convex

sparsity and smoothness. function, anck; is zero-mean unit-variance noise. For example,

The notation used in this paper can be described as foIIOVﬁ,) can include any one of the well-known approximations
Upper (lower) bold face letters are used for matrices (colu M

M3t the ¢o(-quasi) norm such as thé&-norm 3° | |
) T . . . 0 q m=1 xmat !
v_ectors).( ) d_enot_es transp05|t|0|d1a_g( ) refers to a block logarithmic functionZM,l 1og(|Zm.¢| + ) With & > 0, or the
diagonal matrix with the elements in its argument on the m= ; ( 2 h
—5gF )) wit

dynamics: x; = Hyx;_1 + uy; (3a)

. x

main diagonally (0y) denotes theV x 1 vector of ones INverse Gaussian functiod ), (1 — eXp

(zeros).Iy is an identity matrix of sizeV. E{-} denotes the tuning parametebg. Here, z,, ; denotes thenth entry of

expectation operationr{-} is the matrix trace operatatet{-} x;. Henceforth, we will restrict ourselves to (3) instead of

is the matrix determinant\,in{A} (Amax{A}) denotes the (2) because of the generalization it offers to accommodate a

minimum (maximum) eigenvalue of a symmetric matdx  much richer class of structured signals as discussed later o
in Section VI.

[I. PROBLEM STATEMENT
v Remark 1 (Static case) A specialization of(3) is the static

ase, i.e.{x,t € N} is time-invariant. This is obtained with
t = Iy andRut = 0pxm fort = 1,2,...,T.

Assume that the time-varying vector of intereste R
is compressible in some known linear basis denoted by
M x M matrix A;. In other words, we can express= A;x;,
wherex; has just a few non-zero coefficients, ifex|lo < M We consider the followingdaptive sparse sensiqgoblem.

(/| - I, counts the non-zero entries of its argument). Under ter eacht = 1,2,...,7, design a deterministic sparse
assumption that the parameter vectgris sparse, CS theory compression matri®; based on the entire history of measure-
asserts an exact recovery ®f from observations which are ments up to that pointy:, ys, . .., y:_1} using the state-space
typically much smaller thanV/, i.e, signals acquired via amodel (1) and (3). The matricgsp,, ¢ € N} are chosen from
linear compression matrix. In this paper, we are interestadpredefined set, i.e®, is parameterized by a sensing vector
in designing a time-varying compression matrix as well ag, € {0,1}* that has to be designed. More specifically, the
determining the optimal compression rate to reach a desirsghsing matrix takes the following form

information gain or mean-squared error.

The unknown parametes; follows a linear model corrupted
by additive noise: where the notatiodiag, (-) represents a diagonal matrix with
(1) the argument on its diagonal but with the all-zero rows

removed. An illustration of the sparse sensing scheme is
where the (spatial and/or temporal) measurements at a teshewn in Fig. 1. In this work, we are interested in designing
poral blockt¢ are stacked in the measurement vegier= a sequence of sparse vectofe/,,t € N} (and, hence a
[Yer,yt2,--yen]tT € RY, and &, € RY*M denotes sequence of matrice§®,(w:),t € N}) that results in a
the sampling matrix. ForN. <« M, the sampling matrix desired information gain or mean-squared-error. Note wheat

®, = diag, (W),

vt = ®:2; + 0y = A + 1y,



are basically replacing the random measurement operatising g(x;) := \/2v:||x||; with tuning parametety, in (8),
traditionally used in the CS framework with a deterministiszve obtain the following performance measure

and sparse sensing operation, which is more favorable for o
practical implementation. Py (wy) := <Pt_|t11 + m%u-ﬁﬁm
t‘t*l 1
[1I. OPTIMIZATION CRITERION I )]
1 M 7
Suppose that the estimatg_,;_, and its covariance matrix + ) Zm:l wm7tam,tam,t) ’
P,_,;—1 are available from the previous time step. At current -
time stept, the prediction and its covariance are given as % — | Bt Taepeon 0 Tarejemn '
P P g where Xeje—1 = 12116117 [Z2,6—1] V@ s el with
Kijeo1 = HiX 101 Xit—1 = [T14)t—1,---»Tamep—1)” - The focus however is not

4 on solving (7) itself, but on designing; to acquirey; based

on the information available one step ahead in time. We next
Given the state-space equations (1) and (3a), without gmopose solvers for designing the sparse sensing matrices
sparsity constraint, the update step of the standard Kalmasaised on the optimization criterion (9) and for a specific
filter can be written as the following weighted least-sqaarelesired performance.
problem

Pyi1= HtPtfl\tle;’fr + Ry,

IV. SPARSESENSING DESIGN

Xt :argﬂ)lcin [1%¢16-1 —Xt||§>—1 The sensing matrix design is determined by evaluating
' e () scalar functions of tha posteriorierror covariance (9). Some
of the prominent scalar functions are related to A-optitgali
(signifies the mean-squared-error), E-optimality (sigsifihe
worst case error), and D-optimality (signifies the entropy)
and are respectively given gg(w¢) := tr{Py}, fi(w) :=

. 1 M s\ Amin{ Py}, and fi(w;) := det{P,;}. Here, the performance
Py = <Pt|t—l + 52 Zle wmytam-,tam,t> , (©) measuref;(-) is time-varying. All the above criteria quantify

reasonably the “largeness” of the information content (or

whereP,;_; = Ry, +HtP:1‘t71H;f with R, being the reduction in uncertainty). Hence, the sensing operation is

+ lye — ‘I’t(Wt)AtXtH;;tl,

WhereHxHi = xT Ax. Thea posteriorierror covariance can
be written recursively fot =1,2,...,T as

covariance matrix o, {a,,, € RM®>*1 m = 1,2,..., M} designed such that one of these functions as well as the
are the rows ofA;, andw; = [wy 4, w2y, ..., wi¢|T is the cardinality ofw, are jointly minimized, where the cardinality
sampling operator. of w; represents the compression rate. In other words, the

The linear system (1) and (3a) is observabledr= 1, compression rate increases with the number of non-zer@entr
and it can be solved using the celebrated Kalman filter (KPf w:.
algorithm (5) and (6). Due to the compression, the number ofMathematically, in adaptive sparse sensing, at each tiege st
unobservable modes increases and the conventional KF intre 1,2, ...,7', we solve the following optimization problem

more useful, unless the inherent sparsity of the state segque argmin |[w,

is taken into account. We do this through an (independent) ex Wy
tra pseudo-measurement (3b), which then modifies the update sto fo(wy) <A, (10)
equation (5) to the following non-linear least-squaresprm w, € {0,1}M

X = argl?citﬂ Xtpe—1 — XtHQP;LI where the threshold specifies the desired accuracy and also

controls the compression rate. The optimization problem in
(10) is a non-convex Boolean problem. We simplify (10) by

The above optimization problem can be solved using a Gaut@Placing thely(-quasi) norm with its best convex approx-

Newton algorithm leading to an iterative extended Kalman filmation, i.e., the/;-norm given asl;,w; and the Boolean
ter implementation; see [9], [14] for more details. Furthere, {0,1} constraint with a box constrairp, 1]. However, the

+ |y — ‘I’t(Wt)AtXtHi{;tl =+ QQ(Xt)7

the a posteriorierror covariance (6) is modified to performance measurf (w:) is convex inw; [1]. Thus, the
relaxed optimization problem is given as
Py = (Pttl_l + ag(iﬂt—l)ag@t\t—l)T argmin 1% w,
1 (8 s
+ 1 ZM w. v al sto fi(w) <A, (11)
D) me=1 m,tAm,tAm ¢ ) -
o 0<wm, <1l,m=1,2,..., M.

wheredg(Xy:—1) € RM s the (sub)gradient of(x;) towards The above optimization problem is convex wy. However,

x; evaluated ak,;_,. The second term in the above expreshe solution of (11) is not yet Boolean, and the approximate
sion is due to the virtual measurement (3b) that accounts f8oolean solution has to be recovered. This can be done either
the sparsity of the state sequendes,t € N}. For example, by deterministic or randomized rounding [4]. The relaxed
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Fig. 2: Tracking a target using a grid-based model with= 30 and N = 5. (a) A target is moving along the straight line
0.: = 6, = t, i.e., it moves with a constant velocity af m/s. Selected sensors shown correspond $o 25 s. (b) The
solution path illustrating the selected rows of the dicignA for¢t=1,2,...,25 s.

optimization problem can be solved using readily availableif and only if the target is located at theth grid point,
convex optimization solvers like CVX [20] or SeDuMi [21].i.e., 8, = g,,. By letting z, = [z1.4, 22,1, - - - ,zMyt]T and the
We underline that the formulation (11) will also optimizeeth dictionary A = [a;,as,...,ay]T € RM*M we havez, =
number of rows of®,. In case a specific compression rate iAx;. Note that the number of grid points can be much larger
desired (i.e.,N is known a priori), we solve the following than the number of sensors.

equivalent problem:

arg min ft (Wt)
Wi

sto 1%,w; = N,
0< Wy, <1l,m=1,2,..., M.

(12)

The sparsity ofx; allows us to uniquely recovez; from
its compressed version. This is the central idea behind e C
theory. Recalling the measurement model (1), i.e.,

v = ®i(wi)zy + 1y,

we re-emphasize the advantagepérse sensinfef. Fig. 1) as

Note that other approximations fdjw; ||, can also be con- follows. In scenarios like the one considered here, consfpas

sidered, such as the sum—of—logarith@:sé‘f:1 log(wmm, ¢ + 6)
with a smalls > 0 [4].

V. EXAMPLE: TARGET TRACKING

via random linear projections would still need all thd
sensors with no reduction in the sensing and communications
cost. On the contrary, sparse sensing enables a completely
decentralized sensing, and it needs oAy < M sensors.

In this section, we illustrate the developed theory with thiloreover, such spatial sampling schemes lead to (CS-based)

following target tracking example. Lé; = [0, ¢, 0, )7 € R?
denote the position of the target at time instah@dp,,, €

sensor placement pertinent to applications like medicalgim
ing, visual surveillance, radar, cognitive radio, to listesv.

R? denote the position of thexth virtual sensor. Let us assume The target follows a constant velocity model defined by

that there aré\/ locations where we can place these sensors.
The candidate sensors are capable of measuring the signal

strength according to the following mode), ; = am, +(0+)
form=1,2,..., M, where

Bs

= (13)
B+ 110: — pul?

am,t(ot)

with a constants > 0. Here, s denotes the signal strength.

x; = Hxy 1 + g,

where the entries of the initial vectoer, are all zero except
for the first entryz, 1 = s. Here, the state-transition matrix is
a shift matrix, i.e.,

1 0 - 0
c RMXI\I.

We linearize (13) aroundV/ grid points {g,,}M_,, where : :

the target could be potentially located. In this case, we are o - 1 0

interested in tracking a target moving along a straight lin@ this example, the sparsity pattern is time-varying, e t
02,0 = by, =t as shown in Fig. 2a. As a result, we arrive aéparsity order is fixed. We stress here that the proposed
the linear grid-based model given by framework is not limited to signals with a fixed sparsity

_ T _ order. We use the following parameters in the simulatios T
Zmt=a,Xy, m=12...,M, ) ) .
’ number of grid points/candidate sensdis = 30, N = 5,
wherea,, = [am.¢(g1),am.t(82), -, am(gn)]T € RM is 3 = 100, ands = 10. The sensors are (virtually) deployed

time-invariant, butx, is time-varying. All the entries of the uniformly at random within a0 x 30 m? surveillance area
vectorx; € RM are equal to zero except for theth entry, as shown in Fig. 2a. We choose potential target grid points
Tm+, Which is equal to the target signal strengthat time g,, = [m,m]” for m = 1,2,...,30. Furthermore, we use



fe(wy) := tr{P;‘tI}, Xoj0 = a1, Pojo = Ins, Ry, = 0.01I7, to include a much richer class of sparse signals (e.g., block
ando = 10~3. We computey, using the method describedsparse, smoothness), which also leads to a structureslitgpar
in [14] and X is chosen such thaV = 5 sensors are selectedaware Kalman filter.

at each time step.

The relaxed optimization problem is solved using CVX,[1]
which internally calls SeDuMi. The update step of the spgrsi
aware Kalman filter is computed using (7), while we use (9)
for the covariance update and (4) for prediction. Recall e [2!
design the sensing matri&,(w;) one step ahead by optimiz-
ing a scalar function of (9). Fig. 2b illustrates the solatjgath
obtained by solving (11) fot = 1,2,...,25 s. The Boolean [
solution is recovered using deterministic rounding. Thresses 4]
selected for time step= 25 s is also shown in Fig. 2a. In this
example, the same subset of sensors are selected>fot0
because the matrices andH, and the sparsity order are not
changing with time.

(5]

(6]
VI. EXTENSIONS

In this section, we highlight some important generalizaio 7]
of the proposed framework, which are often studied togethér
with the CS framework. The sparsity prior can be extendef$]
to a much broader class of structured signals, including:str
tured sparse signals (or block-sparse signals) [22], dmess
(i.e., sparsity of the coefficients and also sparsity of rthei
differences) [23], to list a few. Depending on the structure
of the state, thgy(x;) has to be modified accordingly. Morey;q
specifically, for structured sparse signals we use a reigalar
that accounts for block sparsity, i.e.,

El

(11]

€]

g(xt) == 2%2”"%’”27 [12]
=1

where the state vectot; is grouped intoG subvectors each

of length N/G asx; = [x{,,x3,,...,x&,]". Similarly, for

signal smoothness, we use the regularizer

[13]

M—-1
9(xe) == yellxelly + 2. Z |[Tm,t — Tm—14;

m=1

[14]

[15]
where~; ; and~,; are tuning parameters. Note that using the
above regularizers in (7), equations (7) and (8) togethdér witel
form the update step of a genesttuctured-sparsity-aware
Kalman filter

VIlI. CONCLUSIONS [17]

In the era of big data, it is very crucial to design sensiniggl
operators keeping in mind the specific task we want to perform
on the acquired data. Thus, only the informative data hasj
to be acquired such that the inferential performance i$ stil
acceptable. The sensing architectures for dimensionmalityc- .,
tion, especially under the classical CS framework are mosh
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